1
|
Yang TM, Yang YT, Wang X, Song L, Hu Y. Anti-flammable, anti-fouling, anti-bacterial treatment of cotton fabrics with MOF-based hybrid coatings for highly efficient oil-water separation. Int J Biol Macromol 2024; 280:136017. [PMID: 39326618 DOI: 10.1016/j.ijbiomac.2024.136017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
A flame-retardant and hydrophobic coating was deposited on the surface of the cotton fabric via a two-step spray deposition technique. Specifically, the coating was composed of flame-retardant component (guanidine phosphate) and hydrophobic components (Ti-MOF and bis(3-aminopropyl)-terminated poly(dimethylsiloxane) (PDMS)) and crosslinked with glutaraldehyde. The limiting oxygen index (LOI) of the coated cotton fabrics increased from 18.0 % to 32.0 % (15#) and 26.5 % (15#-Ti-PDMS) relative to that of the original cotton fabric, and the coated cotton fabrics also self-extinguished in the UL-94 flammability test. Compared with that of the original cotton fabric, the PHRR of the coated fabrics was significantly lower, reaching 80 %. The coated cotton fabrics (15# and 15#-Ti-PDMS) had good antibacterial properties against Staphylococcus aureus (S. aureus). In addition, 15#-Ti-PDMS had high hydrophobicity, good washing and abrasion resistance and good water-oil separation performance. Its water contact angle was 146°. The water contact angle remained above 130° after 10 laundering cycles and 50 scratch cycles. Even under strongly acidic and strongly basic conditions, the water-oil separation efficiency of 15#-Ti-PDMS was greater than 99 %, and it was still greater than 90 % after 10 cycles. Therefore, a simple and effective method for preparing flame-retardant, hydrophobic and antibacterial cotton fabric was developed.
Collapse
Affiliation(s)
- Tian-Mo Yang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Yu-Ting Yang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Xin Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China.
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| |
Collapse
|
2
|
Liu F, Deroy C, Herr AE. Microfluidics for macrofluidics: addressing marine-ecosystem challenges in an era of climate change. LAB ON A CHIP 2024; 24:4007-4027. [PMID: 39093009 DOI: 10.1039/d4lc00468j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Climate change presents a mounting challenge with profound impacts on ocean and marine ecosystems, leading to significant environmental, health, and economic consequences. Microfluidic technologies, with their unique capabilities, play a crucial role in understanding and addressing the marine aspects of the climate crisis. These technologies leverage quantitative, precise, and miniaturized formats that enhance the capabilities of sensing, imaging, and molecular tools. Such advancements are critical for monitoring marine systems under the stress of climate change and elucidating their response mechanisms. This review explores microfluidic technologies employed both in laboratory settings for testing and in the field for monitoring purposes. We delve into the application of miniaturized tools in evaluating ocean-based solutions to climate change, thus offering fresh perspectives from the solution-oriented end of the spectrum. We further aim to synthesize recent developments in technology around critical questions concerning the ocean environment and marine ecosystems, while discussing the potential for future innovations in microfluidic technology. The purpose of this review is to enhance understanding of current capabilities and assist researchers interested in mitigating the effects of climate change to identify new avenues for tackling the pressing issues posed by climate change in marine ecosystems.
Collapse
Affiliation(s)
- Fangchen Liu
- Department of Bioengineering, University of California, Berkeley, California 94158, USA.
| | - Cyril Deroy
- Department of Bioengineering, University of California, Berkeley, California 94158, USA.
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, California 94158, USA.
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
3
|
Punriboon N, Sawaengkaew J, Mahakhan P. Outdoor biohydrogen production by thermotolerant Rhodopseudomonas pentothenatexigens KKU-SN1/1 in a cluster of ten bioreactors system. Bioprocess Biosyst Eng 2024; 47:583-596. [PMID: 38491193 DOI: 10.1007/s00449-024-02996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
In tropical regions, the viability of outdoor photo-fermentative biohydrogen production faces challenges arising from elevated temperatures and varying light intensity. This research aimed to explore how high temperatures and outdoor environments impact both biohydrogen production and the growth of purple non-sulfur bacteria. Our findings revealed the potential of Rhodopseudomonas spp. as a robust outdoor hydrogen-producing bacteria, demonstrating its capacity to thrive and generate biohydrogen even at 40 °C and under fluctuating outdoor conditions. Rhodopseudomonas harwoodiae NM3/1-2 produced the highest cumulative biohydrogen of 223 mL/L under anaerobic light conditions at 40 °C, while Rhodopseudomonas harwoodiae 2M had the highest dry cell weight of 2.93 g/L. However, R. harwoodiae NM3/1-2 demonstrated the highest dry cell weight of 3.99 g/L and Rhodopseudomonas pentothenatexigens KKU-SN1/1 exhibited the highest cumulative biohydrogen production of 400 mL/L when grown outdoors. In addition, the outdoor enhancement of biohydrogen production was achieved through the utilization of a cluster of ten bioreactors system. The outcomes demonstrated a notable improvement in biohydrogen production efficiency, marked by the highest daily biohydrogen production of 493 mL/L d by R. pentothenatexigens KKU-SN1/1. Significantly, the highest biohydrogen production rate was noted to be 17 times greater than that observed in conventional batch production methods. This study is the first to utilize R. pentothenatexigens and R. harwoodiae for sustained biohydrogen production at high temperatures and in outdoor conditions over an extended operational period. The successful utilization of a clustered system of ten bioreactors demonstrates potential to scale-up for industrial biohydrogen production.
Collapse
Affiliation(s)
- Netchanok Punriboon
- Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jutaporn Sawaengkaew
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Polson Mahakhan
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
4
|
Tiang MF, Hanipa MAF, Mahmod SS, Zainuddin MT, Lutfi AAI, Jahim JM, Takriff MS, Reungsang A, Wu SY, Abdul PM. Impact of light spectra on photo-fermentative biohydrogen production by Rhodobacter sphaeroides KKU-PS1. BIORESOURCE TECHNOLOGY 2024; 394:130222. [PMID: 38109981 DOI: 10.1016/j.biortech.2023.130222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Purple non-sulphur bacteria can only capture up to 10 % light spectra and only 1-5 % of light is converted efficiently for biohydrogen production. To enhance light capture and conversion efficiencies, it is necessary to understand the impact of various light spectra on light harvesting pigments. During photo-fermentation, Rhodobacter sphaeroides KKU-PS1 cultivated at 30 °C and 150 rpm under different light spectra has been investigated. Results revealed that red light is more beneficial for biomass accumulation, whereas green light showed the greatest impact on photo-fermentative biohydrogen production. Light conversion efficiency by green light is 2-folds of that under control white light, hence photo-hydrogen productivity is ranked as green > red > orange > violet > blue > yellow. These experimental data demonstrated that green and red lights are essential for photo-hydrogen and biomass productions of R. sphaeroides and a clearer understanding that possibly pave the way for further photosynthetic enhancement research.
Collapse
Affiliation(s)
- Ming Foong Tiang
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Muhammad Alif Fitri Hanipa
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Safa Senan Mahmod
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, UniMAP, 02600 Arau, Perlis, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, UniMAP, 02600 Arau, Perlis, Malaysia
| | - Muhammad Tarmidzi Zainuddin
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Abdullah Amru Indera Lutfi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor Darul Ehsan, Malaysia
| | - Jamaliah Md Jahim
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor Darul Ehsan, Malaysia
| | - Mohd Sobri Takriff
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor Darul Ehsan, Malaysia; Department of Mechanical and Nuclear Engineering, College of Engineering, University of Sharjah, United Arab Emirates
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Shu-Yii Wu
- Department of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan; Green Energy Development Center, Feng Chia University, Taichung 40724, Taiwan
| | - Peer Mohamed Abdul
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, UniMAP, 02600 Arau, Perlis, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
5
|
Chandran EM, Mohan E. Sustainable biohydrogen production from lignocellulosic biomass sources - metabolic pathways, production enhancement, and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102129-102157. [PMID: 37684507 DOI: 10.1007/s11356-023-29617-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Hydrogen production from biological processes has been hailed as a promising strategy for generating sustainable energy. Fermentative hydrogen production processes such as dark and photofermentation are considered more sustainable and economical than other biological methods such as biophotolysis. However, these methods have constraints such as low hydrogen yield and conversion efficiency, so practical implementations still need to be made. The present review provides an assessment and feasibility of producing biohydrogen through dark and photofermentation techniques utilizing various lignocellulosic biomass wastes as substrates. Furthermore, this review includes information about the strategies to increase the productivity rate of biohydrogen in an eco-friendly and sustainable manner, like integration of dark and photofermentation techniques, pretreatment of biomass, genetic modification of microorganisms, and application of nanoadditives.
Collapse
Affiliation(s)
- Eniyan Moni Chandran
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, India
| | - Edwin Mohan
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, India.
| |
Collapse
|
6
|
Asunis F, Cappai G, Carucci A, De Gioannis G, Dessì P, Muntoni A, Polettini A, Pomi R, Rossi A, Spiga D, Trois C. Dark fermentative volatile fatty acids production from food waste: A review of the potential central role in waste biorefineries. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:1571-1593. [PMID: 35796574 DOI: 10.1177/0734242x221103940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Volatile fatty acids (VFAs) are high-value chemicals that are increasingly demanded worldwide. Biological production via food waste (FW) dark fermentation (DF) is a promising option to achieve the sustainability and environmental benefits typical of biobased chemicals and concurrently manage large amounts of residues. DF has a great potential to play a central role in waste biorefineries due to its ability to hydrolyze and convert complex organic substrates into VFAs that can be used as building blocks for bioproducts, chemicals and fuels. Several challenges must be faced for full-scale implementation, including process optimization to achieve high and stable yields, the development of efficient techniques for selective recovery and the cost-effectiveness of the whole process. This review aims to critically discuss and statistically analyze the existing relationships between process performance and the main variables of concern. Moreover, opportunities, current challenges and perspectives of a FW-based and fermentation-centred biorefinery layout are discussed.
Collapse
Affiliation(s)
- Fabiano Asunis
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | - Giovanna Cappai
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
- Environmental Geology and Geoengineering Institute of the National Research Council (IGAG-CNR), Cagliari, Italy
| | - Alessandra Carucci
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
- Environmental Geology and Geoengineering Institute of the National Research Council (IGAG-CNR), Cagliari, Italy
| | - Giorgia De Gioannis
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
- Environmental Geology and Geoengineering Institute of the National Research Council (IGAG-CNR), Cagliari, Italy
| | - Paolo Dessì
- School of Chemistry and Energy Research Centre, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Aldo Muntoni
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
- Environmental Geology and Geoengineering Institute of the National Research Council (IGAG-CNR), Cagliari, Italy
| | - Alessandra Polettini
- Department of Civil, Building and Environmental Engineering, University of Rome "La Sapienza", Rome, Italy
| | - Raffaella Pomi
- Department of Civil, Building and Environmental Engineering, University of Rome "La Sapienza", Rome, Italy
| | - Andreina Rossi
- Department of Civil, Building and Environmental Engineering, University of Rome "La Sapienza", Rome, Italy
| | - Daniela Spiga
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | - Cristina Trois
- Department of Civil Engineering, School of Engineering, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Biswal T, Shadangi KP, Sarangi PK. Application of Nanotechnology in the Production of Biohydrogen: A Review. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Trinath Biswal
- Veer Surendra Sai University of Technology Department of Chemistry 768018 Burla Odisha India
| | - Krushna Prasad Shadangi
- Veer Surendra Sai University of Technology Department of Chemical Engineering 768018 Burla Odisha India
| | | |
Collapse
|
8
|
Thulasidharan D, Arumugam A, Uppuluri KB. Research and economic perspectives on an integrated biorefinery approach for the simultaneous production of polyhydroxyalkanoates and biohydrogen. Int J Biol Macromol 2021; 193:1937-1951. [PMID: 34752795 DOI: 10.1016/j.ijbiomac.2021.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
Alarming environmental impacts have been resulted across the globe due to the recovery and consumption of fossil fuels. The elevated global carbon footprint has paved the way to an alternative to combat the prevalent pollution. On the other hand, the fossil-based plastics produced from the byproducts of petroleum remain intact in the environment leading to pollution. Fossil abated bioproducts are in high demand due to the increase in pollution. This call to utilize feedstock for simultaneous production of biologically useful products through carbon capture utilisation where the leftover carbon-rich substrate is converted into usable chemicals like bioplastics, methanol, urea and various other industrially essential components. The present review extensively focuses on the research and economic perspectives of an integrated biorefinery and addresses technical breaches, bottlenecks, and efficient strategies for the simultaneous production of biohydrogen and polyhydroxyalkanoates.
Collapse
Affiliation(s)
- D Thulasidharan
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - A Arumugam
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India.
| | - Kiran Babu Uppuluri
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India.
| |
Collapse
|
9
|
Singh T, Alhazmi A, Mohammad A, Srivastava N, Haque S, Sharma S, Singh R, Yoon T, Gupta VK. Integrated biohydrogen production via lignocellulosic waste: Opportunity, challenges & future prospects. BIORESOURCE TECHNOLOGY 2021; 338:125511. [PMID: 34274587 DOI: 10.1016/j.biortech.2021.125511] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen production through biological route is the cleanest, renewable and potential way to sustainable energy generation. Productions of hydrogen via dark and photo fermentations are considered to be more sustainable and economical approach over numerous existing biological modes. Nevertheless, both the biological modes suffer from certain limitations like low yield and production rate, and because of these practical implementations are still far away. Therefore, the present review provides an assessment and feasibility of integrated biohydrogen production strategy by combining dark and photo-fermentation as an advanced biochemical processing while using lignocellulosics biomass to improve and accelerate the biohydrogen production technology in a sustainable manner. This review also evaluates practical viability of the integrated approach for biohydrogen production along with the analysis of the key factors which significantly influence to elevate this technology on commercial ground with the implementation of various environment friendly and innovative approaches.
Collapse
Affiliation(s)
- Tripti Singh
- School of Biosciences IMS Ghaziabad UC Campus, Ghaziabad, Uttar Pradesh 201015, India
| | - Alaa Alhazmi
- Medical Laboratory Technology Department Jazan University, Jazan, Saudi Arabia; SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005 India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059, Nilüfer, Bursa, Turkey
| | - Shalini Sharma
- School of Biosciences IMS Ghaziabad UC Campus, Ghaziabad, Uttar Pradesh 201015, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India
| | - Taeho Yoon
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
10
|
Policastro G, Luongo V, Frunzo L, Fabbricino M. A comprehensive review of mathematical models of photo fermentation. Crit Rev Biotechnol 2021; 41:628-648. [PMID: 33601992 DOI: 10.1080/07388551.2021.1873241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This work aims at analyzing and comparing the different modeling approaches used to date to simulate, design and control photo fermentation processes for hydrogen production and/or wastewater treatment. The study is directed to researchers who approach the problem of photo fermentation mathematical modeling. It is a useful tool to address future research in this specific field in order to overcome the difficulty of modeling a complex, not totally elucidate process. We report a preliminary identification of the environmental and biological parameters, included in the models, which affect photo fermentation. Based on model features, we distinguish three different approaches, i.e. kinetic, parametric and non-ideal reactors. We explore the characteristics of each approach, reporting and comparing the obtained results and underlining the differences between models, together with the advantages and the limitations of each of them. The analysis of the approaches indicates that Kinetic models are useful to describe the process from a biochemical point of view, without considering bio-reactor hydrodynamics and the spatial variations that Parametric Models can be utilized to study the influence and the interactions between the operational conditions. They do not take into account the biochemical process mechanism and the influence of reactor hydrodynamics. Quite the opposite, non-ideal reactors models focus on the reactor configuration. Otherwise, the biochemical description of purple non-sulfur bacteria activities is usually simplified. This review indicates that there still is a lack of models that fully describe photo fermentation processes.
Collapse
Affiliation(s)
- Grazia Policastro
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Naples, Italy
| | - Vincenzo Luongo
- Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, Naples, Italy
| | - Luigi Frunzo
- Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, Naples, Italy
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Production of Biohydrogen and/or Poly-β-hydroxybutyrate by Rhodopseudomonas sp. Using Various Carbon Sources as Substrate. Appl Biochem Biotechnol 2020; 193:307-318. [PMID: 32954484 DOI: 10.1007/s12010-020-03428-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
The polyhydroxyalkanoates (PHA) are family of biopolyesters synthesized by numerous bacteria which are attracting a great attention due to their thermoplastic properties. Polyhydroxybutyrate (PHB) is the most common type of PHA which presents thermoplastic and biodegradable properties. It is synthesized under stressful conditions by heterotrophic bacteria and many photosynthetic microorganisms such as purple non-sulfur bacteria and cyanobacteria. Biological hydrogen (H2) production is being evaluated for use as a fuel since it is a promising substitute for carbonaceous fuels owing to its high conversion efficiency and high specific content. In the present work, the purple non-sulfur photosynthetic bacterium Rhodopseudomonas sp. for the simultaneous H2 photo-evolution and poly-β-hydroxybutyrate (PHB) production has been investigated. Three different types of carbon sources were tested in the presence of glutamate as a nitrogen source in a batch cultivation system, under continuous irradiance. The results indicated the fact that the type of carbon source in the culture broth affects in various ways the metabolic activity of the bacterial biomass, as evidenced by the production of PHB and/or H2 and biomass. The best carbon source for PHB accumulation and H2 production by Rhodopseudomonas sp. turned out to be the acetate, having the highest H2 production (2286 mL/L) and PHB accumulation (68.99 mg/L, 18.28% of cell dry weight).
Collapse
|
12
|
A marine photosynthetic microbial cell factory as a platform for spider silk production. Commun Biol 2020; 3:357. [PMID: 32641733 PMCID: PMC7343832 DOI: 10.1038/s42003-020-1099-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/22/2020] [Indexed: 12/03/2022] Open
Abstract
Photosynthetic microorganisms such as cyanobacteria, purple bacteria and microalgae have attracted great interest as promising platforms for economical and sustainable production of bioenergy, biochemicals, and biopolymers. Here, we demonstrate heterotrophic production of spider dragline silk proteins, major ampullate spidroins (MaSp), in a marine photosynthetic purple bacterium, Rhodovulum sulfidophilum, under both photoheterotrophic and photoautotrophic growth conditions. Spider silk is a biodegradable and biocompatible material with remarkable mechanical properties. R. sulfidophilum grow by utilizing abundant and renewable nonfood bioresources such as seawater, sunlight, and gaseous CO2 and N2, thus making this photosynthetic microbial cell factory a promising green and sustainable production platform for proteins and biopolymers, including spider silks. Foong et al. demonstrate production of spider dragline silk proteins in Rhodovulum sulfidophilum, a marine photosynthetic purple bacterium. This platform generates promise for the sustainable production of valuable biocompounds in photosynthetic organisms.
Collapse
|