1
|
Cenci Dietrich V, Costa JMC, Oliveira MMGL, Aguiar CEO, Silva LGDO, Luz MS, Lemos FFB, de Melo FF. Pathogenesis and clinical management of arboviral diseases. World J Virol 2025; 14:100489. [PMID: 40134841 PMCID: PMC11612872 DOI: 10.5501/wjv.v14.i1.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Arboviral diseases are viral infections transmitted to humans through the bites of arthropods, such as mosquitoes, often causing a variety of pathologies associated with high levels of morbidity and mortality. Over the past decades, these infections have proven to be a significant challenge to health systems worldwide, particularly following the considerable geographic expansion of the dengue virus (DENV) and its most recent outbreak in Latin America as well as the difficult-to-control outbreaks of yellow fever virus (YFV), chikungunya virus (CHIKV), and Zika virus (ZIKV), leaving behind a substantial portion of the population with complications related to these infections. Currently, the world is experiencing a period of intense globalization, which, combined with global warming, directly contributes to wider dissemination of arbovirus vectors across the globe. Consequently, all continents remain on high alert for potential new outbreaks. Thus, this review aims to provide a comprehensive understanding of the pathogenesis of the four main arboviruses today (DENV, ZIKV, YFV, and CHIKV) discussing their viral characteristics, immune responses, and mechanisms of viral evasion, as well as important clinical aspects for patient management. This includes associated symptoms, laboratory tests, treatments, existing or developing vaccines and the main associated complications, thus integrating a broad historical, scientific and clinical approach.
Collapse
Affiliation(s)
- Victoria Cenci Dietrich
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Juan Marcos Caram Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
2
|
Zavaleta-Monestel E, Rojas-Chinchilla C, Molina-Sojo P, Murillo-Castro MF, Rojas-Molina JP, Martínez-Vargas E. Impact of Climate Change on the Global Dynamics of Vector-Borne Infectious Diseases: A Narrative Review. Cureus 2025; 17:e77972. [PMID: 39996198 PMCID: PMC11849761 DOI: 10.7759/cureus.77972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Climate change has significantly altered the dynamics of vector-borne infectious diseases, favoring their proliferation and geographic expansion. Factors such as rising temperatures, the frequency of extreme weather events, and uncontrolled urbanization have increased the incidence of diseases such as dengue, Zika, chikungunya, malaria, and Lyme disease, especially in vulnerable regions with limited infrastructure. This article presents a narrative review based on recent scientific literature (2018-2025) to assess the impact of climate change on vector distribution, co-infections, and control strategies. The evidence collected highlights how changing climate conditions, combined with socioeconomic, political, and demographic factors, exacerbate public health crises and complicate mitigation efforts. It is concluded that facing this challenge requires a comprehensive strategy that combines environmental management, technological innovation, epidemiological surveillance, and community educational programs, promoting a coordinated global response to reduce the associated risks.
Collapse
|
3
|
Zhang Z, Wang J, Niu Q, Guan G, Yin H, Yang J. An immunoassay based on bioluminescent sensors for rapid detection of African swine fever virus antibodies. J Clin Microbiol 2024; 62:e0046324. [PMID: 39235247 PMCID: PMC11481549 DOI: 10.1128/jcm.00463-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
Serological assays for antibody detection have contributed significantly to the diagnosis and control of infectious diseases. African swine fever is the most devastating infectious disease of domestic pigs and wild boars, severely threatening the global pig industry in recent years. Here, we developed a rapid, simple, and sensitive immunoassay based on the split-luciferase system to detect IgG antibodies against African swine fever virus (ASFV). In this assay, the p30 protein of ASFV was genetically coupled to the LgBiT and SmBiT subunits of nanoluciferase, which were used as fusion probes for specific antibodies. Target engagement of the probes results in the reconstitution of a functional nanoluciferase, which further catalyzes bioluminescent reactions. Different orientations of the LgBiT and SmBiT-p30 fusion sensors were designed and investigated, and N-LgBiT/p30 and N-SmBiT/p30 were identified as a promising sensor pair for reforming active nanoluciferase in the presence of specific antibodies. After optimization, this split-luciferase complementation assay showed high sensitivity and specificity for the detection of ASFV antibodies. The analytical sensitivity of the assay was 16 times greater than that of the blocking enzyme-linked immunosorbent assay (ELISA) by the detection of serial dilutions of serum, and no cross-reaction was observed with other swine pathogens. As demonstrated in clinical samples, its performance is highly consistent with that of a commercial ELISA kit, with a concordance rate of 98.19%. This assay is simple and easy to perform, providing a more flexible and efficient approach for the measurement of ASFV antibodies in clinical applications. IMPORTANCE The study is about a homogeneous split-luciferase assay for antibody detection. Split nanoluciferase biosensors for the detection of ASFV antibodies were designed. This sensor platform enables the sensitive and specific detection of antibodies. The split-luciferase assay is simple, rapid, and easy to use.
Collapse
Affiliation(s)
- Zhonghui Zhang
- State Key Laboratory for Animal Disease Control and Prevention, African Swine Fever Regional Laboratory of China (Lanzhou), Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jinming Wang
- State Key Laboratory for Animal Disease Control and Prevention, African Swine Fever Regional Laboratory of China (Lanzhou), Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Qingli Niu
- State Key Laboratory for Animal Disease Control and Prevention, African Swine Fever Regional Laboratory of China (Lanzhou), Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, African Swine Fever Regional Laboratory of China (Lanzhou), Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, African Swine Fever Regional Laboratory of China (Lanzhou), Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jifei Yang
- State Key Laboratory for Animal Disease Control and Prevention, African Swine Fever Regional Laboratory of China (Lanzhou), Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Raza S, Poria R, Kala D, Sharma N, Sharma AK, Florien N, Tuli HS, Kaushal A, Gupta S. Innovations in dengue virus detection: An overview of conventional and electrochemical biosensor approaches. Biotechnol Appl Biochem 2024; 71:481-500. [PMID: 38225854 DOI: 10.1002/bab.2553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
Globally, people are in great threat due to the highly spreading of viral infectious diseases. Every year like 100-300 million cases of infections are found, and among them, above 80% are not recognized and irrelevant. Dengue virus (DENV) is an arbovirus infection that currently infects people most frequently. DENV encompasses four viral serotypes, and they each express comparable sign. From a mild febrile sickness to a potentially fatal dengue hemorrhagic fever, dengue can induce a variety of symptoms. Presently, the globe is being challenged by the untimely identification of dengue infection. Therefore, this review summarizes advances in the detection of dengue from conventional methods (nucleic acid-based, polymerase chain reaction-based, and serological approaches) to novel biosensors. This work illustrates an extensive study of the current designs and fabrication approaches involved in the formation of electrochemical biosensors for untimely identifications of dengue. Additionally, in electrochemical sensing of DENV, we skimmed through significances of biorecognition molecules like lectins, nucleic acid, and antibodies. The introduction of emerging techniques such as the CRISPR/Cas' system and their integration with biosensing platforms has also been summarized. Furthermore, the review revealed the importance of electrochemical approach compared with traditional diagnostic methods.
Collapse
Affiliation(s)
- Shadan Raza
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Renu Poria
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Deepak Kala
- Centera Laboratories, Institute of High Pressure Physics PAS, Warsaw, Poland
| | - Nishant Sharma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Anil K Sharma
- Department of Biotechnology, Amity University of Punjab, Mohali, Punjab, India
| | - Nkurunziza Florien
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Hardeep S Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Ankur Kaushal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Shagun Gupta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| |
Collapse
|
5
|
Sapkal G, Deshpande GR, Gupta N, Deshpande K, Sharma S, Tandale B, Srivastava R, Vidhate S, Khutwad K, Tilekar BN. Harmonization of Zika serological assays and comparative evaluation of two commercial ZIKA IgG ELISA kits. Diagn Microbiol Infect Dis 2024; 109:116238. [PMID: 38554539 DOI: 10.1016/j.diagmicrobio.2024.116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/27/2024] [Accepted: 02/27/2024] [Indexed: 04/01/2024]
Abstract
The interpretation for Zika virus serology results is challenging due to high antibody cross reactivity with other flaviviruses. This limits availability of reliable and accurate methods for serosurveillance studies to understand the disease burden. Therefore, we conducted study to harmonize anti-Zika IgG antibody detection assays with 1st WHO International Standard (16/352) and working standard (16/320) for anti-Zika virus antibody.Additionally, evaluated NuGenTMZIKA-IgG and NovaLisa®ZIKA virus IgG-Capture ELISA using a panel of 278 seraFurther, 106 samples positive for other-flavi viruses were taken for assessing cross-reactivity of the assay, all serums were further tested by Zika-PRNT. The results of this study indicates satisfactory performance of both the assays. Serological and neutralization assays were calibrated according to the international standards. This will help in understanding antibody dynamics in serosurveillance and vaccine studies. However the performance of the kits with possibilities of cross-reactivity will have to be verified by coupling ZIKV and DENV specific ELISA.
Collapse
Affiliation(s)
- Gajanan Sapkal
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India.
| | | | - Nivedita Gupta
- Indian Council of Medical Research, New Delhi 110001,India
| | - Ketki Deshpande
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Sharada Sharma
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Babasaheb Tandale
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Rashi Srivastava
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Shankar Vidhate
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| | - Kirtee Khutwad
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| | - B N Tilekar
- ICMR-National Institute of Virology, Pune 411021, Maharashtra, India
| |
Collapse
|
6
|
Muslihati A, Septiani NLW, Gumilar G, Nugraha N, Wasisto HS, Yuliarto B. Peptide-Based Flavivirus Biosensors: From Cell Structure to Virological and Serological Detection Methods. ACS Biomater Sci Eng 2024; 10:2041-2061. [PMID: 38526408 DOI: 10.1021/acsbiomaterials.3c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
In tropical and developing countries, mosquito-borne diseases by flaviviruses pose a serious threat to public health. Early detection is critical for preventing their spread, but conventional methods are time-consuming and require skilled technicians. Biosensors have been developed to address this issue, but cross-reactivity with other flaviviruses remains a challenge. Peptides are essentially biomaterials used in diagnostics that allow virological and serological techniques to identify flavivirus selectively. This biomaterial originated as a small protein consisting of two to 50 amino acid chains. They offer flexibility in chemical modification and can be easily synthesized and applied to living cells in the engineering process. Peptides could potentially be developed as robust, low-cost, sensitive, and selective receptors for detecting flaviviruses. However, modification and selection of the receptor agents are crucial to determine the effectiveness of binding between the targets and the receptors. This paper addresses two potential peptide nucleic acids (PNAs) and affinity peptides that can detect flavivirus from another target-based biosensor as well as the potential peptide behaviors of flaviviruses. The PNAs detect flaviviruses based on the nucleotide base sequence of the target's virological profile via Watson-Crick base pairing, while the affinity peptides sense the epitope or immunological profile of the targets. Recent developments in the functionalization of peptides for flavivirus biosensors are explored in this Review by division into electrochemical, optical, and other detection methods.
Collapse
Affiliation(s)
- Atqiya Muslihati
- Doctoral Program of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- PT Biostark Analitika Inovasi, Bandung 40375, Indonesia
| | - Ni Luh Wulan Septiani
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, South Tangerang 15134, Indonesia
| | - Gilang Gumilar
- Research Center for Electronics, National Research and Innovation Agency (BRIN), Bandung 40135, Indonesia
| | - Nugraha Nugraha
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| | | | - Brian Yuliarto
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| |
Collapse
|
7
|
Dammermann W, Haller IE, Singethan K, Vinnemeier CD, Hentschel F. Asymptomatic arbovirus and campylobacter infections in German travelers to Asia. Arch Virol 2023; 168:254. [PMID: 37728769 PMCID: PMC10511557 DOI: 10.1007/s00705-023-05870-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023]
Abstract
The true risk for many travel diseases is unknown because most studies do not detect asymptomatic infections. In this study, we performed ELISA for dengue virus (DENV), chikungunya virus (CHIKV), Zika virus (ZIKV), hepatitis E virus (HEV), and Campylobacter jejuni on samples from 81 healthy Germans before and after they traveled to Asia. ELISA found five seroconversions for C. jejuni, two for DENV, one for ZIKV, and zero for HEV. For CHIKV, three subjects were positive before travel and negative afterwards. None had symptoms. These infections would have gone unnoticed by retrospective studies. Therefore, the risk for these infections may be higher than previously estimated.
Collapse
Affiliation(s)
- Werner Dammermann
- Brandenburg Medical School (Theodor Fontane), Brandenburg, Germany
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Katrin Singethan
- Brandenburg Medical School (Theodor Fontane), Brandenburg, Germany
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Christof D Vinnemeier
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Florian Hentschel
- Brandenburg Medical School (Theodor Fontane), Brandenburg, Germany.
- Zentrum für Innere Medizin II Hochschulklinikum Brandenburg der MHB, Hochstr. 29, 14770, Brandenburg an der Havel, Germany.
| |
Collapse
|
8
|
Pereira GM, Manuli ER, Coulon L, Côrtes MF, Ramundo MS, Dromenq L, Larue-Triolet A, Raymond F, Tourneur C, Lázari CDS, Brasil P, Filippis AMBD, Paranhos-Baccalà G, Banz A, Sabino EC. Performance Evaluation of VIDAS ® Diagnostic Assays Detecting Anti-Chikungunya Virus IgM and IgG Antibodies: An International Study. Diagnostics (Basel) 2023; 13:2306. [PMID: 37443699 DOI: 10.3390/diagnostics13132306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Chikungunya (CHIK) is a debilitating mosquito-borne disease with an epidemiology and early clinical symptoms similar to those of other arboviruses-triggered diseases such as dengue or Zika. Accurate and rapid diagnosis of CHIK virus (CHIKV) infection is therefore challenging. This international study evaluated the performance of the automated VIDAS® anti-CHIKV IgM and IgG assays compared to that of manual competitor IgM and IgG ELISA for the detection of anti-CHIKV IgM and IgG antibodies in 660 patients with suspected CHIKV infection. Positive and negative agreements of the VIDAS® CHIKV assays with ELISA ranged from 97.5% to 100.0%. The sensitivity of the VIDAS® CHIKV assays evaluated in patients with a proven CHIKV infection confirmed reported kinetics of anti-CHIKV IgM and IgG response, with a positive detection of 88.2-100.0% for IgM ≥ 5 days post symptom onset and of 100.0% for IgG ≥ 11 days post symptom onset. Our study also demonstrated the superiority of ELISA and VIDAS® assays over rapid diagnostic IgM/IgG tests. The analytical performance of VIDAS® anti-CHIKV IgM and IgG assays was excellent, with a high precision (coefficients of variation ≤ 7.4%) and high specificity (cross-reactivity rate ≤ 2.9%). This study demonstrates the suitability of the automated VIDAS® anti-CHIKV IgM and IgG assays to diagnose CHIKV infections and supports its applicability for epidemiological surveillance and differential diagnosis in regions endemic for CHIKV.
Collapse
Affiliation(s)
- Geovana M Pereira
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Erika R Manuli
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
- Faculdade de Medicina da Universidade Municipal de São Caetano do Sul, São Paulo 09521-160, Brazil
- Laboratório de Investigação Médica/Parasitologia LIM/46, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | | | - Marina F Côrtes
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Mariana S Ramundo
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | | | | | | | | | - Carolina Dos Santos Lázari
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Patricia Brasil
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Ana Maria Bispo de Filippis
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Glaucia Paranhos-Baccalà
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
- bioMérieux, 69280 Marcy l'Etoile, France
| | - Alice Banz
- bioMérieux, 69280 Marcy l'Etoile, France
| | - Ester C Sabino
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
- Faculdade de Medicina da Universidade Municipal de São Caetano do Sul, São Paulo 09521-160, Brazil
- Laboratório de Investigação Médica/Parasitologia LIM/46, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| |
Collapse
|
9
|
Alibolandi Z, Ostadian A, Sayyah S, Haddad Kashani H, Ehteram H, Banafshe HR, Hajijafari M, Sepehrnejad M, Riahi Kashani N, Azadchehr MJ, Nikzad H, Seyed Hosseini E. The correlation between IgM and IgG antibodies with blood profile in patients infected with severe acute respiratory syndrome coronavirus. Clin Mol Allergy 2022; 20:15. [PMID: 36550478 PMCID: PMC9774079 DOI: 10.1186/s12948-022-00180-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES This study aimed to determine the levels of IgM and IgG antibody response to the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 in coronavirus disease 2019 (COVID-19) patients with different disease severity. METHODS IgM and IgG antibody levels were evaluated via enzyme-linked immunosorbent assay (ELISA). In total, 100 patients with confirmed SARS-CoV-2 infection were enrolled in this study and viral RNA was detected by using Real-time PCR technique. Clinical and laboratory data were collected and analyzed after hospital admission for COVID-19 and two months post-admission. RESULTS The level of anti-SARS-CoV-2 antibody IgG was significantly higher in the severe patients than those in moderate and mild groups, 2 months after admission. Also, level of IgG was positively associated with increased WBC, NUT and LYM counts in sever than mild or moderate groups after admission to hospital. CONCLUSION Our findings suggested that patients with severe illness might experience longer virus exposure times and have a stronger antibody response against viral infection. Thus, they have longer time immunity compared with other groups.
Collapse
Affiliation(s)
- Zahra Alibolandi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Ostadian
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeed Sayyah
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hassan Ehteram
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hajijafari
- Department of Anesthesiology, Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdi Sepehrnejad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Narjes Riahi Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammd-Javad Azadchehr
- Department of Biostatistics, Infectious Disease Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Seyed Hosseini
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
10
|
A Chikungunya Virus Multiepitope Recombinant Protein Expressed from the Binary System Insect Cell/Recombinant Baculovirus Is Useful for Laboratorial Diagnosis of Chikungunya. Microorganisms 2022; 10:microorganisms10071451. [PMID: 35889170 PMCID: PMC9316945 DOI: 10.3390/microorganisms10071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Chikungunya virus (CHIKV) is an arbovirus currently distributed worldwide, causing a disease that shares clinical signs and symptoms with other illnesses, such as dengue and Zika and leading to a challenging clinical differential diagnosis. In Brazil, CHIKV emerged in 2014 with the simultaneous introduction of both Asian and East/Central/South African (ECSA) genotypes. Laboratorial diagnosis of CHIKV is mainly performed by molecular and serological assays, with the latter more widely used. Although many commercial kits are available, their costs are still high for many underdeveloped and developing countries where the virus circulates. Here we described the development and evaluation of a multi-epitope recombinant protein-based IgG-ELISA (MULTREC IgG-ELISA) test for the specific detection of anti-CHIKV antibodies in clinical samples, as an alternative approach for laboratorial diagnosis. The MULTREC IgG-ELISA showed 86.36% of sensitivity and 100% of specificity, and no cross-reactivity with other exanthematic diseases was observed. The recombinant protein was expressed from the binary system insect cell/baculovirus using the crystal-forming baculoviral protein polyhedrin as a carrier of the target recombinant protein to facilitate recovery. The crystals were at least 10 times smaller in size and had an amorphous shape when compared to the polyhedrin wild-type crystal. The assay uses a multi-epitope antigen, representing two replicates of 18 amino acid sequences from the E2 region and a sequence of 17 amino acids from the nsP3 region of CHIKV. The recombinant protein was highly expressed, easy to purify and has demonstrated its usefulness in confirming chikungunya exposure, indeed showing a good potential tool for epidemiological surveillance.
Collapse
|
11
|
Al-hadlaq SM, Balto HA, Hassan WM, Marraiki NA, El-Ansary AK. Biomarkers of non-communicable chronic disease: an update on contemporary methods. PeerJ 2022; 10:e12977. [PMID: 35233297 PMCID: PMC8882335 DOI: 10.7717/peerj.12977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/31/2022] [Indexed: 01/11/2023] Open
Abstract
Chronic diseases constitute a major global burden with significant impact on health systems, economies, and quality of life. Chronic diseases include a broad range of diseases that can be communicable or non-communicable. Chronic diseases are often associated with modifications of normal physiological levels of various analytes that are routinely measured in serum and other body fluids, as well as pathological findings, such as chronic inflammation, oxidative stress, and mitochondrial dysfunction. Identification of at-risk populations, early diagnosis, and prediction of prognosis play a major role in preventing or reducing the burden of chronic diseases. Biomarkers are tools that are used by health professionals to aid in the identification and management of chronic diseases. Biomarkers can be diagnostic, predictive, or prognostic. Several individual or grouped biomarkers have been used successfully in the diagnosis and prediction of certain chronic diseases, however, it is generally accepted that a more sophisticated approach to link and interpret various biomarkers involved in chronic disease is necessary to improve our current procedures. In order to ensure a comprehensive and unbiased coverage of the literature, first a primary frame of the manuscript (title, headings and subheadings) was drafted by the authors working on this paper. Second, based on the components drafted in the preliminary skeleton a comprehensive search of the literature was performed using the PubMed and Google Scholar search engines. Multiple keywords related to the topic were used. Out of screened papers, only 190 papers, which are the most relevant, and recent articles were selected to cover the topic in relation to etiological mechanisms of different chronic diseases, the most recently used biomarkers of chronic diseases and finally the advances in the applications of multivariate biomarkers of chronic diseases as statistical and clinically applied tool for the early diagnosis of chronic diseases was discussed. Recently, multivariate biomarkers analysis approach has been employed with promising prospect. A brief discussion of the multivariate approach for the early diagnosis of the most common chronic diseases was highlighted in this review. The use of diagnostic algorithms might show the way for novel criteria and enhanced diagnostic effectiveness inpatients with one or numerous non-communicable chronic diseases. The search for new relevant biomarkers for the better diagnosis of patients with non-communicable chronic diseases according to the risk of progression, sickness, and fatality is ongoing. It is important to determine whether the newly identified biomarkers are purely associations or real biomarkers of underlying pathophysiological processes. Use of multivariate analysis could be of great importance in this regard.
Collapse
Affiliation(s)
- Solaiman M. Al-hadlaq
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Hanan A. Balto
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia,Central Research Laboratory, Female Campus, King Saud University, Riyadh, Saudi Arabia
| | - Wail M. Hassan
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, KS, United States of America
| | - Najat A. Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Afaf K. El-Ansary
- Central Research Laboratory, Female Campus, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Wang A, Wu Z, Huang Y, Zhou H, Wu L, Jia C, Chen Q, Zhao J. A 3D-Printed Microfluidic Device for qPCR Detection of Macrolide-Resistant Mutations of Mycoplasma pneumoniae. BIOSENSORS 2021; 11:bios11110427. [PMID: 34821643 PMCID: PMC8615801 DOI: 10.3390/bios11110427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/17/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022]
Abstract
Mycoplasma pneumonia (MP) is a common respiratory infection generally treated with macrolides, but resistance mutations against macrolides are often detected in mycoplasma pneumoniae in China. Rapid and accurate identification of mycoplasma pneumoniae and its mutant type is necessary for precise medication. This paper presents a 3D-printed microfluidic device to achieve this. By 3D printing, the stereoscopic structures such as microvalves, reservoirs, drainage tubes, and connectors were fabricated in one step. The device integrated commercial polymerase chain reaction (PCR) tubes as PCR chambers. The detection was a sample-to-answer procedure. First, the sample, a PCR mix, and mineral oil were respectively added to the reservoirs on the device. Next, the device automatically mixed the sample with the PCR mix and evenly dispensed the mixed solution and mineral oil into the PCR chambers, which were preloaded with the specified primers and probes. Subsequently, quantitative real-time PCR (qPCR) was carried out with the homemade instrument. Within 80 min, mycoplasma pneumoniae and its mutation type in the clinical samples were determined, which was verified by DNA sequencing. The easy-to-make and easy-to-use device provides a rapid and integrated detection approach for pathogens and antibiotic resistance mutations, which is urgently needed on the infection scene and in hospital emergency departments.
Collapse
Affiliation(s)
- Anyan Wang
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China;
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.W.); (Y.H.); (H.Z.); (J.Z.)
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.W.); (Y.H.); (H.Z.); (J.Z.)
| | - Yuhang Huang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.W.); (Y.H.); (H.Z.); (J.Z.)
- College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Hongbo Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.W.); (Y.H.); (H.Z.); (J.Z.)
| | - Lei Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.W.); (Y.H.); (H.Z.); (J.Z.)
- Correspondence: (L.W.); (C.J.); (Q.C.)
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.W.); (Y.H.); (H.Z.); (J.Z.)
- Correspondence: (L.W.); (C.J.); (Q.C.)
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China;
- Correspondence: (L.W.); (C.J.); (Q.C.)
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.W.); (Y.H.); (H.Z.); (J.Z.)
| |
Collapse
|
13
|
Mota ML, Dos Santos Souza Marinho R, Duro RLS, Hunter J, de Menezes IRA, de Lima Silva JMF, Pereira GLT, Sabino EC, Grumach A, Diaz RS, do Socorro Lucena M, Komninakis SV. Serological and molecular epidemiology of the Dengue, Zika and Chikungunya viruses in a risk area in Brazil. BMC Infect Dis 2021; 21:704. [PMID: 34303348 PMCID: PMC8310596 DOI: 10.1186/s12879-021-06401-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/13/2021] [Indexed: 11/22/2022] Open
Abstract
Background The co-circulation of types of arbovirus in areas where they are endemic increased the risk of outbreaks and limited the diagnostic methods available. Here, we analyze the epidemiological profile of DENV, CHIKV and ZIKV at the serological and molecular level in patients with suspected infection with these arboviruses in the city of Juazeiro do Norte, Ceará, Brazil. Methods In 2016, the Central Public Health Laboratory (LACEN) of Juazeiro do Norte received 182 plasma samples from patients who visited health facilities with symptoms compatible with arbovirus infection. The LACEN performed serological tests for detection of IgM/IgG to DENV and CHIKV. They then sent these samples to the Retrovirology Laboratory of the Federal University of São Paulo and Faculty of Medical of the ABC where molecular analyses to confirm the infection by DENV, ZIKV and CHIKV were performed. The prevalence of IgM/IgG antibodies and of infections confirmed by RT-qPCR were presented with 95% confidence interval. Results In serologic analysis, 125 samples were positive for antibodies against CHIKV and all were positive for antibodies against DENV. A higher prevalence of IgG against CHIKV (63.20% with 95% CI: 45.76–70.56) than against DENV (95.05% with 95% CI: 78.09–98.12) was observed. When the samples were submitted to analysis by RT-qPCR, we observed the following prevalence: mono-infection by ZIKV of 19.23% (95% CI: 14.29–34.82) patients, mono-infection by CHIKV of 3.84% (95% CI: 2.01–5.44) and co-infection with ZIKV and CHIKV of 1.09% (95% CI: 0.89–4.56). Conclusion The serologic and molecular tests performed in this study were effective in analyzing the epidemiological profile of DENV, CHIKV and ZIKV in patients with suspected infection by these arboviruses in the city of Juazeiro do Norte, Ceará/Brazil.
Collapse
Affiliation(s)
- Magaly Lima Mota
- Faculty of Medical of the ABC, Santo André, SP, 09060-870, Brazil.,Centro Universitário Dr. Leão Sampaio, Juazeiro do Norte, CE, 63040-405, Brazil
| | | | | | - James Hunter
- Retrovirology Laboratory, Federal University of São Paulo, São Paulo, SP, 04039-032, Brazil
| | | | | | | | - Ester Cerdeira Sabino
- Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Anete Grumach
- Faculty of Medical of the ABC, Santo André, SP, 09060-870, Brazil
| | - Ricardo Sobhie Diaz
- Retrovirology Laboratory, Federal University of São Paulo, São Paulo, SP, 04039-032, Brazil
| | | | - Shirley Vasconcelos Komninakis
- Faculty of Medical of the ABC, Santo André, SP, 09060-870, Brazil. .,Retrovirology Laboratory, Federal University of São Paulo, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
14
|
Galipeau Y, Greig M, Liu G, Driedger M, Langlois MA. Humoral Responses and Serological Assays in SARS-CoV-2 Infections. Front Immunol 2020; 11:610688. [PMID: 33391281 PMCID: PMC7775512 DOI: 10.3389/fimmu.2020.610688] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
In December 2019, the novel betacoronavirus Severe Acute Respiratory Disease Coronavirus 2 (SARS-CoV-2) was first detected in Wuhan, China. SARS-CoV-2 has since become a pandemic virus resulting in hundreds of thousands of deaths and deep socioeconomic implications worldwide. In recent months, efforts have been directed towards detecting, tracking, and better understanding human humoral responses to SARS-CoV-2 infection. It has become critical to develop robust and reliable serological assays to characterize the abundance, neutralization efficiency, and duration of antibodies in virus-exposed individuals. Here we review the latest knowledge on humoral immune responses to SARS-CoV-2 infection, along with the benefits and limitations of currently available commercial and laboratory-based serological assays. We also highlight important serological considerations, such as antibody expression levels, stability and neutralization dynamics, as well as cross-reactivity and possible immunological back-boosting by seasonal coronaviruses. The ability to accurately detect, measure and characterize the various antibodies specific to SARS-CoV-2 is necessary for vaccine development, manage risk and exposure for healthcare and at-risk workers, and for monitoring reinfections with genetic variants and new strains of the virus. Having a thorough understanding of the benefits and cautions of standardized serological testing at a community level remains critically important in the design and implementation of future vaccination campaigns, epidemiological models of immunity, and public health measures that rely heavily on up-to-date knowledge of transmission dynamics.
Collapse
Affiliation(s)
- Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Matthew Greig
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - George Liu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | | | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- uOttawa Center for Infection, Immunity and Inflammation (CI3), Ottawa, ON, Canada
| |
Collapse
|
15
|
Heiss K, Heidepriem J, Fischer N, Weber LK, Dahlke C, Jaenisch T, Loeffler FF. Rapid Response to Pandemic Threats: Immunogenic Epitope Detection of Pandemic Pathogens for Diagnostics and Vaccine Development Using Peptide Microarrays. J Proteome Res 2020; 19:4339-4354. [PMID: 32892628 PMCID: PMC7640972 DOI: 10.1021/acs.jproteome.0c00484] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Emergence and re-emergence of pathogens bearing the risk of becoming a pandemic threat are on the rise. Increased travel and trade, growing population density, changes in urbanization, and climate have a critical impact on infectious disease spread. Currently, the world is confronted with the emergence of a novel coronavirus SARS-CoV-2, responsible for yet more than 800 000 deaths globally. Outbreaks caused by viruses, such as SARS-CoV-2, HIV, Ebola, influenza, and Zika, have increased over the past decade, underlining the need for a rapid development of diagnostics and vaccines. Hence, the rational identification of biomarkers for diagnostic measures on the one hand, and antigenic targets for vaccine development on the other, are of utmost importance. Peptide microarrays can display large numbers of putative target proteins translated into overlapping linear (and cyclic) peptides for a multiplexed, high-throughput antibody analysis. This enabled for example the identification of discriminant/diagnostic epitopes in Zika or influenza and mapping epitope evolution in natural infections versus vaccinations. In this review, we highlight synthesis platforms that facilitate fast and flexible generation of high-density peptide microarrays. We further outline the multifaceted applications of these peptide array platforms for the development of serological tests and vaccines to quickly encounter pandemic threats.
Collapse
Affiliation(s)
- Kirsten Heiss
- PEPperPRINT
GmbH, Rischerstrasse
12, 69123 Heidelberg, Germany
| | - Jasmin Heidepriem
- Max
Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Nico Fischer
- Section
Clinical Tropical Medicine, Department of Infectious Diseases, Heidelberg University Hospital, INF 324, 69120 Heidelberg, Germany
| | - Laura K. Weber
- PEPperPRINT
GmbH, Rischerstrasse
12, 69123 Heidelberg, Germany
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christine Dahlke
- Division
of Infectious Diseases, First Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department
of Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German
Center for Infection Research, Partner Site
Hamburg-Lübeck-Borstel-Riems, 38124 Braunschweig, Germany
| | - Thomas Jaenisch
- Heidelberg
Institute of Global Health (HIGH), Heidelberg
University Hospital, Im Neuenheimer Feld 130, 69120 Heidelberg, Germany
- Center
for Global Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado 80045, United States
- Department
of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colorado 80045, United States
| | - Felix F. Loeffler
- Max
Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
16
|
Meyer B, Torriani G, Yerly S, Mazza L, Calame A, Arm-Vernez I, Zimmer G, Agoritsas T, Stirnemann J, Spechbach H, Guessous I, Stringhini S, Pugin J, Roux-Lombard P, Fontao L, Siegrist CA, Eckerle I, Vuilleumier N, Kaiser L. Validation of a commercially available SARS-CoV-2 serological immunoassay. Clin Microbiol Infect 2020; 26:1386-1394. [PMID: 32603801 PMCID: PMC7320699 DOI: 10.1016/j.cmi.2020.06.024] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVES To validate the diagnostic accuracy of a Euroimmun SARS-CoV-2 IgG and IgA immunoassay for COVID-19. METHODS In this unmatched (1:2) case-control validation study, we used sera of 181 laboratory-confirmed SARS-CoV-2 cases and 326 controls collected before SARS-CoV-2 emergence. Diagnostic accuracy of the immunoassay was assessed against a whole spike protein-based recombinant immunofluorescence assay (rIFA) by receiver operating characteristic (ROC) analyses. Discrepant cases between ELISA and rIFA were further tested by pseudo-neutralization assay. RESULTS COVID-19 patients were more likely to be male and older than controls, and 50.3% were hospitalized. ROC curve analyses indicated that IgG and IgA had high diagnostic accuracies with AUCs of 0.990 (95% Confidence Interval [95%CI]: 0.983-0.996) and 0.978 (95%CI: 0.967-0.989), respectively. IgG assays outperformed IgA assays (p=0.01). Taking an assessed 15% inter-assay imprecision into account, an optimized IgG ratio cut-off > 2.5 displayed a 100% specificity (95%CI: 99-100) and a 100% positive predictive value (95%CI: 96-100). A 0.8 cut-off displayed a 94% sensitivity (95%CI: 88-97) and a 97% negative predictive value (95%CI: 95-99). Substituting the upper threshold for the manufacturer's, improved assay performance, leaving 8.9% of IgG ratios indeterminate between 0.8-2.5. CONCLUSIONS The Euroimmun assay displays a nearly optimal diagnostic accuracy using IgG against SARS-CoV-2 in patient samples, with no obvious gains from IgA serology. The optimized cut-offs are fit for rule-in and rule-out purposes, allowing determination of whether individuals in our study population have been exposed to SARS-CoV-2 or not. IgG serology should however not be considered as a surrogate of protection at this stage.
Collapse
Affiliation(s)
- B Meyer
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - G Torriani
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - S Yerly
- Laboratory of Virology, Geneva University Hospitals, Geneva, Switzerland
| | - L Mazza
- Laboratory of Virology, Geneva University Hospitals, Geneva, Switzerland
| | - A Calame
- Division of Infectious Disease, Geneva University Hospitals, Geneva, Switzerland
| | - I Arm-Vernez
- Laboratory of Virology, Geneva University Hospitals, Geneva, Switzerland
| | - G Zimmer
- Institute of Virology and Immunology (IVI), Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - T Agoritsas
- Division of General Internal Medicine, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland; Department of Health Research Methods, Evidence, and Impact, Hamilton, Ontario, Canada
| | - J Stirnemann
- Division of General Internal Medicine, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - H Spechbach
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - I Guessous
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - S Stringhini
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland; Unit of Population Epidemiology, Division of Primary Care, Geneva University Hospitals, Geneva, Switzerland
| | - J Pugin
- Division of Intensive Care, Geneva University Hospitals, Geneva, Switzerland
| | - P Roux-Lombard
- Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - L Fontao
- Division of Dermatology and of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - C-A Siegrist
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - I Eckerle
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Division of Infectious Disease, Geneva University Hospitals, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - N Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals and Geneva University, Geneva, Switzerland; Division of Laboratory Medicine, Department of Medicine, Faculty of Medicine, Geneva, Switzerland
| | - L Kaiser
- Laboratory of Virology, Geneva University Hospitals, Geneva, Switzerland; Division of Infectious Disease, Geneva University Hospitals, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
17
|
Rao V, Kannan S, Kumar J, Arakeri G, Subash A, Batra HV, Gulia A. COVID-19: An insight into the developments in diagnostics and therapeutics in India. ACTA ACUST UNITED AC 2020. [PMCID: PMC7485634 DOI: 10.25259/ijms_152_2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The unexpected pandemic set off by the novel coronavirus (SARS-CoV2) has spread to more than 210 countries across the globe, including India. In the current pandemic situation, various steps have been taken by the Indian government to prevent and control the spread of the SARS-CoV2 infection. To date, there are no proven vaccines or effective therapeutic interventions against the virus. Current clinical management includes infection prevention and control, symptom-specific relief and supportive care. Physicians and scientists across the country have been tirelessly working on developing effective diagnostic and therapeutic strategies and to combat and control this infection. As the demand for diagnostics and therapeutics continues to rise in India and around the globe, it is essential to rapidly develop various algorithms to successfully identify and contain the virus. This review discusses the updates on the recent developments in COVID-19 diagnostics and therapeutics in India.
Collapse
Affiliation(s)
- Vishal Rao
- Department of Head and Neck Surgical Oncology, HCG Cancer Hospital, Bengaluru, Karnataka, India,
| | - Swetha Kannan
- Department of Head and Neck Surgical Oncology, HCG Cancer Hospital, Bengaluru, Karnataka, India,
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK,
| | - Jitendra Kumar
- Bangalore Bio-Innovation Centre, Helix Biotech Park, Electronics City Phase 1, Electronic City, Bengaluru, Karnataka, India,
| | - Gururaj Arakeri
- Department of Oral and Maxillofacial Surgery, Navodaya Dental College, Raichur, Karnataka, India,
| | - Anand Subash
- Department of Head and Neck Surgical Oncology, HCG Cancer Hospital, Bengaluru, Karnataka, India,
| | - H. V. Batra
- Bommasandra Industrial Estate, Shankaranaraya Life Sciences, Bengaluru, Karnataka, India,
| | - Ashish Gulia
- Bone and Soft Tissue, Tata Memorial Hospital, Mumbai, Maharashtra, India,
| |
Collapse
|
18
|
Martins-Luna J, Del Valle-Mendoza J, Silva-Caso W, Sandoval I, Del Valle LJ, Palomares-Reyes C, Carrillo-Ng H, Peña-Tuesta I, Aguilar-Luis MA. Oropouche infection a neglected arbovirus in patients with acute febrile illness from the Peruvian coast. BMC Res Notes 2020; 13:67. [PMID: 32041646 PMCID: PMC7011230 DOI: 10.1186/s13104-020-4937-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/03/2020] [Indexed: 02/04/2023] Open
Abstract
Objective To evaluate the frequency of infection caused by the Oropouche virus (OROV) in 496 patients with acute febrile disease (AFI), whose samples were obtained for the analysis of endemic arboviruses in a previous investigation carried out in 2016. Results OROV was detected in 26.4% (131/496) of serum samples from patients with AFI. Co-infections with Dengue virus (7.3%), Zika virus (1.8%) and Chikungunya (0.2%) were observed. The most common clinical symptoms reported among the patients with OROV infections were headache 85.5% (112/131), myalgia 80.9% (106/131), arthralgia 72.5% (95/131) and loss of appetite 67.9% (89/131). Headache and myalgia were predominant in all age groups. Both OROV infections and co-infections were more frequent in May, June and July corresponding to the dry season of the region.
Collapse
Affiliation(s)
- Johanna Martins-Luna
- Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima, Peru
| | - Juana Del Valle-Mendoza
- Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima, Peru. .,School of Medicine, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru. .,Laboratorio de Biología Molecular, Instituto de Investigación Nutricional, Lima, Peru.
| | - Wilmer Silva-Caso
- Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima, Peru.,School of Medicine, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Biología Molecular, Instituto de Investigación Nutricional, Lima, Peru.,Comité del Médico Joven-Consejo Nacional, Colegio Médico del Perú, Lima, Peru
| | - Isabel Sandoval
- Red de Salud de Morropón Chulucanas, Dirección Regional de Salud de Piura (DIRESA-Piura), Piura, Peru
| | - Luis J Del Valle
- Barcelona Research Center for Multiscale Science and Engineering, Departament d'Enginyeria Química, EEBE, Barcelona Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Carlos Palomares-Reyes
- Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima, Peru.,School of Medicine, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Hugo Carrillo-Ng
- Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima, Peru.,Laboratorio de Biología Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Isaac Peña-Tuesta
- Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima, Peru
| | - Miguel Angel Aguilar-Luis
- Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima, Peru. .,School of Medicine, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru. .,Laboratorio de Biología Molecular, Instituto de Investigación Nutricional, Lima, Peru.
| |
Collapse
|
19
|
Chelene IR, Ali S, Mula FI, Muianga AF, Monteiro VO, Oludele J, Chongo IS, José A, Amade NA, António VS, Gudo ES. Retrospective investigation of IgM antibodies against Zika virus in serum from febrile patients in Mozambique, 2009–2015. BMC Res Notes 2019; 12:469. [PMID: 31366379 PMCID: PMC6670129 DOI: 10.1186/s13104-019-4511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/23/2019] [Indexed: 11/10/2022] Open
Abstract
Objective Zika virus (ZIKV) has emerged as an important health problem worldwide. The aim of this study was to investigate the occurrence, geographical distribution and trend of immunoglobulin M (IgM) antibodies against ZIKV between 2009 and 2015 in Mozambique. Results The median age of participants was 3 years [interquartile range (IQR): 1.0–6.0 years)] and 56.5% (480/850) of them were male. Of the 850 samples, 42 (4.9%) were positive for IgM antibodies against ZIKV. Positive samples were found in 9 provinces of the country. Frequency of IgM antibodies against ZIKV was slightly higher in patients aged 5–9 years old, and in the north region of the country.
Collapse
|
20
|
Du T, Zhu G, Wu X, Fang J, Zhou EM. Biotinylated Single-Domain Antibody-Based Blocking ELISA for Detection of Antibodies Against Swine Influenza Virus. Int J Nanomedicine 2019; 14:9337-9349. [PMID: 31819435 PMCID: PMC6890519 DOI: 10.2147/ijn.s218458] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Background Enzyme-linked immunosorbent assay (ELISA) is a common method for diagnosing swine influenza. However, the production of classical antibodies is both costly and time-consuming. As a promising alternative diagnostic tool, single-domain antibodies (sdAbs) offer the advantages of simpler and faster generation, good stability and solubility, and high affinity and specificity. Methods Phage display technology was used to isolate sdAbs against the SIV-NP protein from a camel VHH library. The sdAb5 was fused to the biotin acceptor peptide (BAP) and a His-Tag for its expression as monomeric and site-specific biotinylation in E.coli to develop an sdAb-based blocking ELISA (sdAb-ELISA). In the sdAb-ELISA, the anti-SIV antibodies from swine samples were used to block the binding between the biotinylated sdAb5 and SIV-NP protein coated on the ELISA plate. The specificity, sensitivity, and reproducibility of sdAb-ELISA were determined. In addition, consistency among sdAb-ELISA, commercial ELISA kit, and Western blot was evaluated. Results Six SIV-NP-specific sdAbs were isolated, among which sdAb5 was identified as a dominant sdAb with higher reactivity. The cut-off value of biotinylated sdAb5-based bELISA was determined to be 29.8%. Compared with the positive reference serum against five different types of swine viruses, the developed sdAb-ELISA showed 100% specificity. The detection limit of sdAb-ELISA was 1:160 in an anti-SIV positive reference serum, which is lower than that of the commercial ELISA kit (1:20). In 78 diluted anti-SIV positive serum (1:80), 21 and 42 samples were confirmed as positive by the commercial ELISA kit and sdAb-ELISA, respectively. The coefficients of variation of intra- and inter-assay were 1.79–4.57% and 5.54–9.98%, respectively. The sdAb-ELISA and commercial ELISA kit showed a consistency of 94.17% in clinical swine serum samples. Furthermore, the coincidence rate was 96.67% between the results detected by sdAb-ELISA and Western blot. Conclusion A specific, sensitive, and reproducible sdAb-ELISA was successfully developed, which offers a new, promising method to detect anti-SIV antibodies in swine serum.
Collapse
Affiliation(s)
- Taofeng Du
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling 712100, Shaanxi, People's Republic of China
| | - Guang Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling 712100, Shaanxi, People's Republic of China
| | - Xiaoping Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling 712100, Shaanxi, People's Republic of China
| | - Junyang Fang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling 712100, Shaanxi, People's Republic of China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
21
|
Roberts CC. Emerging infectious disease laboratory and diagnostic preparedness to accelerate vaccine development. Hum Vaccin Immunother 2019; 15:2258-2263. [PMID: 31268394 PMCID: PMC6816404 DOI: 10.1080/21645515.2019.1634992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rapid vaccine development in response to an outbreak of a new emerging infectious disease (EID) is a goal targeted by public health agencies worldwide. This goal becomes more complicated when there are no standardized sets of viral and immunological assays, no accepted and well-characterized samples, standards or reagents, and no approved diagnostic tests for the EID pathogen. The diagnosis of infections is of critical importance to public health, but also in vaccine development in order to track incident infections during clinical trials, to differentiate natural infection responses from those that are vaccine-related and, if called for by study design, to exclude subjects with prior exposure from vaccine efficacy trials. Here we review emerging infectious disease biological standards development, vaccine clinical assay development and trial execution with the recent experiences of MERS-CoV and Zika virus as examples. There is great need to establish, in advance, the standardized reagents, sample panels, controls, and assays to support the rapid advancement of vaccine development efforts in response to EID outbreaks.
Collapse
Affiliation(s)
- Christine C. Roberts
- Clinical Laboratory Development, GeneOne Life Science, Inc., Blue Bell, PA, USA,Contact Christine C. Roberts Clinical Laboratory Development, GeneOne Life Science, Inc., 1040 DeKalb Pike, Suite 200, Blue Bell, PA 19422, USA
| |
Collapse
|