1
|
Naseem S, Imam A, Rayadurga AS, Ray A, Suman SK. Trends in fisheries waste utilization: a valuable resource of nutrients and valorized products for the food industry. Crit Rev Food Sci Nutr 2023; 64:9240-9260. [PMID: 37183680 DOI: 10.1080/10408398.2023.2211167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The rise in fisheries production worldwide has caused a remarkable increase in associated anthropogenic waste. This poses significant concerns due to adverse environmental impacts and economic losses. Owing to its renewability, high abundance, and potential as a rich source of many nutrients and bioactive compounds, strategies have been developed to convert fish waste into different value-added products. Conventional and improved methods have been used for the extraction of biomolecules from fish waste. The extracted fish waste-derived value-added products such as enzymes, peptides, fish oil, etc. have been used to fortify different food products. This review aims to provide an overview of the nature and composition of fish waste, strategies for extracting biomolecules from fish waste, and the potential application of fish waste as a source of calcium and other nutrients in food fortification and animal feed has been discussed. In context to fishery waste mitigation, valorization, and circular bioeconomy approach are gaining momentum, aiming to eliminate waste while producing high-quality value-added food and feed products from fishery discards.
Collapse
Affiliation(s)
- Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, India
| | - Arfin Imam
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
| | | | - Anjan Ray
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
| |
Collapse
|
2
|
Yamauchi A, Miura A, Kondo H, Arai T, Sasaki YC, Tsuda S. Subzero Nonfreezing Hypothermia with Insect Antifreeze Protein Dramatically Improves Survival Rate of Mammalian Cells. Int J Mol Sci 2021; 22:ijms222312680. [PMID: 34884483 PMCID: PMC8657916 DOI: 10.3390/ijms222312680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Cells for therapeutic use are often preserved at +4 °C, and the storage period is generally limited to 2–3 days. Here, we report that the survival rate (%) of mammalian cells is improved to 10–20 days when they are preserved with a subzero supercooled solution containing the antifreeze protein (AFP), for which an ability to stabilize both supercooled water and cell membrane integrity has been postulated. We chose adherent rat insulinoma (RIN-5F) cells as the preservation target, which were immersed into −5 °C-, −2 °C-, or +4 °C-chilled “unfrozen” solution of Euro-Collins or University of Washington (UW) containing the AFP sample obtained from insect or fish. Our results show that the survival rate of the cells preserved with the solution containing insect AFP was always higher than that of the fish AFP solution. A combination of the −5 °C-supercooling and insect AFP gave the best preservation result, namely, UW solution containing insect AFP kept 53% of the cells alive, even after 20 days of preservation at −5 °C. The insect AFP locates highly organized ice-like waters on its molecular surface. Such waters may bind to semiclathrate waters constructing both embryonic ice crystals and a membrane–water interface in the supercooled solution, thereby protecting the cells from damage due to chilling.
Collapse
Affiliation(s)
- Akari Yamauchi
- Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810, Japan; (A.Y.); (H.K.)
| | - Ai Miura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan;
| | - Hidemasa Kondo
- Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810, Japan; (A.Y.); (H.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan;
| | - Tatsuya Arai
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan; (T.A.); (Y.C.S.)
| | - Yuji C. Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan; (T.A.); (Y.C.S.)
- OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8563, Japan
| | - Sakae Tsuda
- Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810, Japan; (A.Y.); (H.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan;
- OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8563, Japan
- Correspondence: ; Tel.: +81-11-857-8912
| |
Collapse
|
3
|
Baskaran A, Kaari M, Venugopal G, Manikkam R, Joseph J, Bhaskar PV. Anti freeze proteins (Afp): Properties, sources and applications - A review. Int J Biol Macromol 2021; 189:292-305. [PMID: 34419548 DOI: 10.1016/j.ijbiomac.2021.08.105] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
Extreme cold marine and freshwater temperatures (below 4 °C) induce massive deterioration to the cell membranes of organisms resulting in the formation of ice crystals, consequently causing organelle damage or cell death. One of the adaptive mechanisms organisms have evolved to thrive in cold environments is the production of antifreeze proteins with the functional capabilities to withstand frigid temperatures. Antifreeze proteins are extensively identified in different cold-tolerant species and they facilitate the persistence of cold-adapted organisms by decreasing the freezing point of their body fluids. Various structurally diverse types of antifreeze proteins detected possess the ability to modify ice crystal growth by thermal hysteresis and ice recrystallization inhibition. The unique properties of antifreeze proteins have made them a promising resource in industry, biomedicine, food storage and cryobiology. This review collates the findings of the various studies carried out in the past and the recent developments observed in the properties, functional mechanisms, classification, distinct sources and the ever-increasing applications of antifreeze proteins. This review also summarizes the possibilities of the way forward to identify new avenues of research on anti-freeze proteins.
Collapse
Affiliation(s)
- Abirami Baskaran
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Manigundan Kaari
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Gopikrishnan Venugopal
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Radhakrishnan Manikkam
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India.
| | - Jerrine Joseph
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Parli V Bhaskar
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama 403804, Goa, India
| |
Collapse
|
4
|
Correia LFL, Alves BRC, Batista RITP, Mermillod P, Souza-Fabjan JMG. Antifreeze proteins for low-temperature preservation in reproductive medicine: A systematic review over the last three decades. Theriogenology 2021; 176:94-103. [PMID: 34600433 DOI: 10.1016/j.theriogenology.2021.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022]
Abstract
Antifreeze proteins (AFPs) are synthesized by diverse non-mammalian species, allowing them to survive in severely cold environments. Since the 1990s, the scientific literature reports their use for low-temperature preservation of germplasm. The aim of this systematic review was to compile available scientific evidence regarding the use of AFP for low-temperature preservation of several reproductive specimens. Internet databases were consulted using the terms: "antifreeze protein" OR "AFP" OR "antifreeze glycoprotein" OR "AFGP" OR "ice-binding protein" OR "IBP" OR "thermal hysteresis protein" AND "cryopreservation". From 56 articles, 87 experiments testing AFPs in low-temperature preservation of gametes, embryos or reproductive tissues/cells were fully analyzed and outcomes were annotated. A positive outcome was considered as a statistically significant improvement on any parameter evaluated after low-temperature preservation with AFP, whereas a negative outcome included worsening of any evaluated parameter, in comparison to untreated groups or groups treated with a lower concentration of AFP. The findings indicated that research on the use of AFP as a cryoprotectant for reproductive specimens has increased markedly over the past decade. Some experiments reported both positive and negative results, which depended, on AFP concentration in the preservation media. Variation in the outcomes associated with species was also observed. Among the 66 experiments conducted in mammals, 77.3% resulted in positive, and 28.8% in negative outcomes after the use of AFP. In fishes, positive and negative outcomes were observed in 71.4% and 33.3% of 21 experiments, respectively. Most positive outcomes included preserving cell post-warming survival. The beneficial effect of AFP supports its use in cryobiological approaches used in human and veterinary medicines and animal protein industry. Moreover, combination of different AFP types, or AFP with antioxidants, or even the use of AFP-biosimilar, comprise some promising approaches to be further explored in cryopreservation.
Collapse
Affiliation(s)
- Lucas F L Correia
- Departamento de Patologia e Clínica Veterinária, Faculdade de Veterinária, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Bruna R C Alves
- Departamento de Patologia e Clínica Veterinária, Faculdade de Veterinária, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Ribrio I T P Batista
- Departamento de Patologia e Clínica Veterinária, Faculdade de Veterinária, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Pascal Mermillod
- Physiologie de la Reproduction et des Comportements, UMR7247, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Nouzilly, Indre-et-Loire, France
| | - Joanna M G Souza-Fabjan
- Departamento de Patologia e Clínica Veterinária, Faculdade de Veterinária, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Arai T, Yamauchi A, Miura A, Kondo H, Nishimiya Y, Sasaki YC, Tsuda S. Discovery of Hyperactive Antifreeze Protein from Phylogenetically Distant Beetles Questions Its Evolutionary Origin. Int J Mol Sci 2021; 22:3637. [PMID: 33807342 PMCID: PMC8038014 DOI: 10.3390/ijms22073637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022] Open
Abstract
Beetle hyperactive antifreeze protein (AFP) has a unique ability to maintain a supercooling state of its body fluids, however, less is known about its origination. Here, we found that a popular stag beetle Dorcus hopei binodulosus (Dhb) synthesizes at least 6 isoforms of hyperactive AFP (DhbAFP). Cold-acclimated Dhb larvae tolerated -5 °C chilled storage for 24 h and fully recovered after warming, suggesting that DhbAFP facilitates overwintering of this beetle. A DhbAFP isoform (~10 kDa) appeared to consist of 6-8 tandem repeats of a 12-residue consensus sequence (TCTxSxNCxxAx), which exhibited 3 °C of high freezing point depression and the ability of binding to an entire surface of a single ice crystal. Significantly, these properties as well as DNA sequences including the untranslated region, signal peptide region, and an AFP-encoding region of Dhb are highly similar to those identified for a known hyperactive AFP (TmAFP) from the beetle Tenebrio molitor (Tm). Progenitor of Dhb and Tm was branched off approximately 300 million years ago, so no known evolution mechanism hardly explains the retainment of the DNA sequence for such a lo-ng divergence period. Existence of unrevealed gene transfer mechanism will be hypothesized between these two phylogenetically distant beetles to acquire this type of hyperactive AFP.
Collapse
Affiliation(s)
- Tatsuya Arai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan;
| | - Akari Yamauchi
- Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810, Japan;
| | - Ai Miura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
| | - Hidemasa Kondo
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
- Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810, Japan;
| | - Yoshiyuki Nishimiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
| | - Yuji C. Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan;
- OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8563, Japan
| | - Sakae Tsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
- Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810, Japan;
- OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8563, Japan
| |
Collapse
|
6
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Antifreeze Proteins and Their Practical Utilization in Industry, Medicine, and Agriculture. Biomolecules 2020; 10:biom10121649. [PMID: 33317024 PMCID: PMC7764015 DOI: 10.3390/biom10121649] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Antifreeze proteins (AFPs) are specific proteins, glycopeptides, and peptides made by different organisms to allow cells to survive in sub-zero conditions. AFPs function by reducing the water’s freezing point and avoiding ice crystals’ growth in the frozen stage. Their capability in modifying ice growth leads to the stabilization of ice crystals within a given temperature range and the inhibition of ice recrystallization that decreases the drip loss during thawing. This review presents the potential applications of AFPs from different sources and types. AFPs can be found in diverse sources such as fish, yeast, plants, bacteria, and insects. Various sources reveal different α-helices and β-sheets structures. Recently, analysis of AFPs has been conducted through bioinformatics tools to analyze their functions within proper time. AFPs can be used widely in various aspects of application and have significant industrial functions, encompassing the enhancement of foods’ freezing and liquefying properties, protection of frost plants, enhancement of ice cream’s texture, cryosurgery, and cryopreservation of cells and tissues. In conclusion, these applications and physical properties of AFPs can be further explored to meet other industrial players. Designing the peptide-based AFP can also be done to subsequently improve its function.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (A.E.); (T.C.L.)
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (A.E.); (T.C.L.)
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
- Enzyme Technology Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (A.E.); (T.C.L.)
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
- Enzyme Technology Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +60-39769-6710; Fax: +60-39769-7590
| |
Collapse
|
7
|
Sturtivant A, Callanan A. The use of antifreeze proteins to modify pore structure in directionally frozen alginate sponges for cartilage tissue engineering. Biomed Phys Eng Express 2020; 6:055016. [PMID: 33444247 DOI: 10.1088/2057-1976/aba7aa] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
It is thought that osteoarthritis is one of the world's leading causes of disability, with over 8.75 million people in the UK alone seeking medical treatment in 2013. Although a number of treatments are currently in use, a new wave of tissue engineered structures are being investigated as potential solutions for early intervention. One of the key challenges seen in cartilage tissue engineering is producing constructs that can support the formation of articular cartilage, rather than mechanically inferior fibrocartilage. Some research has suggested that mimicking structural properties of the natural cartilage can be used to enhance this response. Herein directional freezing was used to fabricate scaffolds with directionally aligned pores mimicking the mid-region of cartilage, anti-freeze proteins were used to modify the porous structure, which in turn effected the mechanical properties. Pore areas at the tops of the scaffolds were 180.46 ± 44.17 μm2 and 65.66 ± 36.20 μm2 for the AFP free and the AFP scaffolds respectively, and for the bases of the scaffolds were 91.22 ± 19.05 μm2 and 69.41 ± 21.94 μm2 respectively. Scaffolds were seeded with primary bovine chondrocytes, with viability maintained over the course of the study, and regulation of key genes was observed.
Collapse
Affiliation(s)
- Alexander Sturtivant
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Faraday Building, King's Buildings, EH9 3JL, United Kingdom
| | | |
Collapse
|
8
|
Tsuda S, Yamauchi A, Khan NMMU, Arai T, Mahatabuddin S, Miura A, Kondo H. Fish-Derived Antifreeze Proteins and Antifreeze Glycoprotein Exhibit a Different Ice-Binding Property with Increasing Concentration. Biomolecules 2020; 10:biom10030423. [PMID: 32182859 PMCID: PMC7175324 DOI: 10.3390/biom10030423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 01/01/2023] Open
Abstract
The concentration of a protein is highly related to its biochemical properties, and is a key determinant for its biotechnological applications. Antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs) are structurally diverse macromolecules that are capable of binding to embryonic ice crystals below 0 °C, making them useful as protectants of ice-block formation. In this study, we examined the maximal solubility of native AFP I–III and AFGP with distilled water, and evaluated concentration dependence of their ice-binding property. Approximately 400 mg/mL (AFP I), 200 mg/mL (AFP II), 100 mg/mL (AFP III), and >1800 mg/mL (AFGP) of the maximal solubility were estimated, and among them AFGP’s solubility is much higher compared with that of ordinary proteins, such as serum albumin (~500 mg/mL). The samples also exhibited unexpectedly high thermal hysteresis values (2–3 °C) at 50–200 mg/mL. Furthermore, the analysis of fluorescence-based ice plane affinity showed that AFP II binds to multiple ice planes in a concentration-dependent manner, for which an oligomerization mechanism was hypothesized. The difference of concentration dependence between AFPs and AFGPs may provide a new clue to help us understand the ice-binding function of these proteins.
Collapse
Affiliation(s)
- Sakae Tsuda
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan; (A.Y.); (N.M.-M.U.K.); (T.A.); (H.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan;
- OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8563, Japan
- Correspondence: ; Tel.: +81-11-857-8912
| | - Akari Yamauchi
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan; (A.Y.); (N.M.-M.U.K.); (T.A.); (H.K.)
| | - N. M.-Mofiz Uddin Khan
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan; (A.Y.); (N.M.-M.U.K.); (T.A.); (H.K.)
| | - Tatsuya Arai
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan; (A.Y.); (N.M.-M.U.K.); (T.A.); (H.K.)
| | - Sheikh Mahatabuddin
- Department of Nutrition and Food Engineering, Daffodil International University, Dhanmondi, Dhaka 1207, Bangladesh;
| | - Ai Miura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan;
| | - Hidemasa Kondo
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan; (A.Y.); (N.M.-M.U.K.); (T.A.); (H.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan;
| |
Collapse
|
9
|
Chasnitsky M, Braslavsky I. Ice-binding proteins and the applicability and limitations of the kinetic pinning model. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180391. [PMID: 30982449 PMCID: PMC6501913 DOI: 10.1098/rsta.2018.0391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Ice-binding proteins (IBPs) are unique molecules that bind to and are active on the interface between two phases of water: ice and liquid water. This property allows them to affect ice growth in multiple ways: shaping ice crystals, suppressing the freezing point, inhibiting recrystallization and promoting nucleation. Advances in the protein's production technologies make these proteins promising agents for medical applications among others. Here, we focus on a special class of IBPs that suppress freezing by causing thermal hysteresis (TH): antifreeze proteins (AFPs). The kinetic pinning model describes the dynamics of a growing ice face with proteins binding to it, which eventually slow it down to a halt. We use the kinetic pinning model, with some adjustments made, to study the TH dependence on the solution's concentration of AFPs by fitting the model to published experimental data. We find this model describes the activity of (moderate) type III AFPs well, but is inadequate for the (hyperactive) Tenebrio molitor AFPs. We also find the engulfment resistance to be a key parameter, which depends on the protein's size. Finally, we explain intuitively how TH depends on the seeding time of the ice crystal in the protein solution. Using this insight, we explain the discrepancy in TH measurements between different assays. This article is part of the theme issue 'The physics and chemistry of ice: scaffolding across scales, from the viability of life to the formation of planets'.
Collapse
Affiliation(s)
| | - Ido Braslavsky
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, Institute of Biochemistry, Food Science, and Nutrition, and Harvey M. Kruger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
10
|
Calcium-Binding Generates the Semi-Clathrate Waters on a Type II Antifreeze Protein to Adsorb onto an Ice Crystal Surface. Biomolecules 2019; 9:biom9050162. [PMID: 31035615 PMCID: PMC6572318 DOI: 10.3390/biom9050162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/15/2023] Open
Abstract
Hydration is crucial for a function and a ligand recognition of a protein. The hydration shell constructed on an antifreeze protein (AFP) contains many organized waters, through which AFP is thought to bind to specific ice crystal planes. For a Ca2+-dependent species of AFP, however, it has not been clarified how 1 mol of Ca2+-binding is related with the hydration and the ice-binding ability. Here we determined the X-ray crystal structure of a Ca2+-dependent AFP (jsAFP) from Japanese smelt, Hypomesus nipponensis, in both Ca2+-bound and -free states. Their overall structures were closely similar (Root mean square deviation (RMSD) of Cα = 0.31 Å), while they exhibited a significant difference around their Ca2+-binding site. Firstly, the side-chains of four of the five Ca2+-binding residues (Q92, D94 E99, D113, and D114) were oriented to be suitable for ice binding only in the Ca2+-bound state. Second, a Ca2+-binding loop consisting of a segment D94–E99 becomes less flexible by the Ca2+-binding. Third, the Ca2+-binding induces a generation of ice-like clathrate waters around the Ca2+-binding site, which show a perfect position-match to the waters constructing the first prism plane of a single ice crystal. These results suggest that generation of ice-like clathrate waters induced by Ca2+-binding enables the ice-binding of this protein.
Collapse
|
11
|
Yamazaki A, Nishimiya Y, Tsuda S, Togashi K, Munehara H. Freeze Tolerance in Sculpins (Pisces; Cottoidea) Inhabiting North Pacific and Arctic Oceans: Antifreeze Activity and Gene Sequences of the Antifreeze Protein. Biomolecules 2019; 9:biom9040139. [PMID: 30959891 PMCID: PMC6523315 DOI: 10.3390/biom9040139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 11/16/2022] Open
Abstract
Many marine species inhabiting icy seawater produce antifreeze proteins (AFPs) to prevent their body fluids from freezing. The sculpin species of the superfamily Cottoidea are widely found from the Arctic to southern hemisphere, some of which are known to express AFP. Here we clarified DNA sequence encoding type I AFP for 3 species of 2 families (Cottidae and Agonidae) belonging to Cottoidea. We also examined antifreeze activity for 3 families and 32 species of Cottoidea (Cottidae, Agonidae, and Rhamphocottidae). These fishes were collected in 2013–2015 from the Arctic Ocean, Alaska, Japan. We could identify 8 distinct DNA sequences exhibiting a high similarity to those reported for Myoxocephalus species, suggesting that Cottidae and Agonidae share the same DNA sequence encoding type I AFP. Among the 3 families, Rhamphocottidae that experience a warm current did not show antifreeze activity. The species inhabiting the Arctic Ocean and Northern Japan that often covered with ice floe showed high activity, while those inhabiting Alaska, Southern Japan with a warm current showed low/no activity. These results suggest that Cottoidea acquires type I AFP gene before dividing into Cottidae and Agonidae, and have adapted to each location with optimal antifreeze activity level.
Collapse
Affiliation(s)
- Aya Yamazaki
- Nanae Fresh-Water Station, Field Science Center for Northern Biosphere, Hokkaido University, Nanae Town Kameda-gun 041-1105, Japan.
| | - Yoshiyuki Nishimiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan.
| | - Sakae Tsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan.
| | - Koji Togashi
- Graduate School of Environmental Sciences, Hokkaido University, Sapporo 060-0810, Japan.
| | - Hiroyuki Munehara
- Usujiri Fisheries Station, Field Science Center of Northern Biosphere, Hokkaido University, Hakodate 041-1613, Japan.
| |
Collapse
|