1
|
Sun S, Lu Y, Tian F, Huang S. Ropivacaine with intraspinal administration alleviates preeclampsia-induced kidney injury via glycocalyx /alpha 7 nicotinic acetylcholine receptor pathway. Bioengineered 2022; 13:13131-13140. [PMID: 35635041 PMCID: PMC9275932 DOI: 10.1080/21655979.2022.2080365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Preeclampsia is characterized by hypertension and proteinuria, which is associated with kidney injury. Glycocalyx (GCX) degradation mediated endothelial injury can result in proteinuria and kidney damage. alpha 7 nicotinic acetylcholine receptor (α7nAChR) connects nervous and immune systems to respond to stress or injury. We aimed to explore the protective effect and mechanism of intraspinal analgesia on maternal kidney injury in preeclampsia. Endotoxin-induced preeclampsia rats treated with ropivacaine via intraspinal administration. Renal histopathological examination was performed, cell apoptosis in the kidney, the levels of Glycocalyx markers of Syndecan-1 and heparin sulfate (HS) in maternal serum, Syndecan-1 along with α7nAChR in the kidney were measured. Our results showed that kidney injury was obviously in preeclampsia rats with proteinuria, endothelial damage, higher apoptosis rate, increasing levels of Syndecan-1 and HS in serum, upregulated Syndecan-1 expression but downregulated α7nAChR expression in kidney. Preeclampsia rats treated with intraspinal injected ropivacaine attenuated preeclampsia-induced kidney injury as Syndecan-1 and HS were decreased in serum, Syndecan-1 expression was suppressed as well as α7nAChR was activated in the kidney. Our results suggested that Ropivacaine administered through the spinal canal may protect preeclampsia-induced renal injury by decreasing GCX and α7nAChR activation.
Collapse
Affiliation(s)
- Shen Sun
- Department of Anaesthesiology, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Yaojun Lu
- Department of Anaesthesiology, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Fubo Tian
- Department of Anaesthesiology, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Shaoqiang Huang
- Department of Anaesthesiology, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
2
|
Cao K, Xiang J, Dong YT, Xu Y, Guan ZZ. Activation of α7 Nicotinic Acetylcholine Receptor by its Selective Agonist Improved Learning and Memory of Amyloid Precursor Protein/Presenilin 1 (APP/PS1) Mice via the Nrf2/HO-1 Pathway. Med Sci Monit 2022; 28:e933978. [PMID: 34980874 PMCID: PMC8742434 DOI: 10.12659/msm.933978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/24/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND To reveal the mechanism underlying the effect of alpha7 nicotinic acetylcholine receptor (nAChR) on neurodegeneration in Alzheimer disease (AD), the influence of the receptor on recognition in APP/PS1 mice was evaluated by using its selective agonist (PNU-282987). MATERIAL AND METHODS APP/PS1 and wild-type (WT) mice were treated with PNU or saline, respectively, for 7 days at the ages of 6 and 10 months. RESULTS Morris water maze analysis showed that both at 6 and 10 months of age, PNU treatment enhanced the learning and memory of APP/PS1 mice. However, PNU treatment did not alter the number of senile plaques. Furthermore, a higher protein expression of Nrf2/HO-1, ADAM10, SYP, and SNAP-25, and a lower level of oxidative stress, were observed in the hippocampus of APP/PS1 mice treated with PNU compared with the control group. CONCLUSIONS The results indicated that the activation of alpha7 nAChR by PNU improved the learning and memory of mice carrying the APP/PS1 mutation, regulated the levels of enzymes that mediate APP metabolization to reduce ß-amyloid peptide damage, and decreased the level of oxidative stress and maintained synaptic plasticity, in which the mechanism might be enhancement of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Kun Cao
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Jie Xiang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education, Guiyang, Guizhou, PR China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education, Guiyang, Guizhou, PR China
- Provincial Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, PR China
| | - Yi Xu
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education, Guiyang, Guizhou, PR China
| | - Zhi-Zhong Guan
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education, Guiyang, Guizhou, PR China
- Provincial Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, PR China
| |
Collapse
|
3
|
Hu X, Hu K, Xu X, Zhang W, Xu F. Expression of the α7 nAChR Subunit Duplicate Form (CHRFAM7A) Was Down-Regulated in Patients with Intracranial Infection and Reduced Inflammation in in vitro Model by p38 MAPK. Neuroimmunomodulation 2022; 29:338-348. [PMID: 35100606 DOI: 10.1159/000521010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/08/2021] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE In this study, we investigated that the effects and possible mechanisms of the α7 nAChR subunit duplicate form (CHRFAM7A) affected inflammation in the model of intracranial infection. METHODS Mice of the model group were injected (intracranial injection) with Staphylococcus aureus. Mouse microglial BV2 cell was exposed with 200 ng of LPS for 4 h. RESULTS CHRFAM7A mRNA expressions were reduced in patients with intracranial infection. CHRFAM7A mRNA and protein expressions were suppressed in mice with intracranial infection in a time-dependent manner. CHRFAM7A reduced inflammation in mice with intracranial infection. The inhibition of CHRFAM7A reduced inflammation in mice with intracranial infection. CHRFAM7A suppressed p38 MAPK in mice with intracranial infection. The inhibition of p38 MAPK shows the effects of CHRFAM7A in intracranial infection. CONCLUSION Our data demonstrate that the expression of the CHRFAM7A was down-regulated in patients with intracranial infection and reduced inflammation in in vitro model by p38 MAPK, which suggests the potential role of CHRFAM7A as a diagnostic biomarker for intracranial infection.
Collapse
Affiliation(s)
- Xuefei Hu
- Clinical Laboratory of the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Keao Hu
- 2019 Graduate Student of Urology, The First Clinical College of Nanchang University Medical College, Nanchang, China
| | - Xinping Xu
- Department of Respiration, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Zhang
- Department of Respiration, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Xu
- Department of Respiration, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Yang Z, Yin Q, Olatunji OJ, Li Y, Pan S, Wang DD, Zuo J. Activation of cholinergic anti-inflammatory pathway involved in therapeutic actions of α-mangostin on lipopolysaccharide-induced acute lung injury in rats. Int J Immunopathol Pharmacol 2021; 34:2058738420954941. [PMID: 32886564 PMCID: PMC7485160 DOI: 10.1177/2058738420954941] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Introduction: Alpha-mangostin (MAN) possesses a wide variety of pharmacological effects. In
this study, we investigated its effect on cholinergic anti-inflammatory
pathway (CAP), and tested if CAP regulation was involved in the therapeutic
action on acute lung injury (ALI). Methods: Male Sprague Dawley rats were pre-treated with MAN (40 mg/kg) for 3 days and
ALI was induced with an intraperitoneal injection of lipopolysaccharide
(LPS). Certain rats received monolateral vagotomy or sham surgery. The
effects on inflammatory reactions and relevant pathways in ALI rats or LPS
pre-treated RAW 264.7 cells were investigated by histological,
immunohistochemical, immunoblotting, RT-qPCR, and immunofluorescence assays,
while levels of proinflammatory cytokines, acetylcholine (Ach) and the
enzymatic activity of acetylcholinesterase (AchE) were determined by
corresponding quantitative kits. Results: Oral administration of MAN reduced the severity of ALI, while vagotomy
surgery antagonized this effect. MAN restored the decline in α7 nicotinic
acetylcholine receptor (α7nAchR) in the lungs of ALI rats, and promoted the
expression of α7nAchR and choline acetyltransferase (CHAT) in RAW 264.7
cells. Although AchE expression was barely affected by MAN at 5 μg/ml, its
catalytic activity was reduced by almost 95%. Extracellular rather than
intracellular Ach was notably raised shortly after MAN treatment.
Furthermore, MAN at 5 μg/ml effectively inhibited LPS-induced increase in
phosphorylation and nucleus translocation of p65 subunit, and secretion of
TNF-α and IL-1β, which was then offset by methyllycaconitine citrate
hydrate. Conclusion: MAN activated CAP by increasing peripheral Ach and up-regulating α7nAchR
expression, which eventually led to NF-κB inhibition and remission of acute
inflammations.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Traditional Chinese Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Qin Yin
- The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | | | - Yan Li
- Department of Traditional Chinese Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Shu Pan
- The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Dan-Dan Wang
- Department of Traditional Chinese Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jian Zuo
- Department of Traditional Chinese Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| |
Collapse
|
5
|
Piovesana R, Salazar Intriago MS, Dini L, Tata AM. Cholinergic Modulation of Neuroinflammation: Focus on α7 Nicotinic Receptor. Int J Mol Sci 2021; 22:ijms22094912. [PMID: 34066354 PMCID: PMC8125157 DOI: 10.3390/ijms22094912] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
All nervous system pathologies (e.g., neurodegenerative/demyelinating diseases and brain tumours) develop neuroinflammation, a beneficial process during pathological events, aimed at removing damaged cells, toxic agents, and/or pathogens. Unfortunately, excessive inflammation frequently occurs during nervous system disorders, becoming a detrimental event capable of enhancing neurons and myelinating glial cell impairment, rather than improving their survival and activity. Consequently, targeting the neuroinflammation could be relevant for reducing brain injury and rescuing neuronal and glial cell functions. Several studies have highlighted the role of acetylcholine and its receptors in the regulation of central and peripheral inflammation. In particular, α7 nicotinic receptor has been described as one of the main regulators of the “brain cholinergic anti-inflammatory pathway”. Its expression in astrocytes and microglial cells and the ability to modulate anti-inflammatory cytokines make this receptor a new interesting therapeutic target for neuroinflammation regulation. In this review, we summarize the distribution and physiological functions of the α7 nicotinic receptor in glial cells (astrocytes and microglia) and its role in the modulation of neuroinflammation. Moreover, we explore how its altered expression and function contribute to the development of different neurological pathologies and exacerbate neuroinflammatory processes.
Collapse
Affiliation(s)
- Roberta Piovesana
- Département de Neurosciences, Université de Montréal, Montréal, QC H3C 3J7, Canada;
- Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | - Luciana Dini
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza, University of Rome, 00185 Rome, Italy; (M.S.S.I.); (L.D.)
| | - Ada Maria Tata
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza, University of Rome, 00185 Rome, Italy; (M.S.S.I.); (L.D.)
- Research Centre of Neurobiology “Daniel Bovet”, Sapienza, University of Rome, 00185 Rome, Italy
- Correspondence: ; Tel.: +39-06-4991-2822
| |
Collapse
|
6
|
Longitudinal PET Imaging of α7 Nicotinic Acetylcholine Receptors with [ 18F]ASEM in a Rat Model of Parkinson's Disease. Mol Imaging Biol 2021; 22:348-357. [PMID: 31286348 DOI: 10.1007/s11307-019-01400-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE The nicotinic acetylcholine alpha-7 receptors (α7R) are involved in a number of neuropsychiatric and neurodegenerative brain disorders such as Parkinson's disease (PD). However, their specific pathophysiologic roles are still unclear. In this context, we studied the evolution of these receptors in vivo by positron emission tomography (PET) imaging using the recently developed tracer 3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-6-[18F]fluorodibenzo[b,d]thiophene-5,5-dioxide) in a rat model mimicking early stages of PD. PROCEDURES PET imaging of α7R was performed at 3, 7, and 14 days following a partial striatal unilateral lesion with 6-hydroxydopamine in adult rats. After the last imaging experiments, the status of nigro-striatal dopamine neurons as well as different markers of neuroinflammation was evaluated on brain sections by autoradiographic and immunofluorescent experiments. RESULTS We showed an early and transitory rise in α7R expression in the lesioned striatum and substantia nigra, followed by over-expression of several gliosis activation markers in these regions of interest. CONCLUSIONS These findings support a longitudinally follow-up of α7R in animal models of PD and highlight the requirement to use a potential neuroprotective approach through α7R ligands at the early stages of PD.
Collapse
|
7
|
Zhao X, Yu Z, Lv Z, Meng L, Xu J, Yuan S, Fu Z. Activation of Alpha-7 Nicotinic Acetylcholine Receptors (α7nAchR) Promotes the Protective Autophagy in LPS-Induced Acute Lung Injury (ALI) In Vitro and In Vivo. Inflammation 2020; 42:2236-2245. [PMID: 31522340 DOI: 10.1007/s10753-019-01088-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The release of inflammatory cytokines and chemokines and autophagy has been reported to be involved in the pathogenic mechanism of acute lung injury (ALI). Reportedly, alpha-7 nicotinic acetylcholine receptors (α7nAchR) might play a protective role in LPS-induced ALI. In the current research, we established LPS-induced ALI model in mice and α7nAchR agonist PNU-282987 improved LPS-induced injury. In MH-S cells, LPS stimulation inhibited, whereas α7nAchR agonist PNU-282987 enhanced the autophagy. α7nAchR agonist PNU-282987 protected MH-S cells from LPS-induced inflammation by reducing the concentrations of IL-6, TNF-α, and IL-1β. Finally, LPS stimulation dramatically inhibited MH-S cell viability but enhanced cell apoptosis, whereas PNU-282987 treatment exerted opposite effects; α7nAchR might regulate the cellular homeostasis via affecting the crosstalk between the autophagy and apoptosis in MH-S cells; in other words, α7nAChR agonist enhances MH-S cell autophagy and inhibits MH-S cell apoptosis. In conclusion, α7nAchR promote the protective autophagy in LPS-induced ALI model in mice and MH-S cells. The application of α7nAchR agonist is considered a potent target for LPS-induced ALI, which needs further clinical investigation.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhizhong Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Lv
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Meng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaxin Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhaohui Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China. .,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Miwa JM, Anderson KR, Hoffman KM. Lynx Prototoxins: Roles of Endogenous Mammalian Neurotoxin-Like Proteins in Modulating Nicotinic Acetylcholine Receptor Function to Influence Complex Biological Processes. Front Pharmacol 2019; 10:343. [PMID: 31114495 PMCID: PMC6502960 DOI: 10.3389/fphar.2019.00343] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
The cholinergic system modulates many biological functions, due to the widespread distribution of cholinergic neuronal terminals, and the diffuse release of its neurotransmitter, acetylcholine. Several layers of regulation help to refine and control the scope of this excitatory neurotransmitter system. One such regulatory mechanism is imparted through endogenous toxin-like proteins, prototoxins, which largely control the function of nicotinic receptors of the cholinergic system. Prototoxins and neurotoxins share the distinct three finger toxin fold, highly effective as a receptor binding protein, and the former are expressed in the mammalian brain, immune system, epithelium, etc. Prototoxins and elapid snake neurotoxins appear to be related through gene duplication and divergence from a common ancestral gene. Protein modulators can provide a graded response of the cholinergic system, and within the brain, stabilize neural circuitry through direct interaction with nicotinic receptors. Understanding the roles of each prototoxin (e.g., lynx1, lynx2/lypd1, PSCA, SLURP1, SLURP2, Lypd6, lypd6b, lypdg6e, PATE-M, PATE-B, etc.), their binding specificity and unique expression profile, has the potential to uncover many fascinating cholinergic-dependent mechanisms in the brain. Each family member can provide a spatially restricted level of control over nAChR function based on its expression in the brain. Due to the difficulty in the pharmacological targeting of nicotinic receptors in the brain as a result of widespread expression patterns and similarities in receptor sequences, unique interfaces between prototoxin and nicotinic receptor could provide more specific targeting than nicotinic receptors alone. As such, this family is intriguing from a long-term therapeutic perspective.
Collapse
Affiliation(s)
- Julie M Miwa
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Kristin R Anderson
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Katie M Hoffman
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
9
|
ArunSundar M, Shanmugarajan TS, Ravichandiran V. 3,4-Dihydroxyphenylethanol Assuages Cognitive Impulsivity in Alzheimer's Disease by Attuning HPA-Axis via Differential Crosstalk of α7 nAChR with MicroRNA-124 and HDAC6. ACS Chem Neurosci 2018; 9:2904-2916. [PMID: 29901389 DOI: 10.1021/acschemneuro.7b00532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cognitive impulsivity, a form of suboptimal cost-benefit decision making, is an illustrious attribute of an array of neurodegenerative diseases including Alzheimer's disease (AD). In this study, a delay discounting paradigm was used to assess the effect of 3,4-dihydroxyphenylethanol (DOPET) on cognitive impulsivity, in an oA42i (oligomeric amyloid β1-42 plus ibotenic acid) induced AD mouse model, using a nonspatial T-maze task. The results depicted that oA42i administration elevated cognitive impulsivity, whereas DOPET treatment attenuated the impulsive behavior and matched the choice of the sham-operated controls. In addition, DOPET treatment has ameliorated the anxiety-like behavior in the oA42i-challenged mice. Probing the molecular signaling cascades underpinning these functional ramifications in the oA42i-challenged mice revealed reduced cholinergic (α7 nAChR; alpha 7 nicotinic acetylcholine receptor) function, dysregulated hypothalamic-pituitary-adrenal (HPA) axis (manifested by amplified glucocorticoid receptor expression and plasma corticosterone levels), and also aberrations in the neuroepigenetic (microRNA-124, HDAC6 (histone deacetylase 6), and HSP90 (heat-shock protein 90) expressions) as well as nucleocytoplasmic (importin-α1 expression and nuclear ultra-architecture) continuum. Nonetheless, DOPET administration ameliorated these perturbations and the observations were in line with that of the sham-operated mice. Further validation of the results with organotypic hippocampal slice cultures (OHSCs) confirmed the in vivo findings. We opine that HPA-axis attunement by DOPET might be orchestrated through the α7 nAChR-mediated pathway. Based on these outcomes, we posit that 3,4-dihydroxyphenylethanol might be a potential multimodal agent for the management of cognitive impulsivity and neuromolecular quagmire in AD.
Collapse
Affiliation(s)
- Mohanasundaram ArunSundar
- Department of Pharmacology, School of Pharmaceutical Sciences, Vels University (VISTAS), Pallavaram, Chennai-600117, India
| | | | | |
Collapse
|
10
|
Neuroprotective effect of the ethanol extract of Artemisia capillaris on transient forebrain ischemia in mice via nicotinic cholinergic receptor. Chin J Nat Med 2018; 16:428-435. [DOI: 10.1016/s1875-5364(18)30076-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Indexed: 11/22/2022]
|
11
|
Rare Diseases: Drug Discovery and Informatics Resource. Interdiscip Sci 2017; 10:195-204. [PMID: 29094320 DOI: 10.1007/s12539-017-0270-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022]
Abstract
A rare disease refers to any disease with very low prevalence individually. Although the impacted population is small for a single disease, more than 6000 rare diseases affect millions of people across the world. Due to the small market size, high cost and possibly low return on investment, only in recent years, the research and development of rare disease drugs have gradually risen globally, in several domains including gene therapy, enzyme replacement therapy, and drug repositioning. Due to the complex etiology and heterogeneous symptoms, there is a large gap between basic research and patient unmet needs for rare disease drug discovery. As computational biology increasingly arises researchers' awareness, the informatics database on rare disease have grown rapidly in the recent years, including drug targets, genetic variant and mutation, phenotype and ontology and patient registries. Along with the advances of informatics database and networks, new computational models will help accelerate the target identification and lead optimization process for rare disease pre-clinical drug development.
Collapse
|
12
|
Lu JYD, Su P, Barber JEM, Nash JE, Le AD, Liu F, Wong AHC. The neuroprotective effect of nicotine in Parkinson's disease models is associated with inhibiting PARP-1 and caspase-3 cleavage. PeerJ 2017; 5:e3933. [PMID: 29062606 PMCID: PMC5651169 DOI: 10.7717/peerj.3933] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/26/2017] [Indexed: 12/20/2022] Open
Abstract
Clinical evidence points to neuroprotective effects of smoking in Parkinson’s disease (PD), but the molecular mechanisms remain unclear. We investigated the pharmacological pathways involved in these neuroprotective effects, which could provide novel ideas for developing targeted neuroprotective treatments for PD. We used the ETC complex I inhibitor methylpyridinium ion (MPP+) to induce cell death in SH-SY5Y cells as a cellular model for PD and found that nicotine inhibits cell death. Using choline as a nicotinic acetylcholine receptor (nAChR) agonist, we found that nAChR stimulation was sufficient to protect SH-SY5Y cells against cell death from MPP+. Blocking α7 nAChR with methyllycaconitine (MLA) prevented the protective effects of nicotine, demonstrating that these receptors are necessary for the neuroprotective effects of nicotine. The neuroprotective effect of nicotine involves other pathways relevant to PD. Cleaved Poly (ADP-ribose) polymerase-1 (PARP-1) and cleaved caspase-3 were decreased by nicotine in 6-hydroxydopamine (6-OHDA) lesioned mice and in MPP+-treated SH-SY5Y cells. In conclusion, our data indicate that nicotine likely exerts neuroprotective effects in PD through the α7 nAChR and downstream pathways including PARP-1 and caspase-3. This knowledge could be pursued in future research to develop neuroprotective treatments for PD.
Collapse
Affiliation(s)
- Justin Y D Lu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - James E M Barber
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto, Scarborough, Toronto, Ontario, Canada
| | - Joanne E Nash
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto, Scarborough, Toronto, Ontario, Canada
| | - Anh D Le
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Albert H C Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Foucault-Fruchard L, Doméné A, Page G, Windsor M, Emond P, Rodrigues N, Dollé F, Damont A, Buron F, Routier S, Chalon S, Antier D. Neuroprotective effect of the alpha 7 nicotinic receptor agonist PHA 543613 in an in vivo excitotoxic adult rat model. Neuroscience 2017; 356:52-63. [PMID: 28527955 DOI: 10.1016/j.neuroscience.2017.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/03/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
Abstract
Neuroinflammation is a key component of the pathophysiology of neurodegenerative diseases. The link between nicotine intake and positive outcome has been established, suggesting a role played by nicotinic receptors (nAChRs), especially α7nAChRs. The objective of this study was to evaluate the potential dose effects of PHA 543613 on neuron survival and striatal microglial activation in a rat model of brain excitotoxicity. A preliminary study was performed in vitro to confirm PHA 543613 agonist properties on α7nAChRs. Rats were lesioned in the right striatum with quinolinic acid (QA) and received either vehicle or PHA 543613 at 6 or 12mg/kg twice a day until sacrifice at Day 4 post-lesion. We first compared the translocator protein quantitative autoradiography in QA-lesioned brains with [3H]DPA-714 and [3H]PK-11195. The effects of PHA 543613 on microglial activation and neuronal survival were then evaluated through [3H]DPA-714 binding and immunofluorescence staining (Ox-42, NeuN) on adjacent brain sections. We demonstrated that [3H]DPA-714 provides a better signal-to-noise ratio than [3H]PK-11195. Furthermore, we showed that repeated PHA 543613 administration at a dose of 12mg/kg to QA-lesioned rats significantly protected neurons and reduced the intensity of microglial activation. This study reinforces the hypothesis that α7nAChR agonists can provide beneficial effects in the treatment of neurodegenerative diseases through potential modulation of microglial activation.
Collapse
Affiliation(s)
- Laura Foucault-Fruchard
- UMR INSERM U930, Université François Rabelais, Tours, France; CHRU de Tours, Hôpital Bretonneau, Tours, France.
| | - Aurélie Doméné
- UMR INSERM U930, Université François Rabelais, Tours, France.
| | - Guylène Page
- EA3808 - CiMoTheMA, Université de Poitiers, Poitiers, France.
| | | | - Patrick Emond
- UMR INSERM U930, Université François Rabelais, Tours, France.
| | - Nuno Rodrigues
- UMR CNRS 7311, Institut de Chimie Organique et Analytique, Université d'Orléans, Orléans, France.
| | - Frédéric Dollé
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France.
| | | | - Frédéric Buron
- UMR CNRS 7311, Institut de Chimie Organique et Analytique, Université d'Orléans, Orléans, France.
| | - Sylvain Routier
- UMR CNRS 7311, Institut de Chimie Organique et Analytique, Université d'Orléans, Orléans, France.
| | - Sylvie Chalon
- UMR INSERM U930, Université François Rabelais, Tours, France.
| | - Daniel Antier
- UMR INSERM U930, Université François Rabelais, Tours, France; CHRU de Tours, Hôpital Bretonneau, Tours, France.
| |
Collapse
|
14
|
Kuang G, Zhou Y, Zou R, Halldin C, Nordberg A, Långström B, Ågren H, Tu Y. Characterization of the binding mode of the PET tracer [18F]ASEM to a chimera structure of the α7 nicotinic acetylcholine receptor. RSC Adv 2017. [DOI: 10.1039/c7ra00496f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The binding free energy profile of the radio-ligand [18F]ASEM with the α7 nicotinic acetylcholine receptor was revealed by metadynamic simulations.
Collapse
Affiliation(s)
- Guanglin Kuang
- Division of Theoretical Chemistry and Biology
- School of Biotechnology
- Royal Institute of Technology (KTH)
- AlbaNova University Center
- Stockholm
| | - Yang Zhou
- Division of Theoretical Chemistry and Biology
- School of Biotechnology
- Royal Institute of Technology (KTH)
- AlbaNova University Center
- Stockholm
| | - Rongfeng Zou
- Division of Theoretical Chemistry and Biology
- School of Biotechnology
- Royal Institute of Technology (KTH)
- AlbaNova University Center
- Stockholm
| | - Christer Halldin
- Karolinska Institutet
- Department of Clinical Neuroscience
- Centre for Psychiatric Research
- Stockholm
- Sweden
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society
- Center of Alzheimer Research, Translational Alzheimer Neurobiology
- Karolinska University Hospital
- Stockholm
- Sweden
| | - Bengt Långström
- Department of Chemistry
- Uppsala University
- 751 23 Uppsala
- Sweden
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology
- School of Biotechnology
- Royal Institute of Technology (KTH)
- AlbaNova University Center
- Stockholm
| | - Yaoquan Tu
- Division of Theoretical Chemistry and Biology
- School of Biotechnology
- Royal Institute of Technology (KTH)
- AlbaNova University Center
- Stockholm
| |
Collapse
|
15
|
Ibrahim AbdEl Fattah L, Zickri MB, Aal LA, Heikal O, Osama E. The Effect of Thymoquinone, α7 Receptor Agonist and α7 Receptor Allosteric Modulator on the Cerebral Cortex in Experimentally Induced Alzheimer's Disease in Relation to MSCs Activation. Int J Stem Cells 2016; 9:230-238. [PMID: 27572711 PMCID: PMC5155719 DOI: 10.15283/ijsc16021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 12/31/2022] Open
Abstract
Background and Objectives Alzheimer's disease (AD) is the most common form of dementia among older persons. Thymoquinone (TQ) has anti-inflammatory, anticonvulsant and antioxidant activity. A novel α7 nicotinic acetyl choline receptor (α7 nAChR ) agonist (PNU- 282987) have been identified to enhance the cognitive performance. An alternative treatment strategy via compounds known as nicotinic "positive allosteric modulators" (PAMs) has been reported. This study was designed to investigate the combination of PAM of α7 nAChRs with PNU- 282987 or with TQ as a possible treatment for AD in rat. Methods 48 male albino rats were divided into 4 groups. Group І (Control), Group II received lipopolysaccharide, 0.8 mg/kg by intraperitoneal injection (IPI) once, Group III received TQ 10 mg/kg by IPI, Group IV received PNU-120596 1 mg/kg by IPI, in addition to PNU-282987 1 mg/kg by IPI in subgroup IVa and TQ in subgroup b. All treatment drugs were given for 5 days. Results Acidophilic masses, deformed neurons, Congo red +ve masses and reduced Phospho-CREB immunoexpression were seen in group II. All changes regressed by treatment. Some CD44 +ve cells were noticed in group II and few +ve cells in subgroup IVa, that became multiple in group III and subgroup IVb. The histological, histochemical and immunohistochemical changes were confirmed statistically and significant differences were recorded. Conclusions TQ or α7 nAChR agonist combined with PAM can have an important role in treatment of AD that is superior to thymoquinone alone. Exceptionally, TQ single or combined with PAM proved activation of MSC.
Collapse
Affiliation(s)
| | | | - Lobna Abdel Aal
- Department of Histology, Faculty of Medicine, Cairo University, Egypt
| | - Ola Heikal
- Department of Histology, Faculty of Medicine, Cairo University, Egypt
| | - Esraa Osama
- Department of Physiology and Toxicology, Faculty of Pharmacy & Biotechnology-German University in Cairo (GUC), Egypt
| |
Collapse
|
16
|
Andersen ND, Nielsen BE, Corradi J, Tolosa MF, Feuerbach D, Arias HR, Bouzat C. Exploring the positive allosteric modulation of human α7 nicotinic receptors from a single-channel perspective. Neuropharmacology 2016; 107:189-200. [PMID: 26926428 DOI: 10.1016/j.neuropharm.2016.02.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/20/2016] [Accepted: 02/24/2016] [Indexed: 12/30/2022]
Abstract
Enhancement of α7 nicotinic receptor (nAChR) function by positive allosteric modulators (PAMs) is a promising therapeutic strategy to improve cognitive deficits. PAMs have been classified only on the basis of their macroscopic effects as type I, which only enhance agonist-induced currents, and type II, which also decrease desensitization and reactivate desensitized nAChRs. To decipher the molecular basis underlying these distinct activities, we explored the effects on single-α7 channel currents of representative members of each type and of less characterized compounds. Our results reveal that all PAMs enhance open-channel lifetime and produce episodes of successive openings, thus indicating that both types affect α7 kinetics. Different PAM types show different sensitivity to temperature, suggesting different mechanisms of potentiation. By using a mutant α7 receptor that is insensitive to the prototype type II PAM (PNU-120596), we show that some though not all type I PAMs share the structural determinants of potentiation. Overall, our study provides novel information on α7 potentiation, which is key to the ongoing development of therapeutic compounds.
Collapse
Affiliation(s)
- Natalia D Andersen
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina
| | - Beatriz E Nielsen
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina
| | - Jeremías Corradi
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina
| | - María F Tolosa
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina
| | - Dominik Feuerbach
- Neuroscience Research, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Hugo R Arias
- Department of Medical Education, California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| | - Cecilia Bouzat
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina.
| |
Collapse
|
17
|
Jeong JK, Park SY. Neuroprotective effect of cellular prion protein (PrPC) is related with activation of alpha7 nicotinic acetylcholine receptor (α7nAchR)-mediated autophagy flux. Oncotarget 2015; 6:24660-74. [PMID: 26295309 PMCID: PMC4694786 DOI: 10.18632/oncotarget.4953] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/28/2015] [Indexed: 01/08/2023] Open
Abstract
Activation of the alpha7 nicotinic acetylcholine receptor (α7nAchR) is regulated by prion protein (PrPC) expression and has a neuroprotective effect by modulating autophagic flux. In this study, we hypothesized that PrPC may regulate α7nAchR activation and that may prevent prion-related neurodegenerative diseases by regulating autophagic flux. PrP(106-126) treatment decreased α7nAchR expression and activation of autophagic flux. In addition, the α7nAchR activator PNU-282987 enhanced autophagic flux and protected neuron cells against PrP(106-126)-induced apoptosis. However, activation of autophagy and the protective effects of PNU-282987 were inhibited in PrPC knockout hippocampal neuron cells. In addition, PrPC knockout hippocampal neuron cells showed decreased α7nAchR expression levels. Adenoviral overexpression of PrPC in PrPC knockout hippocampal neuron cells resulted in activation of autophagic flux and inhibition of prion peptide-mediated cell death via α7nAchR activation. This is the first report demonstrating that activation of α7nAchR-mediated autophagic flux is regulated by PrPC, and that activation of α7nAchR regulated by PrPC expression may play a pivotal role in protection of neuron cells against prion peptide-induced neuron cell death by autophagy. These results suggest that α7nAchR-mediated autophagic flux may be involved in the pathogenesis of prion-related diseases and may be a therapeutic target for prion-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Jae-Kyo Jeong
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
18
|
Wu ZS, Cheng H, Jiang Y, Melcher K, Xu HE. Ion channels gated by acetylcholine and serotonin: structures, biology, and drug discovery. Acta Pharmacol Sin 2015; 36:895-907. [PMID: 26238288 PMCID: PMC4564887 DOI: 10.1038/aps.2015.66] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/24/2015] [Indexed: 12/17/2022]
Abstract
The nicotinic acetylcholine receptors (nAChRs) and the 5-HT3 receptors (5-HT3Rs) are cation-selective members of the pentameric ligand-gated ion channels (pLGICs), which are oligomeric protein assemblies that convert a chemical signal into an ion flux through postsynaptic membrane. They are critical components for synaptic transmission in the nervous system, and their dysfunction contributes to many neurological disorders. The diverse subunit compositions of pLGICs give rise to complex mechanisms of ligand recognition, channel gating, and ion-selective permeability, which have been demonstrated in numerous electrophysiological and molecular biological studies, and unraveled by progress in studying the structural biology of this protein family. In this review, we discuss recent insights into the structural and functional basis of two cation-selective pLGICs, the nAChR and the 5-HT3R, including their subunit compositions, ligand binding, and channel gating mechanisms. We also discuss their relevant pharmacology and drug discovery for treating various neurological disorders. Finally, we review a model of two alternative ion conducting pathways based on the latest 5-HT3A crystal structure.
Collapse
|