1
|
Zhang H, Zhu J, He R, Xu L, Chen Y, Yu H, Sun X, Wan S, Yin X, Liu Y, Gao J, Li Y, Li Z, Lu Y, Xu Q. Deubiquitination enzyme USP35 negatively regulates MAVS signaling to inhibit anti-tumor immunity. Cell Death Dis 2025; 16:138. [PMID: 40016186 PMCID: PMC11868397 DOI: 10.1038/s41419-025-07411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/12/2025] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
The RIG-I/MAVS signaling stimulates anti-tumor immunity by triggering the production of inflammatory cytokines. Activation of MAVS induced by viral RNA and RIG-I binding is critical in this pathway. However, the molecular mechanism underlying the regulation of MAVS activity and its function in anti-tumor immunity is not fully understood. Here, we report that the ubiquitin-specific protease 35 (USP35) negatively regulates the MAVS signaling. Mechanistically, USP35 interacts with MAVS and removes its K63-linked polyubiquitin chains, thereby inhibiting viral-induced MAVS-TBK1-IRF3 activation and downstream inflammatory gene expression. Importantly, depletion of USP35 significantly enhances the anti-tumor immunity and synergizes with oncolytic virotherapy to suppress xenograft tumor growth of melanoma cells. Thus, our study identifies USP35 as a negative regulator of MAVS signaling, representing a potential immunosuppressive factor in cutaneous melanoma.
Collapse
Affiliation(s)
- Heping Zhang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute for Hematologic Malignancies, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiali Zhu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rong He
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Xu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunfei Chen
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haihong Yu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuejiao Sun
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengpeng Wan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolan Yin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Gao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yue Li
- Shanghai Pharmaceuticals Holding Co Ltd, Shanghai, China
| | - Zhixiong Li
- Institute for Hematologic Malignancies, East Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Hematology, East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yi Lu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Qing Xu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Garg S, Rai G, Singh S, Gauba P, Ali J, Dang S. An insight into the role of innate immune cells in breast tumor microenvironment. Breast Cancer 2025; 32:79-100. [PMID: 39460874 DOI: 10.1007/s12282-024-01645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
The immune background of breast cancer is highly heterogeneous and the immune system of the human body plays a dual role by both promoting and suppressing its progression. Innate immune cells are the first line of defense in the immune system and impart protection by identifying and interacting with foreign pathogens and cancer cells. Different innate immune cells like natural killer cells, macrophages, dendritic cells, and myeloid suppressor cells take part in hosting the cancer cells. Autophagy is another key component inside the tumor microenvironment and is linked to the disintegration and recycling of cellular components. Within the tumor microenvironment autophagy is involved with Pattern Recognition Receptors and inflammation. Various clinical studies have shown prominent results where innate immune cells and autophagy in combination are used for pathogen as well as cancer cell clearance. However, it is necessary to comprehend the complex tumor microenvironment so that different therapeutic approaches can be developed to enhance the suppressive actions of the cells toward breast cancer cells. In this review article, the complex interaction between immune cells and breast cancer cells and their role in developing effective immunotherapies to improve patient outcomes are discussed in detail.
Collapse
Affiliation(s)
- Sandini Garg
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Garima Rai
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Sakshi Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Pammi Gauba
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
3
|
Chu J, Chen Y, Wu Y, Qin W, Yan J, Xiao J, Feng H. SRP54 of black carp negatively regulates MDA5-mediated antiviral innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105252. [PMID: 39173725 DOI: 10.1016/j.dci.2024.105252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Signal Recognition Particle 54 kDa (SRP54) is a subunit of the signal recognition particle (SRP), a cytoplasmic ribonucleoprotein complex guiding the transportation of newly synthesized proteins from polyribosomes to endoplasmic reticulum. In mammals, it has been reported to regulate the RLR signaling pathway negatively by impairing the association between MAVS and MDA5/RIG-I. However, the role of SRP54 in teleost antiviral innate immune response remains obscure. In this study, the SRP54 homolog of black carp (bcSRP54) has been cloned, and its function in antiviral innate immunity has been elucidated. The CDS of bcSRP54 gene consists of 1515 nucleotides and encodes 504 amino acids. Immunofluorescence (IF) showed that bcSRP54 was mainly distributed in the cytoplasm. Overexpressed bcSRP54 significantly reduced bcMDA5-mediated transcription of interferon (IFN) promoter in reporter assay. Co-expression of bcSRP54 and bcMDA5 significantly suppressed bcMDA5-mediated IFN signaling and antiviral activity, while bcSRP54 knockdown increased the antiviral ability of host cells. In addition, the results of the immunofluorescence staining demonstrated the subcellular overlapping between bcSRP54 and bcMDA5, and the co-immunoprecipitation (co-IP) experiment identified their association. Furthermore, the over-expression of bcSRP54 did not influence the protein expression and ubiquitination modification level of bcMDA5, however, hindered the binding of bcMDA5 to bcMAVS. In summary, our results conclude that bcSRP54 targets bcMDA5 and inhibits the interaction between bcMDA5 and bcMAVS, thereby negatively regulating antiviral innate immunity, which provides insight into how teleost SRP54 regulates IFN signaling.
Collapse
Affiliation(s)
- Jixiang Chu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yixia Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yanfang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Wei Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
4
|
Wu B, Li D, Bai H, Mo R, Li H, Xie J, Zhang X, Yang Y, Li H, Idris A, Li X, Feng R. Mammalian reovirus µ1 protein attenuates RIG-I and MDA5-mediated signaling transduction by blocking IRF3 phosphorylation and nuclear translocation. Mol Immunol 2024; 170:131-143. [PMID: 38663254 DOI: 10.1016/j.molimm.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
Mammalian reovirus (MRV) is a non-enveloped, gene segmented double-stranded RNA (dsRNA) virus. It is an important zoonotic pathogen that infects many mammals and vertebrates that act as natural hosts and causes respiratory and digestive tract diseases. Studies have reported that RIG-I and MDA5 in the innate immune cytoplasmic RNA-sensing RIG-like receptor (RLR) signaling pathway can recognize dsRNA from MRV and promote antiviral type I interferon (IFN) responses. However, the mechanism by which many MRV-encoded proteins evade the host innate immune response remains unclear. Here, we show that exogenous μ1 protein promoted the proliferation of MRV in vitro, while knockdown of MRV μ1 protein expression by shRNA could impair MRV proliferation. Specifically, μ1 protein inhibited MRV or poly(I:C)-induced IFN-β expression, and attenuated RIG-I/MDA5-mediated signaling axis transduction during MRV infection. Importantly, we found that μ1 protein significantly decreased IFN-β mRNA expression induced by MDA5, RIG-I, MAVS, TBK1, IRF3(5D), and degraded the protein expression of exogenous MDA5, RIG-I, MAVS, TBK1 and IRF3 via the proteasomal and lysosomal pathways. Additionally, we show that μ1 protein can physically interact with MDA5, RIG-I, MAVS, TBK1, and IRF3 and attenuate the RIG-I/MDA5-mediated signaling cascades by blocking the phosphorylation and nuclear translocation of IRF3. In conclusion, our findings reveal that MRV outer capsid protein μ1 is a key factor in antagonizing RLRs signaling cascades and provide new strategies for effective prevention and treatment of MRV infection.
Collapse
Affiliation(s)
- Bei Wu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Dianyu Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Huisheng Bai
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Rongqian Mo
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Hongshan Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xiangbo Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yanmei Yang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Huixia Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Adi Idris
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Herston, Queensland University of Technology, China; Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.
| |
Collapse
|
5
|
Xiong Y, Chen C, He C, Yang X, Cheng W. Identification of shared gene signatures and biological mechanisms between preeclampsia and polycystic ovary syndrome. Heliyon 2024; 10:e29225. [PMID: 38638956 PMCID: PMC11024567 DOI: 10.1016/j.heliyon.2024.e29225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
Preeclampsia (PE) is one of the most common complications of pregnancy and polycystic ovary syndrome (PCOS) is a prevalent metabolic and endocrinopathy disorder in women of reproductive age. Identifying the shared genetic signatures and molecular mechanisms between PCOS and PE was the objective of this study. The intersections of WGCNA module genes, PPI module genes, and PPI hub genes revealed that 8 immunity-related genes might be shared causative genes of PE and PCOS. Further, qRT-PCR results showed that TSIX/miR-223-3p/DDX58 might play a crucial role in immune dysregulation in PE and PCOS and Spearman rank correlation analysis results illustrated the potential of DDX58 as a novel diagnostic and therapeutic target for PE and PCOS. Our study demonstrated a common disease pathway model TSIX/miR-223-3p/DDX58, illustrating that immune dysregulation may be a possible mechanism of PE and PCOS, and revealed that DDX58 might be a novel predictive target for PE and PCOS.
Collapse
Affiliation(s)
- Yaoxi Xiong
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, 200030, Shanghai, China
| | - Chao Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, 200030, Shanghai, China
| | - Chengrong He
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, 200030, Shanghai, China
| | - Xingyu Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, 200030, Shanghai, China
| | - Weiwei Cheng
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
| |
Collapse
|
6
|
Chen H, Jian Z, Xu T, Xu L, Deng L, Shao L, Zhang L, He L, Li Y, Zhu L. Advances in the mechanism of inflammasomes activation in herpes virus infection. Front Immunol 2024; 15:1346878. [PMID: 38590522 PMCID: PMC10999540 DOI: 10.3389/fimmu.2024.1346878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Herpesviruses, prevalent DNA viruses with a double-stranded structure, establish enduring infections and play a part in various diseases. Despite their deployment of multiple tactics to evade the immune system, both localized and systemic inflammatory responses are triggered by the innate immune system's recognition of them. Recent progress has offered more profound understandings of the mechanisms behind the activation of the innate immune system by herpesviruses, specifically through inflammatory signaling. This process encompasses the initiation of an intracellular nucleoprotein complex, the inflammasome associated with inflammation.Following activation, proinflammatory cytokines such as IL-1β and IL-18 are released by the inflammasome, concurrently instigating a programmed pathway for cell death. Despite the structural resemblances between herpesviruses, the distinctive methods of inflammatory activation and the ensuing outcomes in diseases linked to the virus exhibit variations.The objective of this review is to emphasize both the similarities and differences in the mechanisms of inflammatory activation among herpesviruses, elucidating their significance in diseases resulting from these viral infections.Additionally, it identifies areas requiring further research to comprehensively grasp the impact of this crucial innate immune signaling pathway on the pathogenesis of these prevalent viruses.
Collapse
Affiliation(s)
- Hourui Chen
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lina Shao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leyi Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Youyou Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
de Sales-Neto JM, Rodrigues-Mascarenhas S. Immunosuppressive effects of the mycotoxin patulin in macrophages. Arch Microbiol 2024; 206:166. [PMID: 38485821 DOI: 10.1007/s00203-024-03928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Patulin (PAT) is a fungi-derived secondary metabolite produced by numerous fungal species, especially within Aspergillus, Byssochlamys, and Penicillium genera, amongst which P. expansum is the foremost producer. Similar to other fungi-derived metabolites, PAT has been shown to have diverse biological features. Initially, PAT was used as an effective antimicrobial agent against Gram-negative and Gram-positive bacteria. Then, PAT has been shown to possess immunosuppressive properties encompassing humoral and cellular immune response, immune cell function and activation, phagocytosis, nitric oxide and reactive oxygen species production, cytokine release, and nuclear factor-κB and mitogen-activated protein kinases activation. Macrophages are a heterogeneous population of immune cells widely distributed throughout organs and connective tissue. The chief function of macrophages is to engulf and destroy foreign bodies through phagocytosis; this ability was fundamental to his discovery. However, macrophages play other well-established roles in immunity. Thus, considering the central role of macrophages in the immune response, we review the immunosuppressive effects of PAT in macrophages and provide the possible mechanisms of action.
Collapse
Affiliation(s)
- José Marreiro de Sales-Neto
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, CEP: 58051-900, PB, BR, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, CEP: 58051-900, PB, BR, Brazil.
| |
Collapse
|
8
|
Kumar V, Stewart JH. cGLRs Join Their Cousins of Pattern Recognition Receptor Family to Regulate Immune Homeostasis. Int J Mol Sci 2024; 25:1828. [PMID: 38339107 PMCID: PMC10855445 DOI: 10.3390/ijms25031828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Pattern recognition receptors (PRRs) recognize danger signals such as PAMPs/MAMPs and DAMPs to initiate a protective immune response. TLRs, NLRs, CLRs, and RLRs are well-characterized PRRs of the host immune system. cGLRs have been recently identified as PRRs. In humans, the cGAS/STING signaling pathway is a part of cGLRs. cGAS recognizes cytosolic dsDNA as a PAMP or DAMP to initiate the STING-dependent immune response comprising type 1 IFN release, NF-κB activation, autophagy, and cellular senescence. The present article discusses the emergence of cGLRs as critical PRRs and how they regulate immune responses. We examined the role of cGAS/STING signaling, a well-studied cGLR system, in the activation of the immune system. The following sections discuss the role of cGAS/STING dysregulation in disease and how immune cross-talk with other PRRs maintains immune homeostasis. This understanding will lead to the design of better vaccines and immunotherapeutics for various diseases, including infections, autoimmunity, and cancers.
Collapse
Affiliation(s)
- Vijay Kumar
- Laboratory of Tumor Immunology and Immunotherapy, Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | | |
Collapse
|
9
|
Otálora-Otálora BA, López-Rivera JJ, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Host Transcriptional Regulatory Genes and Microbiome Networks Crosstalk through Immune Receptors Establishing Normal and Tumor Multiomics Metafirm of the Oral-Gut-Lung Axis. Int J Mol Sci 2023; 24:16638. [PMID: 38068961 PMCID: PMC10706695 DOI: 10.3390/ijms242316638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
The microbiome has shown a correlation with the diet and lifestyle of each population in health and disease, the ability to communicate at the cellular level with the host through innate and adaptative immune receptors, and therefore an important role in modulating inflammatory process related to the establishment and progression of cancer. The oral cavity is one of the most important interaction windows between the human body and the environment, allowing the entry of an important number of microorganisms and their passage across the gastrointestinal tract and lungs. In this review, the contribution of the microbiome network to the establishment of systemic diseases like cancer is analyzed through their synergistic interactions and bidirectional crosstalk in the oral-gut-lung axis as well as its communication with the host cells. Moreover, the impact of the characteristic microbiota of each population in the formation of the multiomics molecular metafirm of the oral-gut-lung axis is also analyzed through state-of-the-art sequencing techniques, which allow a global study of the molecular processes involved of the flow of the microbiota environmental signals through cancer-related cells and its relationship with the establishment of the transcription factor network responsible for the control of regulatory processes involved with tumorigenesis.
Collapse
Affiliation(s)
| | - Juan Javier López-Rivera
- Grupo de Investigación INPAC, Specialized Laboratory, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| | - Claudia Aristizábal-Guzmán
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Mario Arturo Isaza-Ruget
- Keralty, Sanitas International Organization, Grupo de Investigación INPAC, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Carlos Arturo Álvarez-Moreno
- Infectious Diseases Department, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| |
Collapse
|
10
|
Development of Specific Monoclonal Antibodies against Porcine RIG-I-like Receptors Revealed the Species Specificity. Int J Mol Sci 2023; 24:ijms24044118. [PMID: 36835527 PMCID: PMC9967608 DOI: 10.3390/ijms24044118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The RIG-I-like receptors (RLRs) play critical roles in sensing and combating viral infections, particularly RNA virus infections. However, there is a dearth of research on livestock RLRs due to a lack of specific antibodies. In this study, we purified porcine RLR proteins and developed monoclonal antibodies (mAbs) against porcine RLR members RIG-I, MDA5 and LGP2, for which one, one and two hybridomas were obtained, respectively. The porcine RIG-I and MDA5 mAbs each targeted the regions beyond the N-terminal CARDs domains, whereas the two LGP2 mAbs were both directed to the N-terminal helicase ATP binding domain in the Western blotting. In addition, all of the porcine RLR mAbs recognized the corresponding cytoplasmic RLR proteins in the immunofluorescence and immunochemistry assays. Importantly, both RIG-I and MDA5 mAbs are porcine specific, without demonstrating any cross-reactions with the human counterparts. As for the two LGP2 mAbs, one is porcine specific, whereas another one reacts with both porcine and human LGP2. Thus, our study not only provides useful tools for porcine RLR antiviral signaling research, but also reveals the porcine species specificity, giving significant insights into porcine innate immunity and immune biology.
Collapse
|
11
|
Guo B, Chen JH, Zhang JH, Fang Y, Liu XJ, Zhang J, Zhu HQ, Zhan L. Pattern-recognition receptors in endometriosis: A narrative review. Front Immunol 2023; 14:1161606. [PMID: 37033937 PMCID: PMC10076794 DOI: 10.3389/fimmu.2023.1161606] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Endometriosis is closely associated with ectopic focal inflammation and immunosuppressive microenvironment. Multiple types of pattern recognition receptors (PRRs) are present in the innate immune system, which are able to detect pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) in both intracellular and external environments. However, the exact role of PRRs in endometriosis and the underlying molecular mechanism are unclear. PRRs are necessary for the innate immune system to identify and destroy invasive foreign infectious agents. Mammals mainly have two types of microbial recognition systems. The first one consists of the membrane-bound receptors, such as toll-like receptors (TLRs), which recognize extracellular microorganisms and activate intracellular signals to stimulate immune responses. The second one consists of the intracellular PRRs, including nod-like receptors (NLRs) and antiviral proteins retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA-5) with helix enzyme domain. In this review, we mainly focus on the key role of PRRs in the pathological processes associated with endometriosis. PRRs recognize PAMPs and can distinguish pathogenic microorganisms from self, triggering receptor ligand reaction followed by the stimulation of host immune response. Activated immune response promotes the transmission of microbial infection signals to the cells. As endometriosis is characterized by dysregulated inflammation and immune response, PRRs may potentially be involved in the activation of endometriosis-associated inflammation and immune disorders. Toll-like receptor 2 (TLR2), toll-like receptor 3 (TLR3), toll-like receptor 4 (TLR4), nod-like receptor family caspase activation and recruitment domain (CARD) domain containing 5 (NLRC5), nod-like receptor family pyrin domain containing 3 (NLRP3), and c-type lectin receptors (CLRs) play essential roles in endometriosis development by regulating immune and inflammatory responses. Absent in melanoma 2 (AIM2)-like receptors (ALRs) and retinoic acid-inducible gene I-like receptors (RLRs) may be involved in the activation of endometriosis-associated immune and inflammation disorders. PRRs, especially TLRs, may serve as potential therapeutic targets for alleviating pain in endometriosis patients. PRRs and their ligands interact with the innate immune system to enhance inflammation in the stromal cells during endometriosis. Thus, targeting PRRs and their new synthetic ligands may provide new therapeutic options for treating endometriosis.
Collapse
Affiliation(s)
- Bao Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jia hua Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun hui Zhang
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuan Fang
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao jing Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hai qing Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lei Zhan
- Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Lei Zhan,
| |
Collapse
|
12
|
Han F, Chen Y, Zhu Y, Huang Z. Antigen receptor structure and signaling. Adv Immunol 2023; 157:1-28. [PMID: 37061286 DOI: 10.1016/bs.ai.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
The key to mounting an immune response is that the host cells must be coordinated to generate an appropriate immune response against the pathogenic invaders. Antigen receptors recognize specific molecular structures and recruit adaptors through their effector domains, triggering trans-membrane transduction signaling pathway to exert immune response. The T cell antigen receptor (TCR) and B cell antigen receptor (BCR) are the primary determinant of immune responses to antigens. Their structure determines the mode of signaling and signal transduction determines cell fate, leading to changes at the molecular and cellular level. Studies of antigen receptor structure and signaling revealed the basis of immune response triggering, providing clues to antigen receptor priming and a foundation for the rational design of immunotherapies. In recent years, the increased research on the structure of antigen receptors has greatly contributed to the understanding of immune response, different immune-related diseases and even tumors. In this review, we describe in detail the current view and advances of the antigen structure and signaling.
Collapse
Affiliation(s)
- Fang Han
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yan Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
13
|
Liu R, Niu Y, Qi Y, Li H, Yang G, Shan S. Transcriptome analysis identifies LGP2 as an MDA5-mediated signaling activator following spring viremia of carp virus infection in common carp (Cyprinus carpio L.). Front Immunol 2022; 13:1019872. [PMID: 36330521 PMCID: PMC9623169 DOI: 10.3389/fimmu.2022.1019872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The common carp (Cyprinus carpio L.) is an important farmed species worldwide. Mucosal-associated lymphoid tissues play an essential role in the fight against pathogen infection. Spring viremia of carp virus (SVCV) poses a serious threat to the common carp aquaculture industry. Understanding the molecular mechanisms driving mucosal immune responses to SVCV infection is critical. In this study, the mucosal tissues (gills, foregut and hindgut) were collected from normal and infected fishes for transcriptome analysis. A total of 932,378,600 clean reads were obtained, of which approximately 80% were successfully mapped to the common carp genome. 577, 1,054 and 1,014 differential expressed genes (DEGs) were identified in the gills, foregut and hindgut, respectively. A quantitative polymerase chain reaction assay indicated that the DEGs expression in the foregut following SVCV infection was consistent with the transcriptome results. Among them, two key genes of the retinoic acid-inducible gene I (RIG-I)-like receptor family, melanoma-differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2) (i.e., CcMDA5 and CcLGP2), underwent further analysis. Overexpression of CcMDA5 or CcLGP2 increased phosphorylation of TANK-binding kinase 1 and interferon regulatory factor 3 and the expression of interferon-1 (ifn-1), myxovirus resistance (mx), viperin and interferon-stimulated gene 15 (isg15), and inhibited SVCV replication in epithelioma papulosum cyprini cells. Furthermore, CcLGP2 significantly upregulated the CcMDA5-induced ifn-1 mRNA expression and the activation of the ifn-1 promoter. Finally, confocal microscopy and coimmunoprecipitation experiments revealed that CcLGP2 colocalizes and interacts with CcMDA5 via the C-terminal regulatory domain. This study provides essential gene resources for understanding the fish immune response to SVCV infection and sheds light on the potential role of fish LGP2 in the MDA5 regulation.
Collapse
Affiliation(s)
| | | | | | | | - Guiwen Yang
- *Correspondence: Shijuan Shan, ; Guiwen Yang,
| | | |
Collapse
|
14
|
Liu R, Li H, Liu X, Liang B, Qi Y, Meng F, Yang G, Shan S. TRIM25 inhibits spring viraemia of carp virus replication by positively regulating RIG-I signaling pathway in common carp (Cyprinus carpio L.). FISH & SHELLFISH IMMUNOLOGY 2022; 127:306-317. [PMID: 35753558 DOI: 10.1016/j.fsi.2022.06.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Common carp (Cyprinus carpio L.) is one of the most widely cultivated fish in China. Spring viraemia of carp virus (SVCV) is a highly pathogenic virus and has often caused excessive losses in carp pond fisheries. Innate immune play important roles against virus infection. To better understand the immune response of common carp against SVCV infection, transcriptome analysis was performed using the Illumina Novaseq 6000 platform. It was showed that a total of 3953 differentially expressed unigenes were identified, and the RLR signaling pathway were significantly enriched after SVCV infection. Subsequently, the role of RLR signaling pathway in SVCV infection was studied. The results showed that common carp RIG-I (CcRIG-I) and TRIM25 (CcTRIM25) significantly decreased the replication of SVCV by inducing the phosphorylation of TBK1, IRF3 and p65 and the expression of ifn-1, viperin, isg15 and mx. Further studies illustrated that CcTRIM25 could positive regulate CcRIG-I mediated downstream signaling pathway. Finally, the mechanism of CcTRIM25 promoting CcRIG-I-mediated signaling was investigated. CcTRIM25 could interact with the caspase activation and recruitment domain (CARD) of CcRIG-I and promoted K63-linked polyubiquitination of CcRIG-I. Altogether, the study revealed a mechanism of CcTRIM25 regulating CcRIG-I mediated immune response in SVCV infection.
Collapse
Affiliation(s)
- Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Xiaoye Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Boyu Liang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Yue Qi
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Fei Meng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China.
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
15
|
Ye S, Tan C, Yang X, Wang J, Li Q, Xu L, Wang Z, Mao J, Wang J, Cheng K, Chen A, Zhou P, Li S. Transcriptome Analysis of Retinoic Acid-Inducible Gene I Overexpression Reveals the Potential Genes for Autophagy-Related Negative Regulation. Cells 2022; 11:2009. [PMID: 35805093 PMCID: PMC9265583 DOI: 10.3390/cells11132009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) serves as an essential viral RNA sensor for innate immune. The activation of the RIG-I-like receptors (RLRs) pathway triggers many regulations for the outcome of type I interferon, including ubiquitination, dephosphorylation, ISGylation, and autophagy. However, the autophagy-related regulation of RIG-I is still not fully understood. To investigate the potentially unknown genes related to autophagy-related regulation of RIG-I, we firstly confirm the induction of autophagy derived by overexpression of RIG-I. Furthermore, the autophagy inducer and inhibitor drugs were used in different assays. The results showed autophagy could control the activation of RLRs pathway and expression of exogenous RIG-I. In addition, we carried out the transcriptome analysis of overexpression of RIG-I in vitro. Differentially expressed genes (DEGs) in GO and KEGG signaling pathways enrichment provided a newly complex network. Finally, the validation of qPCR indicated that the DEGs PTPN22, PRKN, OTUD7B, and SIRT2 were correlated to the negative regulation of excessive expression of RIG-I. Taken together, our study contributed new insights into a more comprehensive understanding of the regulation of excessive expression of RIG-I. It provided the potential candidate genes for autophagy-related negative regulation for further investigation.
Collapse
Affiliation(s)
- Shaotang Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Chen Tan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou 730046, China;
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, 4000 Liege, Belgium
| | - Xiaoyun Yang
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526000, China;
| | - Ji Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Qi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Liang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Zhen Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Jianwei Mao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Jingyu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Kui Cheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Aolei Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| |
Collapse
|
16
|
Liu J, Zhang H, Su Y, Zhang B. Application and prospect of targeting innate immune sensors in the treatment of autoimmune diseases. Cell Biosci 2022; 12:68. [PMID: 35619184 PMCID: PMC9134593 DOI: 10.1186/s13578-022-00810-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of auto-reactive T cells and autoantibody-producing B cells and excessive inflammation are responsible for the occurrence and development of autoimmune diseases. The suppression of autoreactive T cell activation and autoantibody production, as well as inhibition of inflammatory cytokine production have been utilized to ameliorate autoimmune disease symptoms. However, the existing treatment strategies are not sufficient to cure autoimmune diseases since patients can quickly suffer a relapse following the end of treatments. Pattern recognition receptors (PRRs), including Toll-like receptors (TLRs), Nod-like receptors (NLRs), RIG-I like receptors (RLRs), C-type lectin receptors (CLRs) and various nucleic acid sensors, are expressed in both innate and adaptive immune cells and are involved in the development of autoimmune diseases. Here, we have summarized advances of PRRs signaling pathways, association between PRRs and autoimmune diseases, application of inhibitors targeting PRRs and the corresponding signaling molecules relevant to strategies targeting autoimmune diseases. This review emphasizes the roles of different PRRs in activating both innate and adaptive immunity, which can coordinate to trigger autoimmune responses. The review may also prompt the formulation of novel ideas for developing therapeutic strategies against autoimmune diseases by targeting PRRs-related signals.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hui Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China. .,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Basic and Translational Research Laboratory of Immune Related Diseases, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
17
|
Chan CP, Jin DY. Cytoplasmic RNA sensors and their interplay with RNA-binding partners in innate antiviral response: theme and variations. RNA (NEW YORK, N.Y.) 2022; 28:449-477. [PMID: 35031583 PMCID: PMC8925969 DOI: 10.1261/rna.079016.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sensing of pathogen-associated molecular patterns including viral RNA by innate immunity represents the first line of defense against viral infection. In addition to RIG-I-like receptors and NOD-like receptors, several other RNA sensors are known to mediate innate antiviral response in the cytoplasm. Double-stranded RNA-binding protein PACT interacts with prototypic RNA sensor RIG-I to facilitate its recognition of viral RNA and induction of host interferon response, but variations of this theme are seen when the functions of RNA sensors are modulated by other RNA-binding proteins to impinge on antiviral defense, proinflammatory cytokine production and cell death programs. Their discrete and coordinated actions are crucial to protect the host from infection. In this review, we will focus on cytoplasmic RNA sensors with an emphasis on their interplay with RNA-binding partners. Classical sensors such as RIG-I will be briefly reviewed. More attention will be brought to new insights on how RNA-binding partners of RNA sensors modulate innate RNA sensing and how viruses perturb the functions of RNA-binding partners.
Collapse
Affiliation(s)
- Chi-Ping Chan
- School of Biomedical Sciences and State Key Laboratory of Liver Research, Faculty of Medicine Building, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences and State Key Laboratory of Liver Research, Faculty of Medicine Building, Pokfulam, Hong Kong
| |
Collapse
|
18
|
Yang Y, Cao X, Huang L, Yang A. RNF19a inhibits antiviral immune response to RNA viruses through degradation of TBK1. Mol Immunol 2022; 143:1-6. [PMID: 34990937 DOI: 10.1016/j.molimm.2021.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/12/2021] [Accepted: 12/26/2021] [Indexed: 11/19/2022]
Abstract
TANK-binding kinase 1 (TBK1) plays a pivotal role in antiviral innate immunity. TBK1 mediates the activation of interferon regulatory factor (IRF) 3, leading to the induction of type I IFNs (IFN-α/β) and of NF-κB signal transduction following viral infections. TBK1 must be tightly regulated to effectively control viral infections and maintain immune homeostasis. Here, we found that E3 ubiquitin ligase RNF19a mediated K48-linked ubiquitination and proteasomal degradation of TBK1. Specifically, the silence of RNF19a enhanced the production of type I interferons and suppressed RNA viral replication. Our results uncover that RNF19a acts as a negative mediator in the RIG-I signaling pathway to attenuate antiviral immune responses and suggest RNF19a as a potential therapy target in clinical infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yingyun Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| | - Xinyuan Cao
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| | - Lisong Huang
- Emergency Department, The Aerospace Central Hospital, Beijing, 100049, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China.
| |
Collapse
|
19
|
Minnaert AK, Vanluchene H, Verbeke R, Lentacker I, De Smedt SC, Raemdonck K, Sanders NN, Remaut K. Strategies for controlling the innate immune activity of conventional and self-amplifying mRNA therapeutics: Getting the message across. Adv Drug Deliv Rev 2021; 176:113900. [PMID: 34324884 PMCID: PMC8325057 DOI: 10.1016/j.addr.2021.113900] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
The recent approval of messenger RNA (mRNA)-based vaccines to combat the SARS-CoV-2 pandemic highlights the potential of both conventional mRNA and self-amplifying mRNA (saRNA) as a flexible immunotherapy platform to treat infectious diseases. Besides the antigen it encodes, mRNA itself has an immune-stimulating activity that can contribute to vaccine efficacy. This self-adjuvant effect, however, will interfere with mRNA translation and may influence the desired therapeutic outcome. To further exploit its potential as a versatile therapeutic platform, it will be crucial to control mRNA's innate immune-stimulating properties. In this regard, we describe the mechanisms behind the innate immune recognition of mRNA and provide an extensive overview of strategies to control its innate immune-stimulating activity. These strategies range from modifications to the mRNA backbone itself, optimization of production and purification processes to the combination with innate immune inhibitors. Furthermore, we discuss the delicate balance of the self-adjuvant effect in mRNA vaccination strategies, which can be both beneficial and detrimental to the therapeutic outcome.
Collapse
Affiliation(s)
- An-Katrien Minnaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Helena Vanluchene
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
20
|
Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 2021; 6:291. [PMID: 34344870 PMCID: PMC8333067 DOI: 10.1038/s41392-021-00687-0] [Citation(s) in RCA: 827] [Impact Index Per Article: 206.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/23/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Pattern recognition receptors (PRRs) are a class of receptors that can directly recognize the specific molecular structures on the surface of pathogens, apoptotic host cells, and damaged senescent cells. PRRs bridge nonspecific immunity and specific immunity. Through the recognition and binding of ligands, PRRs can produce nonspecific anti-infection, antitumor, and other immunoprotective effects. Most PRRs in the innate immune system of vertebrates can be classified into the following five types based on protein domain homology: Toll-like receptors (TLRs), nucleotide oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), C-type lectin receptors (CLRs), and absent in melanoma-2 (AIM2)-like receptors (ALRs). PRRs are basically composed of ligand recognition domains, intermediate domains, and effector domains. PRRs recognize and bind their respective ligands and recruit adaptor molecules with the same structure through their effector domains, initiating downstream signaling pathways to exert effects. In recent years, the increased researches on the recognition and binding of PRRs and their ligands have greatly promoted the understanding of different PRRs signaling pathways and provided ideas for the treatment of immune-related diseases and even tumors. This review describes in detail the history, the structural characteristics, ligand recognition mechanism, the signaling pathway, the related disease, new drugs in clinical trials and clinical therapy of different types of PRRs, and discusses the significance of the research on pattern recognition mechanism for the treatment of PRR-related diseases.
Collapse
Affiliation(s)
- Danyang Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
21
|
Manes NP, Nita-Lazar A. Molecular Mechanisms of the Toll-Like Receptor, STING, MAVS, Inflammasome, and Interferon Pathways. mSystems 2021; 6:e0033621. [PMID: 34184910 PMCID: PMC8269223 DOI: 10.1128/msystems.00336-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pattern recognition receptors (PRRs) form the front line of defense against pathogens. Many of the molecular mechanisms that facilitate PRR signaling have been characterized in detail, which is critical for the development of accurate PRR pathway models at the molecular interaction level. These models could support the development of therapeutics for numerous diseases, including sepsis and COVID-19. This review describes the molecular mechanisms of the principal signaling interactions of the Toll-like receptor, STING, MAVS, and inflammasome pathways. A detailed molecular mechanism network is included as Data Set S1 in the supplemental material.
Collapse
Affiliation(s)
- Nathan P. Manes
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Li S, Yang J, Zhu Y, Wang H, Ji X, Luo J, Shao Q, Xu Y, Liu X, Zheng W, Meurens F, Chen N, Zhu J. Analysis of Porcine RIG-I Like Receptors Revealed the Positive Regulation of RIG-I and MDA5 by LGP2. Front Immunol 2021; 12:609543. [PMID: 34093517 PMCID: PMC8169967 DOI: 10.3389/fimmu.2021.609543] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
The RLRs play critical roles in sensing and fighting viral infections especially RNA virus infections. Despite the extensive studies on RLRs in humans and mice, there is a lack of systemic investigation of livestock animal RLRs. In this study, we characterized the porcine RLR members RIG-I, MDA5 and LGP2. Compared with their human counterparts, porcine RIG-I and MDA5 exhibited similar signaling activity to distinct dsRNA and viruses, via similar and cooperative recognitions. Porcine LGP2, without signaling activity, was found to positively regulate porcine RIG-I and MDA5 in transfected porcine alveolar macrophages (PAMs), gene knockout PAMs and PK-15 cells. Mechanistically, LGP2 interacts with RIG-I and MDA5 upon cell activation, and promotes the binding of dsRNA ligand by MDA5 as well as RIG-I. Accordingly, porcine LGP2 exerted broad antiviral functions. Intriguingly, we found that porcine LGP2 mutants with defects in ATPase and/or dsRNA binding present constitutive activity which are likely through RIG-I and MDA5. Our work provided significant insights into porcine innate immunity, species specificity and immune biology.
Collapse
Affiliation(s)
- Shuangjie Li
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jie Yang
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuanyuan Zhu
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Wang
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xingyu Ji
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jia Luo
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qi Shao
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yulin Xu
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xueliang Liu
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Wanglong Zheng
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - François Meurens
- INRAE, Oniris, BIOEPAR, Nantes, France.,Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nanhua Chen
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianzhong Zhu
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
23
|
A Look into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins. Viruses 2021; 13:v13020314. [PMID: 33670641 PMCID: PMC7922539 DOI: 10.3390/v13020314] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Bunyavirales order was established by the International Committee on Taxonomy of Viruses (ICTV) to incorporate the increasing number of related viruses across 13 viral families. While diverse, four of the families (Peribunyaviridae, Nairoviridae, Hantaviridae, and Phenuiviridae) contain known human pathogens and share a similar tri-segmented, negative-sense RNA genomic organization. In addition to the nucleoprotein and envelope glycoproteins encoded by the small and medium segments, respectively, many of the viruses in these families also encode for non-structural (NS) NSs and NSm proteins. The NSs of Phenuiviridae is the most extensively studied as a host interferon antagonist, functioning through a variety of mechanisms seen throughout the other three families. In addition, functions impacting cellular apoptosis, chromatin organization, and transcriptional activities, to name a few, are possessed by NSs across the families. Peribunyaviridae, Nairoviridae, and Phenuiviridae also encode an NSm, although less extensively studied than NSs, that has roles in antagonizing immune responses, promoting viral assembly and infectivity, and even maintenance of infection in host mosquito vectors. Overall, the similar and divergent roles of NS proteins of these human pathogenic Bunyavirales are of particular interest in understanding disease progression, viral pathogenesis, and developing strategies for interventions and treatments.
Collapse
|