1
|
Pyla M, Kankipati S, Sumithra B, Mishra PK, Mishra B, Mandal SK, Panda J, Chopra H, Avula SK, Attia MS, Mohanta YK, Kamal MA. Bacterial Proteins and Peptides as Potential Anticancer Agents: A Novel Search for Protein-based Therapeutics. Curr Med Chem 2025; 32:1235-1263. [PMID: 38333973 DOI: 10.2174/0109298673253414231127162817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/21/2023] [Accepted: 10/19/2023] [Indexed: 02/10/2024]
Abstract
Tumor diseases remain among the world's primary causes of death despite substantial advances in cancer diagnosis and treatment. The adverse chemotherapy problems and sensitivity towards drugs for some cancer types are among the most promising challenges in modern treatment. Finding new anti-cancer agents and drugs is, therefore, essential. A significant class of biologically active substances and prospective medications against cancer is comprised of bacterial proteins and peptides. Among these bacterial peptides, some of them, such as anti-cancer antibiotics and many toxins like diphtheria are widely being used in the treatment of cancer. In contrast, the remaining bacterial peptides are either in clinical trials or under research in vitro studies. This study includes the most recent information on the characteristics and mechanism of action of the bacterial peptides that have anti-cancer activities, some of which are now being employed in cancer therapy while some are still undergoing research.
Collapse
Affiliation(s)
- Mahitha Pyla
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology (CBIT), Gardipe, Hyderabad - 500075, Telangana, India
| | - Sanjana Kankipati
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology (CBIT), Gardipe, Hyderabad - 500075, Telangana, India
| | - Bapatla Sumithra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology (CBIT), Gardipe, Hyderabad - 500075, Telangana, India
| | | | - Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology (CBIT), Gardipe, Hyderabad - 500075, Telangana, India
| | - Sanjeeb Kumar Mandal
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology (CBIT), Gardipe, Hyderabad - 500075, Telangana, India
| | - Jibanjyoti Panda
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Baridua, 793101, Ri-Bhoi, Meghalaya, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Mohamed Salah Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Yugal Kishore Mohanta
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Baridua, 793101, Ri-Bhoi, Meghalaya, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Novel Global Community Educational Foundation, Australia
| |
Collapse
|
2
|
Pessino G, Lonati L, Scotti C, Calandra S, Cazzalini O, Iaria O, Previtali A, Baiocco G, Perucca P, Tricarico A, Vetro M, Stivala LA, Ganini C, Cancelliere M, Zucchetti M, Guardamagna I, Maggi M. Differential effect of asparagine and glutamine removal on three adenocarcinoma cell lines. Heliyon 2024; 10:e35789. [PMID: 39170541 PMCID: PMC11337022 DOI: 10.1016/j.heliyon.2024.e35789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Asparagine and glutamine depletion operated by the drug Asparaginase (ASNase) has revolutionized therapy in pediatric patients affected by Acute Lymphoblastic Leukemia (ALL), bringing remissions to a remarkable 90 % of cases. However, the knowledge of the proproliferative role of asparagine in adult and solid tumors is still limited. We have here analyzed the effect of ASNase on three adenocarcinoma cell lines (A549, lung adenocarcinoma, MCF-7, breast cancer, and 786-O, kidney cancer). In contrast to MCF-7 cells, 786-O and A549 cells proved to be a relevant target for cell cycle perturbation by asparagine and glutamine shortage. Indeed, when the cell-cycle was analyzed by flow cytometry, A549 showed a canonical response to asparaginase, 786-O cells, instead, showed a reduction of the percentage of cells in the G1 phase and an increase of those in the S-phase. Despite an increased number of PCNA and RPA70 positive nuclear foci, BrdU and EdU incorporation was absent or strongly delayed in treated 786-O cells, thus indicating a readiness of replication forks unmatched by DNA synthesis. In 786-O asparagine synthetase was reduced following treatment and glutamine synthetase was totally absent. Interestingly, DNA synthesis could be recovered by adding Gln to the medium. MCF-7 cells showed no significant changes in the cell cycle phases, in DNA-bound PCNA and in total PCNA, but a significant increase in ASNS and GS mRNA and protein expression. The collected data suggest that the effect observed on 786-O cells following ASNase treatment could rely on mechanisms which differ from those well-known and described for leukemic blasts, consisting of a complete block in the G1/S transition in proliferating cells and on an increase on non-proliferative (G0) blasts.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Leonardo Lonati
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Silvia Calandra
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Rheumatology Unit, Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Ornella Cazzalini
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Ombretta Iaria
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Andrea Previtali
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Giorgio Baiocco
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Paola Perucca
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Anna Tricarico
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Martina Vetro
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Lucia Anna Stivala
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Carlo Ganini
- Division of Medical Oncology, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy
- Interdisciplinary Department of Medicine, A. Moro University of Bari, Bari, Italy
| | - Marta Cancelliere
- Laboratory of Cancer Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan, Italy
| | - Massimo Zucchetti
- Laboratory of Cancer Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan, Italy
| | - Isabella Guardamagna
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
3
|
Deng Y, Chen Q, Wan C, Sun Y, Huang F, Hu Y, Yang K. Microglia and macrophage metabolism: a regulator of cerebral gliomas. Cell Biosci 2024; 14:49. [PMID: 38632627 PMCID: PMC11022384 DOI: 10.1186/s13578-024-01231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
Reciprocal interactions between the tumor microenvironment (TME) and cancer cells play important roles in tumorigenesis and progression of glioma. Glioma-associated macrophages (GAMs), either of peripheral origin or representing brain-intrinsic microglia, are the majority population of infiltrating immune cells in glioma. GAMs, usually classified into M1 and M2 phenotypes, have remarkable plasticity and regulate tumor progression through different metabolic pathways. Recently, research efforts have increasingly focused on GAMs metabolism as potential targets for glioma therapy. This review aims to delineate the metabolic characteristics of GAMs within the TME and provide a summary of current therapeutic strategies targeting GAMs metabolism in glioma. The goal is to provide novel insights and therapeutic pathways for glioma by highlighting the significance of GAMs metabolism.
Collapse
Affiliation(s)
- Yue Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qinyan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Kavya D, Nadumane VK. Enhanced l-Methioninase production by Methylobacterium sp. JUBTK33 through RSM and its anticancer potential. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Bootwala A, An HH, Franklin MW, Manning BJ, Xu LY, Panchal S, Garlick JD, Baral R, Hudson ME, Grigoryan G, Murakami MA, Hopson K, Leventhal DS. Protein re-surfacing of E. coli L-Asparaginase to evade pre-existing anti-drug antibodies and hypersensitivity responses. Front Immunol 2022; 13:1016179. [PMID: 36569945 PMCID: PMC9767956 DOI: 10.3389/fimmu.2022.1016179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
The optimal use of many biotherapeutics is restricted by Anti-drug antibodies (ADAs) and hypersensitivity responses which can affect potency and ability to administer a treatment. Here we demonstrate that Re-surfacing can be utilized as a generalizable approach to engineer proteins with extensive surface residue modifications in order to avoid binding by pre-existing ADAs. This technique was applied to E. coli Asparaginase (ASN) to produce functional mutants with up to 58 substitutions resulting in direct modification of 35% of surface residues. Re-surfaced ASNs exhibited significantly reduced binding to murine, rabbit and human polyclonal ADAs, with a negative correlation observed between binding and mutational distance from the native protein. Reductions in ADA binding correlated with diminished hypersensitivity responses in an in vivo mouse model. By using computational design approaches to traverse extended distances in mutational space while maintaining function, protein Re-surfacing may provide a means to generate novel or second line therapies for life-saving drugs with limited therapeutic alternatives.
Collapse
Affiliation(s)
- Ali Bootwala
- Generate Biomedicines, Somerville, MA, United States
| | - Hyun Hwan An
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | | | | | - Lucy Y. Xu
- Generate Biomedicines, Somerville, MA, United States
| | | | | | - Reshica Baral
- Generate Biomedicines, Somerville, MA, United States
| | | | | | - Mark A. Murakami
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | | | | |
Collapse
|
6
|
Strzelczyk P, Zhang D, Wlodawer A, Lubkowski J. The E. coli L-asparaginase V27T mutant: structural and functional characterization and comparison with theoretical predictions. FEBS Lett 2022; 596:3060-3068. [PMID: 36310372 PMCID: PMC10673687 DOI: 10.1002/1873-3468.14526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 01/14/2023]
Abstract
Bacterial L-asparaginases have been used for over 40 years as anticancer drugs. Ardalan et al. (Medical Hypotheses 112, 7-17, 2018) proposed that the V27T mutant of Escherichia coli type II L-asparaginase, EcAII(V27T), should display altered biophysical and catalytic properties compared to the wild-type enzyme, EcAII(wt), rendering it more favourable as a pharmaceutical. They postulated that EcAII(V27T) would exhibit reduced glutaminolytic activity and be more stable compared to EcAII(wt). Their postulates, however, were purely theoretical. Here, we characterized experimentally selected properties of EcAII(V27T). We found asparaginolytic activity of this mutant unchanged, whereas its glutaminolytic activity was fourfold lower compared with EcAII(wt). We did not observe significant differences in stabilities of EcAII(wt) and EcAII(V27T). Crystal structures of the complexes with L-Asp and L-Glu showed considerable differences in binding modes of both substrates.
Collapse
Affiliation(s)
- Pawel Strzelczyk
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Di Zhang
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Alexander Wlodawer
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jacek Lubkowski
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
7
|
Metabolomics of Breast Cancer: A Review. Metabolites 2022; 12:metabo12070643. [PMID: 35888767 PMCID: PMC9325024 DOI: 10.3390/metabo12070643] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women worldwide. Major advances have been made towards breast cancer prevention and treatment. Unfortunately, the incidence of breast cancer is still increasing globally. Metabolomics is the field of science which studies all the metabolites in a cell, tissue, system, or organism. Metabolomics can provide information on dynamic changes occurring during cancer development and progression. The metabolites identified using cutting-edge metabolomics techniques will result in the identification of biomarkers for the early detection, diagnosis, and treatment of cancers. This review briefly introduces the metabolic changes in cancer with particular focus on breast cancer.
Collapse
|
8
|
Maggi M, Scotti C. Structural Aspects of E. coli Type II Asparaginase in Complex with Its Secondary Product L-Glutamate. Int J Mol Sci 2022; 23:ijms23115942. [PMID: 35682622 PMCID: PMC9180372 DOI: 10.3390/ijms23115942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial L-asparaginases are amidohydrolases (EC 3.5.1.1) capable of deaminating L-asparagine and, with reduced efficiency, L-glutamine. Interest in the study of L-asparaginases is driven by their use as biodrugs for the treatment of acute lymphoblastic leukemia. Here, we report for the first time the description of the molecular structure of type II asparaginase from Escherichia coli in complex with its secondary product, L-glutamate. To obtain high-quality crystals, we took advantage of the N24S variant, which has structural and functional features similar to the wild-type enzyme, but improved stability, and which yields more ordered crystals. Analysis of the structure of the N24S-L-glutamate complex (N24S-GLU) and comparison with its apo and L-aspartate-bound form confirmed that the enzyme-reduced catalytic efficiency in the presence of L-glutamine is due to L-glutamine misfitting into the enzyme-binding pocket, which causes a local change in the catalytic center geometry. Moreover, a tight interaction between the two protomers that form the enzyme active site limits the capability of L-glutamine to fit into (and to exit from) the binding pocket of E. coli L-asparaginase, explaining why the enzyme has lower glutaminolytic activity compared to other enzymes of the same family, in particular the Erwinia chrysanthemi one.
Collapse
|
9
|
Hajji N, Garcia-Revilla J, Soto MS, Perryman R, Symington J, Quarles CC, Healey DR, Guo Y, Orta-Vázquez ML, Mateos-Cordero S, Shah K, Bomalaski J, Anichini G, Tzakos AG, Crook T, O’Neill K, Scheck AC, Venero JL, Syed N. Arginine deprivation alters microglial polarity and synergizes with radiation to eradicate non-arginine-auxotrophic glioblastoma tumors. J Clin Invest 2022; 132:e142137. [PMID: 35113813 PMCID: PMC8920336 DOI: 10.1172/jci142137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
New approaches for the management of glioblastoma (GBM) are an urgent and unmet clinical need. Here, we illustrate that the efficacy of radiotherapy for GBM is strikingly potentiated by concomitant therapy with the arginine-depleting agent ADI-PEG20 in a non-arginine-auxotrophic cellular background (argininosuccinate synthetase 1 positive). Moreover, this combination led to durable and complete radiological and pathological response, with extended disease-free survival in an orthotopic immune-competent model of GBM, with no significant toxicity. ADI-PEG20 not only enhanced the cellular sensitivity of argininosuccinate synthetase 1-positive GBM to ionizing radiation by elevated production of nitric oxide (˙NO) and hence generation of cytotoxic peroxynitrites, but also promoted glioma-associated macrophage/microglial infiltration into tumors and turned their classical antiinflammatory (protumor) phenotype into a proinflammatory (antitumor) phenotype. Our results provide an effective, well-tolerated, and simple strategy to improve GBM treatment that merits consideration for early evaluation in clinical trials.
Collapse
Affiliation(s)
- Nabil Hajji
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| | - Juan Garcia-Revilla
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío (HUVR)/CSIC, University of Seville, Seville, Spain
| | - Manuel Sarmiento Soto
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío (HUVR)/CSIC, University of Seville, Seville, Spain
| | - Richard Perryman
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| | - Jake Symington
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| | - Chad C. Quarles
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Deborah R. Healey
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Yijie Guo
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John Bomalaski
- Polaris Pharmaceuticals Inc., San Diego, California, USA
| | - Giulio Anichini
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| | - Andreas G. Tzakos
- Department of Chemistry, University of Ioannina, Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina, Ioannina, Greece
| | - Timothy Crook
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| | - Kevin O’Neill
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| | - Adrienne C. Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Jose Luis Venero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío (HUVR)/CSIC, University of Seville, Seville, Spain
| | - Nelofer Syed
- John Fulcher Molecular Neuro-oncology Laboratory, Department Brain Sciences, Imperial College, London, United Kingdom
| |
Collapse
|
10
|
Sindhu R, Manonmani HK. L-asparaginase mediated therapy in L-asparagine auxotrophic cancers: A review. Anticancer Agents Med Chem 2022; 22:2393-2410. [PMID: 34994334 DOI: 10.2174/1871520622666220106103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/28/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
Microbial L-asparaginase is the most effective first-line therapeutic used in the treatment protocols of paediatric and adult leukemia. Leukemic cell's auxotrophy for L-asparagine is exploited as a therapeutic strategy to mediate cell death through metabolic blockade of L-asparagine using L-asparaginase. Escherichia coli and Erwinia chrysanthemi serve as the major enzyme deriving sources accepted in clinical practise and the enzyme has bestowed improvements in patient outcomes over the last 40 years. However, an array of side effects generated by the native enzymes due to glutamine co-catalysis and short serum stays augmenting frequent dosages, intended a therapeutic switch towards the development of biobetter alternatives for the enzyme including the formulations resulting in sustained local depletion of L-asparagine. In addition, the treatment with L-asparaginase in few cancer types has proven to elicit drug-induced cytoprotective autophagy mechanisms and therefore warrants concern. Although the off-target glutamine hydrolysis has been viewed in contributing the drug-induced secondary responses in cells deficient with asparagine synthetase machinery, the beneficial role of glutaminase-asparaginase in proliferative regulation of asparagine prototrophic cells has been looked forward. The current review provides an overview on the enzyme's clinical applications in leukemia and possible therapeutic implications in other solid tumours, recent advancements in drug formulations, and discusses the aspects of two-sided roles of glutaminase-asparaginases and drug-induced cytoprotective autophagy mechanisms.
Collapse
Affiliation(s)
- Sindhu R
- Department of Microbiology, Faculty of Life Sciences, JSS-AHER, Mysuru-570015, Karnataka, India
| | - H K Manonmani
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysuru-570020, Karnataka, India
| |
Collapse
|
11
|
Yang GJ, Wu J, Leung CH, Ma DL, Chen J. A review on the emerging roles of pyruvate kinase M2 in anti-leukemia therapy. Int J Biol Macromol 2021; 193:1499-1506. [PMID: 34740687 DOI: 10.1016/j.ijbiomac.2021.10.213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/28/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Glycolysis is an important step in respiration and provides energy for cellular processes. Pyruvate kinase M2 (PKM2), a key rate-limiting enzyme of glycolysis, plays an important role in tumor cell metabolism and proliferation. It is also specifically overexpressed in leukemia cells and contributes to leukemic proliferation, differentiation, and drug resistance through both aerobic glycolysis and non-metabolic pathways. In this review, the functions and regulatory roles of PKM2 are firstly introduced. Then, the molecular mechanisms of PKM2 in leukemogenesis are summarized. Next, reported PKM2 modulators and their anti-leukemia mechanisms are described. Finally, the current challenges and the potential opportunities of PKM2 inhibitors or agonists in leukemia therapy are discussed.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jia Wu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Chung-Hang Leung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, 999078, Macao SAR, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
12
|
Revealing Escherichia coli type II L-asparaginase active site flexible loop in its open, ligand-free conformation. Sci Rep 2021; 11:18885. [PMID: 34556749 PMCID: PMC8460627 DOI: 10.1038/s41598-021-98455-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/30/2021] [Indexed: 11/08/2022] Open
Abstract
Since 1993, when the structure of Escherichia coli type II L-asparaginase (EcAII) in complex with L-aspartate was firstly reported, many structures of the wild type and mutated enzyme have been deposited in the Protein Data Bank. None of them report the full structure of the monomer in its ligand-free, open conformation, mainly because of the high dynamic and flexibility of the active site flexible loop. Here we report for the first time the structure of EcAII wild type in its open conformation comprising, for at least one protomer, clear electron density for the active site flexible loop (PDB ID: 6YZI). The structural element is highly mobile and it is transposed onto the rigid part of the active site upon substrate binding to allow completion of the enzyme catalytic center, thanks to key residues that serve as hinges and anchoring points. In the substrate binding pocket, several highly conserved water molecules are coordinated by residues involved in substrate binding, comprising two water molecules very likely involved in the enzyme catalytic process. We also describe, by molecular dynamics simulations, how the transposition of the loop, besides providing the proximity of residues needed for catalysis, causes a general stabilization of the protein.
Collapse
|
13
|
Bhingarkar A, Vangapandu HV, Rathod S, Hoshitsuki K, Fernandez CA. Amino Acid Metabolic Vulnerabilities in Acute and Chronic Myeloid Leukemias. Front Oncol 2021; 11:694526. [PMID: 34277440 PMCID: PMC8281237 DOI: 10.3389/fonc.2021.694526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Amino acid (AA) metabolism plays an important role in many cellular processes including energy production, immune function, and purine and pyrimidine synthesis. Cancer cells therefore require increased AA uptake and undergo metabolic reprogramming to satisfy the energy demand associated with their rapid proliferation. Like many other cancers, myeloid leukemias are vulnerable to specific therapeutic strategies targeting metabolic dependencies. Herein, our review provides a comprehensive overview and TCGA data analysis of biosynthetic enzymes required for non-essential AA synthesis and their dysregulation in myeloid leukemias. Furthermore, we discuss the role of the general control nonderepressible 2 (GCN2) and-mammalian target of rapamycin (mTOR) pathways of AA sensing on metabolic vulnerability and drug resistance.
Collapse
Affiliation(s)
- Aboli Bhingarkar
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Hima V. Vangapandu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Sanjay Rathod
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Keito Hoshitsuki
- Division of General Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christian A. Fernandez
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Lubkowski J, Wlodawer A. Structural and biochemical properties of L-asparaginase. FEBS J 2021; 288:4183-4209. [PMID: 34060231 DOI: 10.1111/febs.16042] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022]
Abstract
l-Asparaginase (a hydrolase converting l-asparagine to l-aspartic acid) was the first enzyme to be used in clinical practice as an anticancer agent after its approval in 1978 as a component of a treatment protocol for childhood acute lymphoblastic leukemia. Structural and biochemical properties of l-asparaginases have been extensively investigated during the last half-century, providing an accurate structural description of the enzyme isolated from a variety of sources, as well as clarifying the mechanism of its activity. This review provides a critical assessment of the current state of knowledge of primarily structural, but also selected biochemical properties of 'bacterial-type' l-asparaginases from different organisms. The most extensively studied members of this enzyme family are l-asparaginases highly homologous to one of the two enzymes from Escherichia coli (usually referred to as EcAI and EcAII). Members of this enzyme family, although often called bacterial-type l-asparaginases, have been also identified in such divergent organisms as archaea or eukarya. Over 100 structural models of l-asparaginases have been deposited in the Protein Data Bank during the last 30 years. One of the prime achievements of structure-centered approaches was the elucidation of the details of the mechanism of enzymatic action of this unique hydrolase that utilizes a side chain of threonine as the primary nucleophile. The molecular basis of other important properties of these enzymes, such as their substrate specificity, is still being evaluated. Results of structural and mechanistic studies of l-asparaginases are being utilized in efforts to improve the clinical properties of this important anticancer drug.
Collapse
Affiliation(s)
- Jacek Lubkowski
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Alexander Wlodawer
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
15
|
Wei Z, Liu X, Cheng C, Yu W, Yi P. Metabolism of Amino Acids in Cancer. Front Cell Dev Biol 2021; 8:603837. [PMID: 33511116 PMCID: PMC7835483 DOI: 10.3389/fcell.2020.603837] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic reprogramming has been widely recognized as a hallmark of malignancy. The uptake and metabolism of amino acids are aberrantly upregulated in many cancers that display addiction to particular amino acids. Amino acids facilitate the survival and proliferation of cancer cells under genotoxic, oxidative, and nutritional stress. Thus, targeting amino acid metabolism is becoming a potential therapeutic strategy for cancer patients. In this review, we will systematically summarize the recent progress of amino acid metabolism in malignancy and discuss their interconnection with mammalian target of rapamycin complex 1 (mTORC1) signaling, epigenetic modification, tumor growth and immunity, and ferroptosis. Finally, we will highlight the potential therapeutic applications.
Collapse
Affiliation(s)
- Zhen Wei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH, United States
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Wang L, Qin W, Chen D, Wang N, Zhang C, Fang Z, Fang B, Du W, Yang N, Wu Q, Peng B, Li L. Design, synthesis and application of fluorogenic probe for detecting l-asparaginase in serum samples. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
17
|
Strzelczyk P, Zhang D, Dyba M, Wlodawer A, Lubkowski J. Generalized enzymatic mechanism of catalysis by tetrameric L-asparaginases from mesophilic bacteria. Sci Rep 2020; 10:17516. [PMID: 33060684 PMCID: PMC7567106 DOI: 10.1038/s41598-020-74480-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/24/2020] [Indexed: 11/09/2022] Open
Abstract
The mechanism of catalysis by the L-glutaminase-asparaginase from Pseudomonas 7A (PGA) was investigated using structural, mass spectrometry, and kinetic data. We had previously proposed mechanism of hydrolysis of L-Asn by the type II L-asparaginase from E. coli (EcAII), but that work was limited to just one enzyme. Based on results presented in this report, we postulate that all homotetrameric L-asparaginases from mesophilic bacteria utilize a common ping-pong mechanism of catalysis consisting of two subsequent nucleophilic substitutions. Several new structures of non-covalent complexes of PGA with different substrates, as well as structures of covalent acyl-enzyme intermediates of PGA with canonical substrates (L-Asp and L-Glu) and an opportunistic ligand, a citrate anion, were determined. The results of kinetic experiments monitored by high-resolution LC/MS, when combined with new structural data, clearly show that the reaction catalyzed by L-glutaminase-asparaginases proceeds through formation of a covalent intermediate, as observed previously for EcAII. Additionally, by showing that the same mechanism applies to L-Asn and L-Gln, we postulate that it is common for all these structurally related enzymes.
Collapse
Affiliation(s)
- Pawel Strzelczyk
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Di Zhang
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Marzena Dyba
- Basic Science Program, Structural Biophysics Laboratory, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Jacek Lubkowski
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
18
|
Grasso G. THE USE OF MASS SPECTROMETRY TO STUDY ZN-METALLOPROTEASE-SUBSTRATE INTERACTIONS. MASS SPECTROMETRY REVIEWS 2020; 39:574-585. [PMID: 31898821 DOI: 10.1002/mas.21621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Zinc metalloproteases (ZnMPs) participate in diverse biological reactions, encompassing the synthesis and degradation of all the major metabolites in living organisms. In particular, ZnMPs have been recognized to play a very important role in controlling the concentration level of several peptides and/or proteins whose homeostasis has to be finely regulated for the correct physiology of cells. Dyshomeostasis of aggregation-prone proteins causes pathological conditions and the development of several different diseases. For this reason, in recent years, many analytical approaches have been applied for studying the interaction between ZnMPs and their substrates and how environmental factors can affect enzyme activities. In this scenario, mass spectrometric methods occupy a very important role in elucidating different aspects of ZnMPs-substrates interaction. These range from identification of cleavage sites to quantitation of kinetic parameters. In this work, an overview of all the main achievements regarding the application of mass spectrometric methods to investigating ZnMPs-substrates interactions is presented. A general experimental protocol is also described which may prove useful to the study of similar interactions. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Department of Chemical Sciences, Università degli Studi di Catania, Viale Andrea Doria 6, Catania, 95125, Italy
| |
Collapse
|
19
|
Alshehri WA. Bacterium Hafnia alvei secretes l-methioninase enzyme: Optimization of the enzyme secretion conditions. Saudi J Biol Sci 2020; 27:1222-1227. [PMID: 32346328 PMCID: PMC7182987 DOI: 10.1016/j.sjbs.2020.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 11/29/2022] Open
Abstract
I isolated bacteria from blue cheese in order to find bacterial strains secreting l-methioninase enzyme, and optimized the conditions for the most efficient enzyme secretion. The efficient isolate, identified according to the 16S rRNA gene sequence analysis, was Hafnia alvei belonging to Enterobacteriaceae. I confirmed that the H. alvei strain harbored the methionase gene, mdeA (1194 bp). The environmental (pH, temperature) and nutritional (carbon and nitrogen sources and Mg concentration) factors influencing the l-methioninase production of H. alvei were optimized. The highest yield of l-methioninase enzyme was reached after 48 h of incubation when the acidity of the growing medium was adjusted to pH 7.5 and the temperature was 35 °C. The following concentrations of the supplements increased the l-methioninase yield in the medium: galactose (2.0 g L-1), MgSO4 (0.25 g L-1), l-methionine as an inducer (2.0 g L-1), and l-asparagine as an additional N source (1.5 g L-1). I introduce a bacterial strain of H. alvei that is previously unreported to secrete l-methioninase enzyme and show that a carbon source is a mandatory supplement whereas l-methionine is not a mandatory supplement for l-methioninase enzyme production of H. alvei.
Collapse
Affiliation(s)
- Wafa A. Alshehri
- University of Jeddah, College of Science, Department of Biology, Jeddah, Saudi Arabia
| |
Collapse
|