1
|
Changes in Chromatin Organization Eradicate Cellular Stress Resilience to UVA/B Light and Induce Premature Aging. Cells 2021; 10:cells10071755. [PMID: 34359924 PMCID: PMC8304177 DOI: 10.3390/cells10071755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/10/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Complex interactions among DNA and nuclear proteins maintain genome organization and stability. The nuclear proteins, particularly the histones, organize, compact, and preserve the stability of DNA, but also allow its dynamic reorganization whenever the nuclear processes require access to it. Five histone classes exist and they are evolutionarily conserved among eukaryotes. The linker histones are the fifth class and over time, their role in chromatin has been neglected. Linker histones interact with DNA and the other histones and thus sustain genome stability and nuclear organization. Saccharomyces cerevisiae is a brilliant model for studying linker histones as the gene for it is a single-copy and is non-essential. We, therefore, created a linker histone-free yeast strain using a knockout of the relevant gene and traced the way cells age chronologically. Here we present our results demonstrating that the altered chromatin dynamics during the chronological lifespan of the yeast cells with a mutation in ARP4 (the actin-related protein 4) and without the gene HHO1 for the linker histone leads to strong alterations in the gene expression profiles of a subset of genes involved in DNA repair and autophagy. The obtained results further prove that the yeast mutants have reduced survival upon UVA/B irradiation possibly due to the accelerated decompaction of chromatin and impaired proliferation. Our hypothesis posits that the higher-order chromatin structure and the interactions among chromatin proteins are crucial for the maintenance of chromatin organization during chronological aging under optimal and UVA-B stress conditions.
Collapse
|
2
|
Dawes IW, Perrone GG. Stress and ageing in yeast. FEMS Yeast Res 2021; 20:5670642. [PMID: 31816015 DOI: 10.1093/femsyr/foz085] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
There has long been speculation about the role of various stresses in ageing. Some stresses have beneficial effects on ageing-dependent on duration and severity of the stress, others have negative effects and the question arises whether these negative effects are causative of ageing or the result of the ageing process. Cellular responses to many stresses are highly coordinated in a concerted way and hence there is a great deal of cross-talk between different stresses. Here the relevant aspects of the coordination of stress responses and the roles of different stresses on yeast cell ageing are discussed, together with the various functions that are involved. The cellular processes that are involved in alleviating the effects of stress on ageing are considered, together with the possible role of early stress events on subsequent ageing of cells.
Collapse
Affiliation(s)
- Ian W Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gabriel G Perrone
- School of Science and Health, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
3
|
Zhang Z, Cottignie I, Van Zeebroeck G, Thevelein JM. Nutrient transceptors physically interact with the yeast S6/protein kinase B homolog, Sch9, a TOR kinase target. Biochem J 2021; 478:357-375. [PMID: 33394033 PMCID: PMC7850899 DOI: 10.1042/bcj20200722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
Multiple starvation-induced, high-affinity nutrient transporters in yeast function as receptors for activation of the protein kinase A (PKA) pathway upon re-addition of their substrate. We now show that these transceptors may play more extended roles in nutrient regulation. The Gap1 amino acid, Mep2 ammonium, Pho84 phosphate and Sul1 sulfate transceptors physically interact in vitro and in vivo with the PKA-related Sch9 protein kinase, the yeast homolog of mammalian S6 protein kinase and protein kinase B. Sch9 is a phosphorylation target of TOR and well known to affect nutrient-controlled cellular processes, such as growth rate. Mapping with peptide microarrays suggests specific interaction domains in Gap1 for Sch9 binding. Mutagenesis of the major domain affects the upstart of growth upon the addition of L-citrulline to nitrogen-starved cells to different extents but apparently does not affect in vitro binding. It also does not correlate with the drop in L-citrulline uptake capacity or transceptor activation of the PKA target trehalase by the Gap1 mutant forms. Our results reveal a nutrient transceptor-Sch9-TOR axis in which Sch9 accessibility for phosphorylation by TOR may be affected by nutrient transceptor-Sch9 interaction under conditions of nutrient starvation or other environmental challenges.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Ines Cottignie
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
4
|
Dakik P, Rodriguez MEL, Junio JAB, Mitrofanova D, Medkour Y, Tafakori T, Taifour T, Lutchman V, Samson E, Arlia-Ciommo A, Rukundo B, Simard É, Titorenko VI. Discovery of fifteen new geroprotective plant extracts and identification of cellular processes they affect to prolong the chronological lifespan of budding yeast. Oncotarget 2020; 11:2182-2203. [PMID: 32577164 PMCID: PMC7289529 DOI: 10.18632/oncotarget.27615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/14/2020] [Indexed: 11/25/2022] Open
Abstract
In a quest for previously unknown geroprotective natural chemicals, we used a robust cell viability assay to search for commercially available plant extracts that can substantially prolong the chronological lifespan of budding yeast. Many of these plant extracts have been used in traditional Chinese and other herbal medicines or the Mediterranean and other customary diets. Our search led to a discovery of fifteen plant extracts that significantly extend the longevity of chronologically aging yeast not limited in calorie supply. We show that each of these longevity-extending plant extracts is a geroprotector that decreases the rate of yeast chronological aging and promotes a hormetic stress response. We also show that each of the fifteen geroprotective plant extracts mimics the longevity-extending, stress-protecting, metabolic and physiological effects of a caloric restriction diet but if added to yeast cultured under non-caloric restriction conditions. We provide evidence that the fifteen geroprotective plant extracts exhibit partially overlapping effects on a distinct set of longevity-defining cellular processes. These effects include a rise in coupled mitochondrial respiration, an altered age-related chronology of changes in reactive oxygen species abundance, protection of cellular macromolecules from oxidative damage, and an age-related increase in the resistance to long-term oxidative and thermal stresses.
Collapse
Affiliation(s)
- Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Tala Tafakori
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Tarek Taifour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Eugenie Samson
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | - Belise Rukundo
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec J7A 4A5, Canada
| | | |
Collapse
|
5
|
The Anti-Aging Potential of Neohesperidin and Its Synergistic Effects with Other Citrus Flavonoids in Extending Chronological Lifespan of Saccharomyces Cerevisiae BY4742. Molecules 2019; 24:molecules24224093. [PMID: 31766122 PMCID: PMC6891605 DOI: 10.3390/molecules24224093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
The anti-aging activity of many plant flavonoids, as well as their mechanisms of action, have been explored in the current literature. However, the studies on the synergistic effects between the different flavonoid compounds were quite limited in previous reports. In this study, by using a high throughput assay, we tested the synergistic effects between different citrus flavonoids throughout the yeast's chronological lifespan (CLS). We studied the effect of four flavonoid compounds including naringin, hesperedin, hesperitin, neohesperidin, as well as their different combinations on the CLS of the yeast strain BY4742. Their ROS scavenging ability, in vitro antioxidant activity and the influence on the extracellular pH were also tested. The results showed that neohesperidin extended the yeast's CLS in a concentration-dependent manner. Especially, we found that neohesperidin showed great potential in extending CLS of budding yeast individually or synergistically with hesperetin. The neohesperidin exhibited the strongest function in decreasing the reactive oxygen species (ROS) accumulation in yeast. These findings clearly indicated that neohesperidin is potentially an anti-aging citrus flavonoid, and its synergistic effect with other flavonoids on yeast's CLS will be an interesting subject for future research of the anti-aging function of citrus fruits.
Collapse
|
6
|
Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes. Oncotarget 2017; 7:16542-66. [PMID: 26918729 PMCID: PMC4941334 DOI: 10.18632/oncotarget.7665] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/11/2016] [Indexed: 01/19/2023] Open
Abstract
We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging.
Collapse
|
7
|
Mechanisms Underlying the Essential Role of Mitochondrial Membrane Lipids in Yeast Chronological Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2916985. [PMID: 28593023 PMCID: PMC5448074 DOI: 10.1155/2017/2916985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022]
Abstract
The functional state of mitochondria is vital to cellular and organismal aging in eukaryotes across phyla. Studies in the yeast Saccharomyces cerevisiae have provided evidence that age-related changes in some aspects of mitochondrial functionality can create certain molecular signals. These signals can then define the rate of cellular aging by altering unidirectional and bidirectional communications between mitochondria and other organelles. Several aspects of mitochondrial functionality are known to impact the replicative and/or chronological modes of yeast aging. They include mitochondrial electron transport, membrane potential, reactive oxygen species, and protein synthesis and proteostasis, as well as mitochondrial synthesis of iron-sulfur clusters, amino acids, and NADPH. Our recent findings have revealed that the composition of mitochondrial membrane lipids is one of the key aspects of mitochondrial functionality affecting yeast chronological aging. We demonstrated that exogenously added lithocholic bile acid can delay chronological aging in yeast because it elicits specific changes in mitochondrial membrane lipids. These changes allow mitochondria to operate as signaling platforms that delay yeast chronological aging by orchestrating an institution and maintenance of a distinct cellular pattern. In this review, we discuss molecular and cellular mechanisms underlying the essential role of mitochondrial membrane lipids in yeast chronological aging.
Collapse
|
8
|
Jazwinski S. Mitochondria to nucleus signaling and the role of ceramide in its integration into the suite of cell quality control processes during aging. Ageing Res Rev 2015; 23:67-74. [PMID: 25555678 DOI: 10.1016/j.arr.2014.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 12/26/2022]
Abstract
Mitochondria to nucleus signaling has been the most extensively studied mode of inter-organelle communication. The first signaling pathway in this category of information transfer to be discovered was the retrograde response, with its own set of signal transduction proteins. The finding that this pathway compensates for mitochondrial dysfunction to extend the replicative lifespan of yeast cells has generated additional impetus for its study. This research has demonstrated crosstalk between the retrograde response and the target of rapamycin (TOR), small GTPase RAS, and high-osmolarity glycerol (HOG) pathways in yeast, all of which are key players in replicative lifespan. More recently, the retrograde response has been implicated in the diauxic shift and survival in stationary phase, extending its operation to the yeast chronological lifespan as well. In this capacity, the retrograde response may cooperate with other, related mitochondria to nucleus signaling pathways. Counterparts of the retrograde response are found in the roundworm, the fruit fly, the mouse, and even in human cells in tissue culture. The exciting realization that the retrograde response is embedded in the network of cellular quality control processes has emerged over the past few years. Most strikingly, it is closely integrated with autophagy and the selective brand of this quality control process, mitophagy. This coordination depends on TOR, and it engages ceramide/sphingolipid signaling. The yeast LAG1 ceramide synthase gene was the first longevity gene cloned as such, and its orthologs hyl-1 and hyl-2 determine worm lifespan. Thus, the involvement of ceramide signaling in quality control gives these findings cellular context. The retrograde response and ceramide are essential components of a lifespan maintenance process that likely evolved as a cytoprotective mechanism to defend the organism from diverse stressors.
Collapse
|
9
|
Arlia-Ciommo A, Piano A, Leonov A, Svistkova V, Titorenko VI. Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan. Cell Cycle 2015; 13:3336-49. [PMID: 25485579 PMCID: PMC4614525 DOI: 10.4161/15384101.2014.965063] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent findings suggest that evolutionarily distant organisms share the key features of the aging process and exhibit similar mechanisms of its modulation by certain genetic, dietary and pharmacological interventions. The scope of this review is to analyze mechanisms that in the yeast Saccharomyces cerevisiae underlie: (1) the replicative and chronological modes of aging; (2) the convergence of these 2 modes of aging into a single aging process; (3) a programmed differentiation of aging cell communities in liquid media and on solid surfaces; and (4) longevity-defining responses of cells to some chemical compounds released to an ecosystem by other organisms populating it. Based on such analysis, we conclude that all these mechanisms are programs for upholding the long-term survival of the entire yeast population inhabiting an ecological niche; however, none of these mechanisms is a ʺprogram of agingʺ - i.e., a program for progressing through consecutive steps of the aging process.
Collapse
Key Words
- D, diauxic growth phase
- ERCs, extrachromosomal rDNA circles
- IPOD, insoluble protein deposit
- JUNQ, juxtanuclear quality control compartment
- L, logarithmic growth phase
- MBS, the mitochondrial back-signaling pathway
- MTC, the mitochondrial translation control signaling pathway
- NPCs, nuclear pore complexes
- NQ, non-quiescent cells
- PD, post-diauxic growth phase
- Q, quiescent cells
- ROS, reactive oxygen species
- RTG, the mitochondrial retrograde signaling pathway
- Ras/cAMP/PKA, the Ras family GTPase/cAMP/protein kinase A signaling pathway
- ST, stationary growth phase
- TOR/Sch9, the target of rapamycin/serine-threonine protein kinase Sch9 signaling pathway
- UPRER, the unfolded protein response pathway in the endoplasmic reticulum
- UPRmt, the unfolded protein response pathway in mitochondria
- cell growth and proliferation
- cell survival
- cellular aging
- ecosystems
- evolution
- longevity
- programmed cell death
- yeast
- yeast colony
- yeast replicative and chronological aging
Collapse
|
10
|
Jung PP, Christian N, Kay DP, Skupin A, Linster CL. Protocols and programs for high-throughput growth and aging phenotyping in yeast. PLoS One 2015; 10:e0119807. [PMID: 25822370 PMCID: PMC4379057 DOI: 10.1371/journal.pone.0119807] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023] Open
Abstract
In microorganisms, and more particularly in yeasts, a standard phenotyping approach consists in the analysis of fitness by growth rate determination in different conditions. One growth assay that combines high throughput with high resolution involves the generation of growth curves from 96-well plate microcultivations in thermostated and shaking plate readers. To push the throughput of this method to the next level, we have adapted it in this study to the use of 384-well plates. The values of the extracted growth parameters (lag time, doubling time and yield of biomass) correlated well between experiments carried out in 384-well plates as compared to 96-well plates or batch cultures, validating the higher-throughput approach for phenotypic screens. The method is not restricted to the use of the budding yeast Saccharomyces cerevisiae, as shown by consistent results for other species selected from the Hemiascomycete class. Furthermore, we used the 384-well plate microcultivations to develop and validate a higher-throughput assay for yeast Chronological Life Span (CLS), a parameter that is still commonly determined by a cumbersome method based on counting "Colony Forming Units". To accelerate analysis of the large datasets generated by the described growth and aging assays, we developed the freely available software tools GATHODE and CATHODE. These tools allow for semi-automatic determination of growth parameters and CLS behavior from typical plate reader output files. The described protocols and programs will increase the time- and cost-efficiency of a number of yeast-based systems genetics experiments as well as various types of screens.
Collapse
Affiliation(s)
- Paul P. Jung
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Nils Christian
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Daniel P. Kay
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, California, United States of America
| | - Carole L. Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- * E-mail:
| |
Collapse
|
11
|
Mechanisms by which different functional states of mitochondria define yeast longevity. Int J Mol Sci 2015; 16:5528-54. [PMID: 25768339 PMCID: PMC4394491 DOI: 10.3390/ijms16035528] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial functionality is vital to organismal physiology. A body of evidence supports the notion that an age-related progressive decline in mitochondrial function is a hallmark of cellular and organismal aging in evolutionarily distant eukaryotes. Studies of the baker’s yeast Saccharomyces cerevisiae, a unicellular eukaryote, have led to discoveries of genes, signaling pathways and chemical compounds that modulate longevity-defining cellular processes in eukaryotic organisms across phyla. These studies have provided deep insights into mechanistic links that exist between different traits of mitochondrial functionality and cellular aging. The molecular mechanisms underlying the essential role of mitochondria as signaling organelles in yeast aging have begun to emerge. In this review, we discuss recent progress in understanding mechanisms by which different functional states of mitochondria define yeast longevity, outline the most important unanswered questions and suggest directions for future research.
Collapse
|
12
|
Arlia-Ciommo A, Leonov A, Piano A, Svistkova V, Titorenko VI. Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae. MICROBIAL CELL 2014; 1:163-178. [PMID: 28357241 PMCID: PMC5354559 DOI: 10.15698/mic2014.06.152] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A body of evidence supports the view that the signaling pathways governing
cellular aging - as well as mechanisms of their modulation by
longevity-extending genetic, dietary and pharmacological interventions - are
conserved across species. The scope of this review is to critically analyze
recent advances in our understanding of cell-autonomous mechanisms of
chronological aging in the budding yeast Saccharomyces
cerevisiae. Based on our analysis, we propose a concept of a
biomolecular network underlying the chronology of cellular aging in yeast. The
concept posits that such network progresses through a series of lifespan
checkpoints. At each of these checkpoints, the intracellular concentrations of
some key intermediates and products of certain metabolic pathways - as well as
the rates of coordinated flow of such metabolites within an intricate network of
intercompartmental communications - are monitored by some checkpoint-specific
ʺmaster regulatorʺ proteins. The concept envisions that a synergistic action of
these master regulator proteins at certain early-life and late-life checkpoints
modulates the rates and efficiencies of progression of such processes as cell
metabolism, growth, proliferation, stress resistance, macromolecular
homeostasis, survival and death. The concept predicts that, by modulating these
vital cellular processes throughout lifespan (i.e., prior to an arrest of cell
growth and division, and following such arrest), the checkpoint-specific master
regulator proteins orchestrate the development and maintenance of a pro- or
anti-aging cellular pattern and, thus, define longevity of chronologically aging
yeast.
Collapse
Affiliation(s)
| | - Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Amanda Piano
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Veronika Svistkova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | |
Collapse
|
13
|
Kawałek A, van der Klei IJ. At neutral pH the chronological lifespan of Hansenula polymorpha increases upon enhancing the carbon source concentrations. MICROBIAL CELL 2014; 1:189-202. [PMID: 28357243 PMCID: PMC5354561 DOI: 10.15698/mic2014.06.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dietary restriction is generally assumed to increase the lifespan in most
eukaryotes, including the simple model organism Saccharomyces
cerevisiae. However, recent data questioned whether this phenomenon
is indeed true for yeast. We studied the effect of reduction of the carbon
source concentration on the chronological lifespan of the yeast
Hansenula polymorpha using four different carbon sources.
Our data indicate that reduction of the carbon source concentration has a
negative (glucose, ethanol, methanol) or positive (glycerol) effect on the
chronological lifespan. We show that the actual effect of carbon source
concentrations largely depends on extracellular factor(s). We provide evidence
that H. polymorpha acidifies the medium and that a low pH of
the medium alone is sufficient to significantly decrease the chronological
lifespan. However, glucose-grown cells are less sensitive to low pH compared to
glycerol-grown cells, explaining why only the reduction of the
glycerol-concentration (which leads to less medium acidification) has a positive
effect on the chronological lifespan. Instead, the positive effect of enhancing
the glucose concentrations is much larger than the negative effect of the medium
acidification at these conditions, explaining the increased lifespan with
increasing glucose concentrations. Importantly, at neutral pH, the chronological
lifespan also decreases with a reduction in glycerol concentrations. We show
that for glycerol cultures this effect is related to acidification independent
changes in the composition of the spent medium. Altogether, our data indicate
that in H. polymorpha at neutral pH the chronological lifespan
invariably extends upon increasing the carbon source concentration.
Collapse
Affiliation(s)
- Adam Kawałek
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, Systems Biology Centre for Metabolism and Ageing, University of Groningen, the Netherlands
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, Systems Biology Centre for Metabolism and Ageing, University of Groningen, the Netherlands
| |
Collapse
|
14
|
Denoth Lippuner A, Julou T, Barral Y. Budding yeast as a model organism to study the effects of age. FEMS Microbiol Rev 2014; 38:300-25. [PMID: 24484434 DOI: 10.1111/1574-6976.12060] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/13/2013] [Accepted: 01/06/2014] [Indexed: 12/20/2022] Open
Abstract
Although a budding yeast culture can be propagated eternally, individual yeast cells age and eventually die. The detailed knowledge of this unicellular eukaryotic species as well as the powerful tools developed to study its physiology makes budding yeast an ideal model organism to study the mechanisms involved in aging. Considering both detrimental and positive aspects of age, we review changes occurring during aging both at the whole-cell level and at the intracellular level. The possible mechanisms allowing old cells to produce rejuvenated progeny are described in terms of accumulation and inheritance of aging factors. Based on the dynamic changes associated with age, we distinguish different stages of age: early age, during which changes do not impair cell growth; intermediate age, during which aging factors start to accumulate; and late age, which corresponds to the last divisions before death. For each aging factor, we examine its asymmetric segregation and whether it plays a causal role in aging. Using the example of caloric restriction, we describe how the aging process can be modulated at different levels and how changes in different organelles might interplay with each other. Finally, we discuss the beneficial aspects that might be associated with age.
Collapse
|
15
|
Swinnen E, Ghillebert R, Wilms T, Winderickx J. Molecular mechanisms linking the evolutionary conserved TORC1-Sch9 nutrient signalling branch to lifespan regulation in Saccharomyces cerevisiae. FEMS Yeast Res 2013; 14:17-32. [PMID: 24102693 DOI: 10.1111/1567-1364.12097] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/09/2013] [Accepted: 09/06/2013] [Indexed: 01/13/2023] Open
Abstract
The knowledge on the molecular aspects regulating ageing in eukaryotic organisms has benefitted greatly from studies using the budding yeast Saccharomyces cerevisiae. Indeed, many aspects involved in the control of lifespan appear to be well conserved among species. Of these, the lifespan-extending effects of calorie restriction (CR) and downregulation of nutrient signalling through the target of rapamycin (TOR) pathway are prime examples. Here, we present an overview on the molecular mechanisms by which these interventions mediate lifespan extension in yeast. Several models have been proposed in the literature, which should be seen as complementary, instead of contradictory. Results indicate that CR mediates a large amount of its effect by downregulating signalling through the TORC1-Sch9 branch. In addition, we note that Sch9 is more than solely a downstream effector of TORC1, and documented connections with sphingolipid metabolism may be particularly interesting for future research on ageing mechanisms. As Sch9 comprises the yeast orthologue of the mammalian PKB/Akt and S6K1 kinases, future studies in yeast may continue to serve as an attractive model to elucidate conserved mechanisms involved in ageing and age-related diseases in humans.
Collapse
|