1
|
Djouda BS, Moukam Kakmeni FM, Guemkam Ghomsi P, Ndjomatchoua FT, Tchawoua C, Tonnang HEZ. Theoretical analysis of spatial nonhomogeneous patterns of entomopathogenic fungi growth on insect pest. CHAOS (WOODBURY, N.Y.) 2019; 29:053134. [PMID: 31154798 DOI: 10.1063/1.5043612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
This paper presents the study of the dynamics of intrahost (insect pests)-pathogen [entomopathogenic fungi (EPF)] interactions. The interaction between the resources from the insect pest and the mycelia of EPF is represented by the Holling and Powell type II functional responses. Because the EPF's growth is related to the instability of the steady state solution of our system, particular attention is given to the stability analysis of this steady state. Initially, the stability of the steady state is investigated without taking into account diffusion and by considering the behavior of the system around its equilibrium states. In addition, considering small perturbation of the stable singular point due to nonlinear diffusion, the conditions for Turing instability occurrence are deduced. It is observed that the absence of the regeneration feature of insect resources prevents the occurrence of such phenomena. The long time evolution of our system enables us to observe both spot and stripe patterns. Moreover, when the diffusion of mycelia is slightly modulated by a weak periodic perturbation, the Floquet theory and numerical simulations allow us to derive the conditions in which diffusion driven instabilities can occur. The relevance of the obtained results is further discussed in the perspective of biological insect pest control.
Collapse
Affiliation(s)
- Byliole S Djouda
- Laboratory of Mechanics, Materials and Structures, Research and Postgraduate Training Unit for Physics and Applications, Postgraduate School of Science, Technology and Geosciences, Department of Physics, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Ngoa Ekelle, Yaoundé, Cameroon
| | - F M Moukam Kakmeni
- Complex Systems and Theoretical Biology Group, Laboratory of Research on Advanced Materials and Nonlinear Science (LaRAMaNS), Department of Physics, Faculty of Science, University of Buéa, P. O. Box 63, Buéa, Cameroon
| | - P Guemkam Ghomsi
- Laboratory of Mechanics, Materials and Structures, Research and Postgraduate Training Unit for Physics and Applications, Postgraduate School of Science, Technology and Geosciences, Department of Physics, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Ngoa Ekelle, Yaoundé, Cameroon
| | - Frank T Ndjomatchoua
- Sustainable Impact Platform, Adaptive Agronomy and Pest Ecology Cluster, International Rice Research Institute (IRRI), DAPO Box 7777-1301, Metro Manila, Philippines
| | - Clément Tchawoua
- Laboratory of Mechanics, Materials and Structures, Research and Postgraduate Training Unit for Physics and Applications, Postgraduate School of Science, Technology and Geosciences, Department of Physics, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Ngoa Ekelle, Yaoundé, Cameroon
| | - Henri E Z Tonnang
- International Institute of Tropical Agriculture (IITA), 08 BP 0932, Tri Postal Abomey Calavi, Cotonou, Benin
| |
Collapse
|
2
|
Qu J, Zou X, Yu J, Zhou Y. The conidial mucilage, natural film coatings, is involved in environmental adaptability and pathogenicity of Hirsutella satumaensis Aoki. Sci Rep 2017; 7:1301. [PMID: 28465519 PMCID: PMC5431061 DOI: 10.1038/s41598-017-01368-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/29/2017] [Indexed: 01/11/2023] Open
Abstract
The Hirsutella genus is very special asexually-reproducing pathogens of insects by reduced sporulation, host specificity and spores covered by a thick mucilage layer. However, the ecological function of conidial mucilage remains elusive. In this study, the possible ecological role of conidial mucilage from the entomopathogenic fungus Hirsutella satumaensis was functionally investigated through tolerance, adherence and insect bioassays involving aerial conidia (AC) and mucilage-free conidia (MFC). Measurements of hydrophobicity using microbial adhesion to hydrocarbons (MATH) indicated that mucilage is main contributor to the surface hydrophobicity of AC. When subjected in tolerance assays to extreme temperatures, high chemical pressure, extended exposure to ultraviolet radiation and cold stress, AC produced more colonies, exhibited higher conidiation and germination percentages than those of MFC. In adhesion assays, MFC displayed an approximately 40% reduction in adherence to locust, dragonfly cuticle and onion epidermis when washed with 0.05% Tween 20. Similarly, Galleria mellonella and Plutella xylostella larvae infected with mucilage-producing AC experienced a relatively higher mortality rate. Our findings suggest that mucilage is critical to the ecological adaptability of H. satumaensis, where it plays positive roles on maintenance of spore surface hydrophobicity, enhancement of spore resistance to extreme environments and strengthening of spore adhesion and host pathogenicity.
Collapse
Affiliation(s)
- Jiaojiao Qu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Xiao Zou
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, 550025, China.
| | - Jianping Yu
- College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Yeming Zhou
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
3
|
Abstract
Fungi are the most common disease-causing agents of insects; aside from playing a crucial role in natural ecosystems, insect-killing fungi are being used as alternatives to chemical insecticides and as resources for biotechnology and pharmaceuticals. Some common experimentally tractable genera, such as Metarhizium spp., exemplify genetic diversity and dispersal because they contain numerous intraspecific variants with distinct environmental and insect host ranges. The availability of tools for molecular genetics and multiple sequenced genomes has made these fungi ideal experimental models for answering basic questions on the genetic and genomic processes behind adaptive phenotypes. For example, comparative genomics of entomopathogenic fungi has shown they exhibit diverse reproductive modes that often determine rates and patterns of genome evolution and are linked as cause or effect with pathogenic strategies. Fungal-insect pathogens represent lifestyle adaptations that evolved numerous times, and there are significant differences in host range and pathogenic strategies between the major groups. However, typically, spores landing on the cuticle produce appressoria and infection pegs that breach the cuticle using mechanical pressure and cuticle-degrading enzymes. Once inside the insect body cavity, fungal pathogens face a potent and comprehensively studied immune defense by which the host attempts to eliminate or reduce an infection. The Fungal Kingdom stands alone in the range, extent, and complexity of their manipulation of arthropod behavior. In part, this is because most only sporulate on cadavers, so they must ensure the dying host positions itself to allow efficient transmission.
Collapse
Affiliation(s)
- Brian Lovett
- Department of Entomology, University of Maryland, College Park, MD 20742
| | - Raymond J St Leger
- Department of Entomology, University of Maryland, College Park, MD 20742
| |
Collapse
|