1
|
Spada SJ, Grigg ME, Bouamr F, Best SM, Zhang P. TRIM5α: A Protean Architect of Viral Recognition and Innate Immunity. Viruses 2024; 16:997. [PMID: 39066160 PMCID: PMC11281341 DOI: 10.3390/v16070997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The evolutionary pressures exerted by viral infections have led to the development of various cellular proteins with potent antiviral activities, some of which are known as antiviral restriction factors. TRIpartite Motif-containing protein 5 alpha (TRIM5α) is a well-studied restriction factor of retroviruses that exhibits virus- and host-species-specific functions in protecting against cross-primate transmission of specific lentiviruses. This specificity is achieved at the level of the host gene through positive selection predominantly within its C-terminal B30.2/PRYSPRY domain, which is responsible for the highly specific recognition of retroviral capsids. However, more recent work has challenged this paradigm, demonstrating TRIM5α as a restriction factor for retroelements as well as phylogenetically distinct viral families, acting similarly through the recognition of viral gene products via B30.2/PRYSPRY. This spectrum of antiviral activity raises questions regarding the genetic and structural plasticity of this protein as a mediator of the recognition of a potentially diverse array of viral molecular patterns. This review highlights the dynamic evolutionary footprint of the B30.2/PRYSPRY domain in response to retroviruses while exploring the guided 'specificity' conferred by the totality of TRIM5α's additional domains that may account for its recently identified promiscuity.
Collapse
Affiliation(s)
- Stephanie J. Spada
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK;
- Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20894, USA; (M.E.G.); (F.B.)
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA;
| | - Michael E. Grigg
- Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20894, USA; (M.E.G.); (F.B.)
| | - Fadila Bouamr
- Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20894, USA; (M.E.G.); (F.B.)
| | - Sonja M. Best
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA;
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK;
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
2
|
Xie D, He S, Han L, Wu L, Huang H, Tao H, Zhou P, Shi X, Bai H, Bo X. Systematic optimization of host-directed therapeutic targets and preclinical validation of repositioned antiviral drugs. Brief Bioinform 2022; 23:bbac047. [PMID: 35238349 PMCID: PMC9116211 DOI: 10.1093/bib/bbac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/12/2022] Open
Abstract
Inhibition of host protein functions using established drugs produces a promising antiviral effect with excellent safety profiles, decreased incidence of resistant variants and favorable balance of costs and risks. Genomic methods have produced a large number of robust host factors, providing candidates for identification of antiviral drug targets. However, there is a lack of global perspectives and systematic prioritization of known virus-targeted host proteins (VTHPs) and drug targets. There is also a need for host-directed repositioned antivirals. Here, we integrated 6140 VTHPs and grouped viral infection modes from a new perspective of enriched pathways of VTHPs. Clarifying the superiority of nonessential membrane and hub VTHPs as potential ideal targets for repositioned antivirals, we proposed 543 candidate VTHPs. We then presented a large-scale drug-virus network (DVN) based on matching these VTHPs and drug targets. We predicted possible indications for 703 approved drugs against 35 viruses and explored their potential as broad-spectrum antivirals. In vitro and in vivo tests validated the efficacy of bosutinib, maraviroc and dextromethorphan against human herpesvirus 1 (HHV-1), hepatitis B virus (HBV) and influenza A virus (IAV). Their drug synergy with clinically used antivirals was evaluated and confirmed. The results proved that low-dose dextromethorphan is better than high-dose in both single and combined treatments. This study provides a comprehensive landscape and optimization strategy for druggable VTHPs, constructing an innovative and potent pipeline to discover novel antiviral host proteins and repositioned drugs, which may facilitate their delivery to clinical application in translational medicine to combat fatal and spreading viral infections.
Collapse
Affiliation(s)
- Dafei Xie
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| | - Song He
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| | - Lu Han
- Beijing Institute of Pharmacology and Toxicology, Beijing, China, 100850
| | - Lianlian Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China, 300072
| | - Hai Huang
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China, 201203
| | - Huan Tao
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| | - Pingkun Zhou
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| | - Xunlong Shi
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China, 201203
| | - Hui Bai
- BioMap (Beijing) Intelligence Technology Limited, Beijing, China, 100005
| | - Xiaochen Bo
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| |
Collapse
|
3
|
Riederer S, Fux R, Lehmann MH, Volz A, Sutter G, Rojas JJ. Activation of interferon regulatory factor 3 by replication-competent vaccinia viruses improves antitumor efficacy mediated by T cell responses. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:399-409. [PMID: 34553028 PMCID: PMC8430050 DOI: 10.1016/j.omto.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
Recently, oncolytic vaccinia viruses (VACVs) have shown their potential to provide for clinically effective cancer treatments. The reason for this clinical usefulness is not only the direct destruction of infected cancer cells but also activation of immune responses directed against tumor antigens. For eliciting a robust antitumor immunity, a dominant T helper 1 (Th1) cell differentiation of the response is preferred, and such polarization can be achieved by activating the Toll-like receptor 3 (TLR3)-interferon regulatory factor 3 (IRF3) signaling pathway. However, current VACVs used as oncolytic viruses to date still encode several immune evasion proteins involved in the inhibition of this signaling pathway. By inactivating genes of selected regulatory virus proteins, we aimed for a candidate virus with increased potency to activate cellular antitumor immunity but at the same time with a fully maintained replicative capacity in cancer cells. The removal of up to three key genes (C10L, N2L, and C6L) from VACV did not reduce the strength of viral replication, both in vitro and in vivo, but resulted in the rescue of IRF3 phosphorylation upon infection of cancer cells. In syngeneic mouse tumor models, this activation translated to enhanced cytotoxic T lymphocyte (CTL) responses directed against tumor-associated antigens and neo-epitopes and improved antitumor activity.
Collapse
Affiliation(s)
- Stephanie Riederer
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany
| | - Robert Fux
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany
| | - Michael H Lehmann
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany
| | - Asisa Volz
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany
| | - Juan J Rojas
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany.,Department of Pathology and Experimental Therapies, IDIBELL, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain
| |
Collapse
|
4
|
Riad S, Xiang Y, AlDaif B, Mercer AA, Fleming SB. Rescue of a Vaccinia Virus Mutant Lacking IFN Resistance Genes K1L and C7L by the Parapoxvirus Orf Virus. Front Microbiol 2020; 11:1797. [PMID: 32903701 PMCID: PMC7438785 DOI: 10.3389/fmicb.2020.01797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Type 1 interferons induce the upregulation of hundreds of interferon-stimulated genes (ISGs) that combat viral replication. The parapoxvirus orf virus (ORFV) induces acute pustular skin lesions in sheep and goats and can reinfect its host, however, little is known of its ability to resist IFN. Vaccinia virus (VACV) encodes a number of factors that modulate the IFN response including the host-range genes C7L and K1L. A recombinant VACV-Western Reserve (WR) strain in which the K1L and C7L genes have been deleted does not replicate in cells treated with IFN-β nor in HeLa cells in which the IFN response is constitutive and is inhibited at the level of intermediate gene expression. Furthermore C7L is conserved in almost all poxviruses. We provide evidence that shows that although ORFV is more sensitive to IFN-β compared with VACV, and lacks homologues of KIL and C7L, it nevertheless has the ability to rescue a VACV KIL- C7L- gfp+ mutant in which gfp is expressed from a late promoter. Co-infection of HeLa cells with the mutant and ORFV demonstrated that ORFV was able to overcome the block in translation of intermediate transcripts in the mutant virus, allowing it to progress to late gene expression and new viral particles. Our findings strongly suggest that ORFV encodes a factor(s) that, although different in structure to C7L or KIL, targets an anti-viral cellular mechanism that is a highly potent at killing poxviruses.
Collapse
Affiliation(s)
- Sherief Riad
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Basheer AlDaif
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Gupta R, Rayamajhee B, Sherchan SP, Rai G, Mukhiya RK, Khanal B, Rai SK. Prevalence of intestinal parasitosis and associated risk factors among school children of Saptari district, Nepal: a cross-sectional study. Trop Med Health 2020; 48:73. [PMID: 32848503 PMCID: PMC7444033 DOI: 10.1186/s41182-020-00261-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Intestinal parasitosis, caused by both helminths and protozoans, are among the most prevalent infections, especially in developing countries. Enteric parasites continue to be a major cause of parasitic diseases which is the most common among street and school going children with poor sanitation. This cross-sectional study was carried out to determine the prevalence and potential risk factors of intestinal parasitosis among school going children of two schools of Saptari district of southern Nepal. Stool samples were collected in a clean, dry, screw-capped, and wide-mouthed plastic container, fixed with 10% formal-saline solution, and transported to the laboratory for further microscopic analysis by following concentration technique. RESULTS Out of the 285 stool samples analysed, 94 (33%) were positive for the parasitosis. Presence of intestinal parasites was marginally more in rural school (44.6%) than in urban (30%) (P < 0.05). Giardia lamblia was highly prevalent (15.4%) followed by Entamoeba histolytica-like (7.7%), E. coli (7%), Ascaris lumbricoides (1.8%), and Hymenolepis nana (1.08%), respectively. Children of the age group 11-15 years were highly affected (44.2%) compared to younger age groups. The findings of intestinal parasitosis in the study population were statistically significant with family income, hand-washing habit, type of drinking water, and availability of a toilet facility at home (P < 0.05). Over 85% of infection was associated with parasitosis that indicated mainly waterborne infection rather than soil-borne helminths. CONCLUSIONS Poor hygiene measures and farming occupation are identified as major risk factors of parasitic infections, so sanitation especially focusing on safe drinking water along with multi intervention strategies must be emphasized in the Saptari district of Nepal to reduce the burden of parasitic diseases in school children.
Collapse
Affiliation(s)
- Ranjit Gupta
- ShiGan International College of Science and Technology, Kathmandu, Nepal
| | - Binod Rayamajhee
- Department of Infectious Disease and Immunology, Kathmandu Research Institute for Biological Sciences (KRIBS), Lalitpur, Nepal
- School of Optometry and Vision Science, Faculty of Science, UNSW, Sydney, NSW 2052 Australia
| | - Samendra P. Sherchan
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA USA
| | - Ganesh Rai
- ShiGan International College of Science and Technology, Kathmandu, Nepal
- National Institute of Tropical Medicine and Public Health Research, Kathmandu, Nepal
| | | | - Binod Khanal
- ShiGan International College of Science and Technology, Kathmandu, Nepal
| | - Shiba Kumar Rai
- ShiGan International College of Science and Technology, Kathmandu, Nepal
- National Institute of Tropical Medicine and Public Health Research, Kathmandu, Nepal
| |
Collapse
|