1
|
González-Blanco L, Dal Santo F, García-Portilla MP, Alfonso M, Hernández C, Sánchez-Autet M, Anmella G, Amoretti S, Safont G, Martín-Hernández D, Malan-Müller S, Bernardo M, Arranz B. Intestinal permeability biomarkers in patients with schizophrenia: Additional support for the impact of lifestyle habits. Eur Psychiatry 2024; 67:e84. [PMID: 39676547 PMCID: PMC11733614 DOI: 10.1192/j.eurpsy.2024.1765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Emerging evidence suggests a potential association between "leaky gut syndrome" and low-grade systemic inflammation in individuals with psychiatric disorders, such as schizophrenia. Gut dysbiosis could increase intestinal permeability, allowing the passage of toxins and bacteria into the systemic circulation, subsequently triggering immune-reactive responses. This study delves into understanding the relationship between plasma markers of intestinal permeability and symptom severity in schizophrenia. Furthermore, the influence of lifestyle habits on these intestinal permeability markers was determined. METHODS Biomarkers of intestinal permeability, namely lipopolysaccharide-binding protein (LBP), lipopolysaccharides (LPS), and intestinal fatty acid binding protein (I-FABP), were analyzed in 242 adult schizophrenia patients enrolled in an observational, cross-sectional, multicenter study from four centers in Spain (PI17/00246). Sociodemographic and clinical data were collected, including psychoactive drug use, lifestyle habits, the Positive and Negative Syndrome Scale to evaluate schizophrenia symptom severity, and the Screen for Cognitive Impairment in Psychiatry to assess cognitive performance. RESULTS Results revealed elevated levels of LBP and LPS in a significant proportion of patients with schizophrenia (62% and 25.6%, respectively). However, no statistically significant correlation was observed between these biomarkers and the overall clinical severity of psychotic symptoms or cognitive performance, once confounding variables were controlled for. Interestingly, adherence to a Mediterranean diet was negatively correlated with I-FABP levels (beta = -0.186, t = -2.325, p = 0.021), suggesting a potential positive influence on intestinal barrier function. CONCLUSIONS These findings underscore the importance of addressing dietary habits and promoting a healthy lifestyle in individuals with schizophrenia, with potential implications for both physical and psychopathological aspects of the disorder.
Collapse
Affiliation(s)
- Leticia González-Blanco
- Área de Psiquiatría, Universidad de Oviedo, Oviedo, Spain
- Servicio de Salud del Principado de Asturias (SESPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Francesco Dal Santo
- Área de Psiquiatría, Universidad de Oviedo, Oviedo, Spain
- Servicio de Salud del Principado de Asturias (SESPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Maria Paz García-Portilla
- Área de Psiquiatría, Universidad de Oviedo, Oviedo, Spain
- Servicio de Salud del Principado de Asturias (SESPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | | | | | | | - Gerard Anmella
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Digital Innovation Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| | - Silvia Amoretti
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic, Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), ISCIII, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Group of Psychiatry, Mental Health and Addictions, Psychiatric Genetics Unit, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Safont
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Mútua Terrassa, ISIC Medical Center, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - David Martín-Hernández
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense Madrid (UCM), Madrid, Spain
- Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
- Neurochemistry Research Institute UCM, Madrid, Spain
| | - Stefanie Malan-Müller
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense Madrid (UCM), Madrid, Spain
- Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
- Neurochemistry Research Institute UCM, Madrid, Spain
| | - Miquel Bernardo
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic, Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), ISCIII, Barcelona, Spain
| | - Belén Arranz
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
- Parc Sanitari Sant Joan de Deu, Barcelona, Spain
| |
Collapse
|
2
|
Gao Z, Pu C, Lin L, Ou Q, Quan H. Genome-wide association study of blood lipid levels in Southern Han Chinese adults with prediabetes. Front Endocrinol (Lausanne) 2024; 14:1334893. [PMID: 38371897 PMCID: PMC10869499 DOI: 10.3389/fendo.2023.1334893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/22/2023] [Indexed: 02/20/2024] Open
Abstract
Background Dyslipidemia is highly prevalent among individuals with prediabetes, further exacerbating their cardiovascular risk. However, the genetic determinants underlying diabetic dyslipidemia in Southern Han Chinese remain largely unexplored. Methods We performed a genome-wide association study (GWAS) of blood lipid traits in 451 Southern Han Chinese adults with prediabetes. Fasting plasma lipids, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) were assayed. Genotyping was conducted using the Precision Medicine Diversity Array and Gene Titan platform, followed by genotype imputation using IMPUTE2 with the 1000 Genomes Project (Phase 3, Southern Han Chinese) as reference. Single nucleotide polymorphisms (SNPs) associated with lipid levels were identified using mixed linear regression, with adjustment for covariates. Results We identified 58, 215, 74 and 81 novel SNPs associated with TG, TC, HDL-C and LDL-C levels, respectively (P < 5×10-5). Several implicated loci were located in or near genes involved in lipid metabolism, including SRD5A2, PCSK7, PITPNC1, IRX3, BPI, and LBP. Pathway enrichment analysis highlighted lipid metabolism and insulin secretion. Conclusion This first GWAS of dyslipidemia in Southern Han Chinese with prediabetes identified novel genetic variants associated with lipid traits. Our findings provide new insights into genetic mechanisms underlying heightened cardiovascular risk in the prediabetic stage. Functional characterization of implicated loci is warranted.
Collapse
Affiliation(s)
- Zhenshu Gao
- Department of Endocrinology, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
| | - Changchun Pu
- Department of Endocrinology, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
| | - Leweihua Lin
- Department of Endocrinology, Hainan General Hospital, Haikou, China
| | - Qianying Ou
- Department of Endocrinology, Hainan General Hospital, Haikou, China
| | - Huibiao Quan
- Department of Endocrinology, Hainan General Hospital, Haikou, China
| |
Collapse
|
3
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Study on Potential Differentially Expressed Genes in Idiopathic Pulmonary Fibrosis by Bioinformatics and Next-Generation Sequencing Data Analysis. Biomedicines 2023; 11:3109. [PMID: 38137330 PMCID: PMC10740779 DOI: 10.3390/biomedicines11123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with reduced quality of life and earlier mortality, but its pathogenesis and key genes are still unclear. In this investigation, bioinformatics was used to deeply analyze the pathogenesis of IPF and related key genes, so as to investigate the potential molecular pathogenesis of IPF and provide guidance for clinical treatment. Next-generation sequencing dataset GSE213001 was obtained from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified between IPF and normal control group. The DEGs between IPF and normal control group were screened with the DESeq2 package of R language. The Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. Using the g:Profiler, the function and pathway enrichment analyses of DEGs were performed. Then, a protein-protein interaction (PPI) network was constructed via the Integrated Interactions Database (IID) database. Cytoscape with Network Analyzer was used to identify the hub genes. miRNet and NetworkAnalyst databaseswereused to construct the targeted microRNAs (miRNAs), transcription factors (TFs), and small drug molecules. Finally, receiver operating characteristic (ROC) curve analysis was used to validate the hub genes. A total of 958 DEGs were screened out in this study, including 479 up regulated genes and 479 down regulated genes. Most of the DEGs were significantly enriched in response to stimulus, GPCR ligand binding, microtubule-based process, and defective GALNT3 causes HFTC. In combination with the results of the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network, hub genes including LRRK2, BMI1, EBP, MNDA, KBTBD7, KRT15, OTX1, TEKT4, SPAG8, and EFHC2 were selected. Cyclothiazide and rotigotinethe are predicted small drug molecules for IPF treatment. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of IPF, and provide a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Muttanagouda Giriyappagoudar
- Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi 580022, Karnataka, India;
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Socitey’s College of Pharmacy, Gadag 582101, Karnataka, India;
| | - Rajeshwari Horakeri
- Department of Computer Science, Govt First Grade College, Hubballi 580032, Karnataka, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
4
|
Poto R, Pecoraro A, Ferrara AL, Punziano A, Lagnese G, Messuri C, Loffredo S, Spadaro G, Varricchi G. Cytokine dysregulation despite immunoglobulin replacement therapy in common variable immunodeficiency (CVID). Front Immunol 2023; 14:1257398. [PMID: 37841257 PMCID: PMC10568625 DOI: 10.3389/fimmu.2023.1257398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency. CVID is a heterogeneous disorder with a presumed multifactorial etiology. Intravenous or subcutaneous immunoglobulin replacement therapy (IgRT) can prevent severe infections but not underlying immune dysregulation. Methods In this study, we evaluated the serum concentrations of proinflammatory (TNF-α, IL-1β, IL-6) and immunoregulatory cytokines (IL-10), as well as lipopolysaccharide (LPS) and soluble CD14 (sCD14) in CVID individuals with infectious only (INF-CVID), and those with additional systemic autoimmune and inflammatory disorders (NIC-CVID), and healthy donors (HD). Results Our results showed increased serum concentrations of TNF-α, IL-1β, IL-6, and IL-10 in both INF-CVID and NIC-CVID subjects compared to HD. However, elevations of TNF-α, IL-1β, IL-6, and IL-10 were significantly more marked in NIC-CVID than INF-CVID. Additionally, LPS concentrations were increased only in NIC-CVID but not in INF-CVID compared to HD. Circulating levels of sCD14 were significantly increased in NIC-CVID compared to both INF-CVID and HD. Discussion These findings indicate persistent cytokine dysregulation despite IgRT in individuals with CVID. Moreover, the circulating cytokine profile reveals the heterogeneity of immune dysregulation in different subgroups of CVID subjects.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Unità Operativa (UO) Medicina Trasfusionale, Azienda Sanitaria Territoriale, Ascoli Piceno, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Carla Messuri
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, Italy
| |
Collapse
|
5
|
Nendl A, Raju SC, Broch K, Mayerhofer CCK, Holm K, Halvorsen B, Lappegård KT, Moscavitch S, Hov JR, Seljeflot I, Trøseid M, Awoyemi A. Intestinal fatty acid binding protein is associated with cardiac function and gut dysbiosis in chronic heart failure. Front Cardiovasc Med 2023; 10:1160030. [PMID: 37332580 PMCID: PMC10272617 DOI: 10.3389/fcvm.2023.1160030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Background The gut microbiota in patients with chronic heart failure (HF) is characterized by low bacterial diversity and reduced ability to synthesize beneficial metabolites. These changes may facilitate leakage of whole bacteria or bacterial products from the gut into the bloodstream, which may activate the innate immune system and contribute to the low-grade inflammation seen in HF. In this exploratory cross-sectional study, we aimed to investigate relationships between gut microbiota diversity, markers of gut barrier dysfunction, inflammatory markers, and cardiac function in chronic HF patients. Methods In total, 151 adult patients with stable HF and left ventricular ejection fraction (LVEF) < 40% were enrolled. We measured lipopolysaccharide (LPS), LPS-binding protein (LBP), intestinal fatty acid binding protein (I-FABP), and soluble cluster of differentiation 14 (sCD14) as markers of gut barrier dysfunction. N-terminal pro-B-type natriuretic peptide (NT-proBNP) level above median was used as a marker of severe HF. LVEF was measured by 2D-echocardiography. Stool samples were sequenced using 16S ribosomal RNA gene amplification. Shannon diversity index was used as a measure of microbiota diversity. Results Patients with severe HF (NT-proBNP > 895 pg/ml) had increased I-FABP (p < 0.001) and LBP (p = 0.03) levels. ROC analysis for I-FABP yielded an AUC of 0.70 (95% CI 0.61-0.79, p < 0.001) for predicting severe HF. A multivariate logistic regression model showed increasing I-FABP levels across quartiles of NT-proBNP (OR 2.09, 95% CI 1.28-3.41, p = 0.003). I-FABP was negatively correlated with Shannon diversity index (rho = -0.30, p = <0.001), and the bacterial genera Ruminococcus gauvreauii group, Bifidobacterium, Clostridium sensu stricto, and Parasutterella, which were depleted in patients with severe HF. Conclusions In patients with HF, I-FABP, a marker of enterocyte damage, is associated with HF severity and low microbial diversity as part of an altered gut microbiota composition. I-FABP may reflect dysbiosis and may be a marker of gut involvement in patients with HF.
Collapse
Affiliation(s)
- Andraž Nendl
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sajan C. Raju
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Kristian Holm
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Knut Tore Lappegård
- Division of Internal Medicine, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Samuel Moscavitch
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Johannes Roksund Hov
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Marius Trøseid
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ayodeji Awoyemi
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| |
Collapse
|
6
|
Li J, Mukiibi R, Jiminez J, Wang Z, Akanno EC, Timsit E, Plastow GS. Applying multi-omics data to study the genetic background of bovine respiratory disease infection in feedlot crossbred cattle. Front Genet 2022; 13:1046192. [PMID: 36579334 PMCID: PMC9790935 DOI: 10.3389/fgene.2022.1046192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Bovine respiratory disease (BRD) is the most common and costly infectious disease affecting the wellbeing and productivity of beef cattle in North America. BRD is a complex disease whose development is dependent on environmental factors and host genetics. Due to the polymicrobial nature of BRD, our understanding of the genetic and molecular mechanisms underlying the disease is still limited. This knowledge would augment the development of better genetic/genomic selection strategies and more accurate diagnostic tools to reduce BRD prevalence. Therefore, this study aimed to utilize multi-omics data (genomics, transcriptomics, and metabolomics) analyses to study the genetic and molecular mechanisms of BRD infection. Blood samples of 143 cattle (80 BRD; 63 non-BRD animals) were collected for genotyping, RNA sequencing, and metabolite profiling. Firstly, a genome-wide association study (GWAS) was performed for BRD susceptibility using 207,038 SNPs. Two SNPs (Chr5:25858264 and BovineHD1800016801) were identified as associated (p-value <1 × 10-5) with BRD susceptibility. Secondly, differential gene expression between BRD and non-BRD animals was studied. At the significance threshold used (log2FC>2, logCPM>2, and FDR<0.01), 101 differentially expressed (DE) genes were identified. These DE genes significantly (p-value <0.05) enriched several immune responses related functions such as inflammatory response. Additionally, we performed expression quantitative trait loci (eQTL) analysis and identified 420 cis-eQTLs and 144 trans-eQTLs significantly (FDR <0.05) associated with the expression of DE genes. Interestingly, eQTL results indicated the most significant SNP (Chr5:25858264) identified via GWAS was a cis-eQTL for DE gene GPR84. This analysis also demonstrated that an important SNP (rs209419196) located in the promoter region of the DE gene BPI significantly influenced the expression of this gene. Finally, the abundance of 31 metabolites was significantly (FDR <0.05) different between BRD and non-BRD animals, and 17 of them showed correlations with multiple DE genes, which shed light on the interactions between immune response and metabolism. This study identified associations between genome, transcriptome, metabolome, and BRD phenotype of feedlot crossbred cattle. The findings may be useful for the development of genomic selection strategies for BRD susceptibility, and for the development of new diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Jiyuan Li
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Robert Mukiibi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Janelle Jiminez
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Everestus C. Akanno
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Edouard Timsit
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Graham S. Plastow
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Gautier T, Deckert V, Nguyen M, Desrumaux C, Masson D, Lagrost L. New therapeutic horizons for plasma phospholipid transfer protein (PLTP): Targeting endotoxemia, infection and sepsis. Pharmacol Ther 2021; 236:108105. [PMID: 34974028 DOI: 10.1016/j.pharmthera.2021.108105] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Phospholipid Transfer Protein (PLTP) transfers amphiphilic lipids between circulating lipoproteins and between lipoproteins, cells and tissues. Indeed, PLTP is a major determinant of the plasma levels, turnover and functionality of the main lipoprotein classes: very low-density lipoproteins (VLDL), low-density lipoproteins (LDL) and high-density lipoproteins (HDL). To date, most attention has been focused on the role of PLTP in the context of cardiometabolic diseases, with additional insights in neurodegenerative diseases and immunity. Importantly, beyond its influence on plasma triglyceride and cholesterol transport, PLTP plays a key role in the modulation of the immune response, with immediate relevance to a wide range of inflammatory diseases including bacterial infection and sepsis. Indeed, emerging evidence supports the role of PLTP, in the context of its association with lipoproteins, in the neutralization and clearance of bacterial lipopolysaccharides (LPS) or endotoxins. LPS are amphipathic molecules originating from Gram-negative bacteria which harbor major pathogen-associated patterns, triggering an innate immune response in the host. Although the early inflammatory reaction constitutes a key step in the anti-microbial defense of the organism, it can lead to a dysregulated inflammatory response and to hemodynamic disorders, organ failure and eventually death. Moreover, and in addition to endotoxemia and acute inflammation, small amounts of LPS in the circulation can induce chronic, low-grade inflammation with long-term consequences in several metabolic disorders such as atherosclerosis, obesity and diabetes. After an updated overview of the role of PLTP in lipid transfer, lipoprotein metabolism and related diseases, current knowledge of its impact on inflammation, infection and sepsis is critically appraised. Finally, the relevance of PLTP as a new player and novel therapeutic target in the fight against inflammatory diseases is considered.
Collapse
Affiliation(s)
- Thomas Gautier
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.
| | - Valérie Deckert
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Maxime Nguyen
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Service Anesthésie-Réanimation Chirurgicale, Dijon University Hospital, Dijon, France
| | - Catherine Desrumaux
- INSERM, U1198, Montpellier, France; Faculty of Sciences, Université Montpellier, Montpellier, France
| | - David Masson
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Plateau Automatisé de Biochimie, Dijon University Hospital, Dijon, France
| | - Laurent Lagrost
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Service de la Recherche, Dijon University Hospital, Dijon, France.
| |
Collapse
|