1
|
Lovewell RR, Langermann S, Flies DB. Immune inhibitory receptor agonist therapeutics. Front Immunol 2025; 16:1566869. [PMID: 40207220 PMCID: PMC11979287 DOI: 10.3389/fimmu.2025.1566869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
The immune system maintains the health of an organism through complex sensing and communication mechanisms. Receptors on the surface of immune cells respond to stimuli resulting in activity described at its most basic as inhibitory or stimulatory. Significant progress in therapeutic intervention has occurred by modulating these pathways, yet much remains to be accomplished. Therapeutics that antagonize, or block, immune inhibitory receptor (IIR) pathways, such as checkpoint inhibitors in cancer are a key example. Antagonism of immune stimulatory receptors (ISRs) for dysregulated inflammation and autoimmunity have received significant attention. An alternative strategy is to agonize, or induce signaling, in immune pathways to treat disease. Agonism of ISRs has been employed with some success in disease settings, but agonist therapeutics of IIRs have great, untapped potential. This review discusses and highlights recent advances in pre-clinical and clinical therapeutics designed to agonize IIR pathways to treat diseases. In addition, an understanding of IIR agonists based on activity at a cellular level as either agonist suppression of stimulatory cells (SuSt), or a new concept, agonist suppression of suppressive cells (SuSu) is proposed.
Collapse
|
2
|
Franzese O. Tumor Microenvironment Drives the Cross-Talk Between Co-Stimulatory and Inhibitory Molecules in Tumor-Infiltrating Lymphocytes: Implications for Optimizing Immunotherapy Outcomes. Int J Mol Sci 2024; 25:12848. [PMID: 39684559 DOI: 10.3390/ijms252312848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This review explores some of the complex mechanisms underlying antitumor T-cell response, with a specific focus on the balance and cross-talk between selected co-stimulatory and inhibitory pathways. The tumor microenvironment (TME) fosters both T-cell activation and exhaustion, a dual role influenced by the local presence of inhibitory immune checkpoints (ICs), which are exploited by cancer cells to evade immune surveillance. Recent advancements in IC blockade (ICB) therapies have transformed cancer treatment. However, only a fraction of patients respond favorably, highlighting the need for predictive biomarkers and combination therapies to overcome ICB resistance. A crucial aspect is represented by the complexity of the TME, which encompasses diverse cell types that either enhance or suppress immune responses. This review underscores the importance of identifying the most critical cross-talk between inhibitory and co-stimulatory molecules for developing approaches tailored to patient-specific molecular and immune profiles to maximize the therapeutic efficacy of IC inhibitors and enhance clinical outcomes.
Collapse
Affiliation(s)
- Ornella Franzese
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
3
|
Jiang J, Cao Z, Li B, Ma X, Deng X, Yang B, Liu Y, Zhai F, Cheng X. Disseminated tuberculosis is associated with impaired T cell immunity mediated by non-canonical NF-κB pathway. J Infect 2024; 89:106231. [PMID: 39032519 DOI: 10.1016/j.jinf.2024.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVES The mechanism that leads to disseminated tuberculosis in HIV-negative patients is still largely unknown. T cell subsets and signaling pathways that were associated with disseminated tuberculosis were investigated. METHODS Single-cell profiling of whole T cells was performed to identify T cell subsets and enriched signaling pathways that were associated with disseminated tuberculosis. Flow cytometric analysis and blocking experiment were used to investigate the findings obtained by transcriptome sequencing. RESULTS Patients with disseminated tuberculosis had depleted Th1, Tc1 and Tc17 cell subsets, and IFNG was the most down-regulated gene in both CD4 and CD8 T cells. Gene Ontology analysis showed that non-canonical NF-κB signaling pathway, including NFKB2 and RELB genes, was significantly down-regulated and was probably associated with disseminated tuberculosis. Expression of several TNF superfamily ligands and receptors, such as LTA and TNF genes, were suppressed in patients with disseminated tuberculosis. Blocking of TNF-α and soluble LTα showed that TNF-α was involved in IFN-γ production and LTα influenced TNF-α expression in T cells. CONCLUSIONS Impaired T cell IFN-γ response mediated by suppression of TNF and non-canonical NF-κB signaling pathways might be responsible for disseminated tuberculosis.
Collapse
Affiliation(s)
- Jing Jiang
- Institute of Research, Beijing Key Laboratory of Organ Transplantation and Immune Regulation, Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Zhihong Cao
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Binyu Li
- Institute of Research, Beijing Key Laboratory of Organ Transplantation and Immune Regulation, Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xihui Ma
- Institute of Research, Beijing Key Laboratory of Organ Transplantation and Immune Regulation, Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xianping Deng
- Department of Laboratory Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Bingfen Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yanhua Liu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Fei Zhai
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoxing Cheng
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Chu C, Schönbrunn A, Elitok S, Kern F, Schnatbaum K, Wenschuh H, Klemm K, von Baehr V, Krämer BK, Hocher B. T-cell proliferation assay for the detection of SARS-CoV-2-specific T-cells. Clin Chim Acta 2022; 532:130-136. [PMID: 35690083 PMCID: PMC9174102 DOI: 10.1016/j.cca.2022.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022]
Abstract
Both infection with and vaccination against SARS-CoV-2 trigger a complex B-cell and T-cell response. Methods for the analysis of the B-cell response are now well established. However, reliable methods for measuring the T-cell response are less well established and their usefulness in clinical settings still needs to be proven. Here, we have developed and validated a T-cell proliferation assay based on 3H thymidine incorporation. The assay is using SARS-CoV-2 derived peptide pools that cover the spike (S), the nucleocapsid (N) and the membrane (M) protein for stimulation. We have compared this novel SARS-CoV-2 lymphocyte transformation test (SARS-CoV-2 LTT) to an established ELISA assay detecting Immunoglobulin G (IgG) antibodies to the S1 subunit of the SARS-CoV-2 spike protein. The study was carried out using blood samples from both vaccinated and infected health care workers as well as from a non-infected control group. Our novel SARS-CoV-2 LTT shows excellent discrimination of infected and/or vaccinated individuals versus unexposed controls, with the ROC analysis showing an area under the curve (AUC) of > 0.95. No false positives were recorded as all unexposed controls had a negative LTT result. When using peptide pools not only representing the S protein (found in all currently approved vaccines) but also the N and M proteins (not contained in the vast majority of vaccines), the novel SARS-CoV-2 LTT can also discriminate T-cell responses resulting from vaccination against those induced by infection.
Collapse
Affiliation(s)
- Chang Chu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Germany; Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Anne Schönbrunn
- Institute of Medical Diagnostics, IMD Berlin-Potsdam, Berlin, Germany
| | - Saban Elitok
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Germany; Department of Nephrology and Endocrinology, Ernst von Bergmann Hospital Potsdam, Potsdam, Germany
| | - Florian Kern
- Brighton and Sussex Medical School, Brighton BN1 9PX, UK; JPT Peptide Technologies, Berlin, Germany
| | | | | | - Kristin Klemm
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Germany; Department of Nephrology and Endocrinology, Ernst von Bergmann Hospital Potsdam, Potsdam, Germany
| | - Volker von Baehr
- Institute of Medical Diagnostics, IMD Berlin-Potsdam, Berlin, Germany
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Germany; European Center for Angioscience ECAS, Faculty of Medicine of the University of Heidelberg, Mannheim, Germany; Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Germany; Institute of Medical Diagnostics, IMD Berlin-Potsdam, Berlin, Germany; Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
| |
Collapse
|
5
|
Alharbi A, Alsoliemy A, Alzahrani SO, Alkhamis K, Almehmadi SJ, Khalifa ME, Zaky R, El-Metwaly NM. Green synthesis approach for new Schiff's-base complexes; theoretical and spectral based characterization with in-vitro and in-silico screening. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117803] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Du Y, Xu J. Engineered Bifunctional Proteins for Targeted Cancer Therapy: Prospects and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103114. [PMID: 34585802 DOI: 10.1002/adma.202103114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Bifunctional proteins (BFPs) are a class of therapeutic agents produced through genetic engineering and protein engineering, and are increasingly used to treat various human diseases, including cancer. These proteins usually have two or more biological functions-specifically recognizing different molecular targets to regulate the related signaling pathways, or mediating effector molecules/cells to kill tumor cells. Unlike conventional small-molecule or single-target drugs, BFPs possess stronger biological activity but lower systemic toxicity. Hence, BFPs are considered to offer many benefits for the treatment of heterogeneous tumors. In this review, the authors briefly describe the unique structural feature of BFP molecules and innovatively divide them into bispecific antibodies, cytokine-based BFPs (immunocytokines), and protein toxin-based BFPs (immunotoxins) according to their mode of action. In addition, the latest advances in the development of BFPs are discussed and the potential limitations or problems in clinical applications are outlined. Taken together, future studies need to be centered on understanding the characteristics of BFPs for optimizing and designing more effective such drugs.
Collapse
Affiliation(s)
- Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jian Xu
- Laboratory of Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
7
|
Phosphatidylserine binding directly regulates TIM-3 function. Biochem J 2021; 478:3331-3349. [PMID: 34435619 PMCID: PMC8454703 DOI: 10.1042/bcj20210425] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022]
Abstract
Co-signaling receptors for the T cell receptor (TCR) are important therapeutic targets, with blockade of co-inhibitory receptors such as PD-1 now central in immuno-oncology. Advancing additional therapeutic immune modulation approaches requires understanding ligand regulation of other co-signaling receptors. One poorly understood potential therapeutic target is TIM-3 (T cell immunoglobulin and mucin domain containing-3). Which of TIM-3's several proposed regulatory ligands is/are relevant for signaling is unclear, and different studies have reported TIM-3 as a co-inhibitory or co-stimulatory receptor in T cells. Here, we show that TIM-3 promotes NF-κB signaling and IL-2 secretion following TCR stimulation in Jurkat cells, and that this activity is regulated by binding to phosphatidylserine (PS). TIM-3 signaling is stimulated by PS exposed constitutively in cultured Jurkat cells, and can be blocked by mutating the PS-binding site or by occluding this site with an antibody. We also find that TIM-3 signaling alters CD28 phosphorylation. Our findings clarify the importance of PS as a functional TIM-3 ligand, and may inform the future exploitation of TIM-3 as a therapeutic target.
Collapse
|
8
|
Liu S, Xu J, Wu J. The Role of Co-Signaling Molecules in Psoriasis and Their Implications for Targeted Treatment. Front Pharmacol 2021; 12:717042. [PMID: 34354596 PMCID: PMC8329336 DOI: 10.3389/fphar.2021.717042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Psoriasis is a chronic, systemic immune-mediated inflammatory disease manifesting in the skin, joint or both. Co-signaling molecules are essential for determining the magnitude of the T cell response to the antigen. According to the function of co-signaling molecules, they can be divided into co-stimulatory molecules and co-inhibitory molecules. The role of co-signaling molecules in psoriasis is recognized, mainly including the co-stimulatory molecules CD28, CD40, OX40, CD27, DR3, LFA-1, and LFA-3 and the co-inhibitory molecules CTLA-4, PD-1, and TIM-3. They impact the pathological process of psoriasis by modulating the immune strength of T cells, regulating the production of cytokines or the differentiation of Tregs. In recent years, immunotherapies targeting co-signaling molecules have made significant progress and shown broad application prospects in psoriasis. This review aims to outline the possible role of co-signaling molecules in the pathogenesis of psoriasis and their potential application for the treatment of psoriasis.
Collapse
Affiliation(s)
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Alharbi A, Alzahrani S, Alkhatib F, Abu Al-Ola K, Abdulaziz Alfi A, Zaky R, El-Metwaly NM. Studies on new Schiff base complexes synthesized from d10 metal ions: Spectral, conductometric measurements, DFT and docking simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Rioseras B, Moro-García MA, García-Torre A, Bueno-García E, López-Martínez R, Iglesias-Escudero M, Diaz-Peña R, Castro-Santos P, Arias-Guillén M, Alonso-Arias R. Acquisition of New Migratory Properties by Highly Differentiated CD4+CD28 null T Lymphocytes in Rheumatoid Arthritis Disease. J Pers Med 2021; 11:jpm11070594. [PMID: 34202487 PMCID: PMC8306508 DOI: 10.3390/jpm11070594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Expanded CD4+CD28null T lymphocytes are found in the tissues and peripheral blood of patients with many autoimmune diseases, such as rheumatoid arthritis (RA). These highly differentiated cells present potent inflammatory activity and capability to induce tissue destruction, which has been suggested to predispose to the development of more aggressive disease. In fact, preferential migration to inflammatory sites has been proposed to be a contributing factor in the progression of autoimmune and cardiovascular diseases frequently found in these patients. The functional activity of CD4+CD28null T lymphocytes is largely dependent on interleukin 15 (IL-15), and this cytokine may also act as a selective attractor of these cells to local inflammatory infiltrates in damaged tissues. We have analysed, in RA patients, the migratory properties and transcriptional motility profile of CD4+CD28null T lymphocytes compared to their counterparts CD28+ T lymphocytes and the enhancing role of IL-15. Identification of the pathways involved in this process will allow us to design strategies directed to block effector functions that CD4+CD28null T lymphocytes have in the target tissue, which may represent therapeutic approaches in this immune disorder.
Collapse
Affiliation(s)
- Beatriz Rioseras
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
| | - Marco Antonio Moro-García
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
- Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Alejandra García-Torre
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
| | - Eva Bueno-García
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
| | - Rocio López-Martínez
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
| | | | - Roberto Diaz-Peña
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3460000, Chile;
| | - Patricia Castro-Santos
- Inmunologia, Centro de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, 36310 Vigo, Spain;
| | - Miguel Arias-Guillén
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
- Servicio de Neumología, Hospital Universitario Central Asturias, 33011 Oviedo, Spain;
- CIBER—Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rebeca Alonso-Arias
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
- Correspondence:
| |
Collapse
|
11
|
Burvenich IJG, Goh YW, Guo N, Gan HK, Rigopoulos A, Cao D, Liu Z, Ackermann U, Wichmann CW, McDonald AF, Huynh N, O'Keefe GJ, Gong SJ, Scott FE, Li L, Geng W, Zutshi A, Lan Y, Scott AM. Radiolabelling and preclinical characterization of 89Zr-Df-radiolabelled bispecific anti-PD-L1/TGF-βRII fusion protein bintrafusp alfa. Eur J Nucl Med Mol Imaging 2021; 48:3075-3088. [PMID: 33608805 DOI: 10.1007/s00259-021-05251-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/08/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE Τhis study aimed to optimize the 89Zr-radiolabelling of bintrafusp alfa investigational drug product and controls, and perform the in vitro and in vivo characterization of 89Zr-Df-bintrafusp alfa and 89Zr-Df-control radioconjugates. METHODS Bintrafusp alfa (anti-PD-L1 human IgG1 antibody fused to TGF-β receptor II (TGF-βRII), avelumab (anti-PD-L1 human IgG1 control antibody), isotype control (mutated inactive anti-PD-L1 IgG1 control antibody), and trap control (mutated inactive anti-PD-L1 human IgG1 fused to active TGF-βRII) were chelated with p-isothiocyanatobenzyl-desferrioxamine (Df). After radiolabelling with zirconium-89 (89Zr), radioconjugates were assessed for radiochemical purity, immunoreactivity, antigen binding affinity, and serum stability in vitro. In vivo biodistribution and imaging studies were performed with PET/CT to identify and quantitate 89Zr-Df-bintrafusp alfa tumour uptake in a PD-L1/TGF-β-positive murine breast cancer model (EMT-6). Specificity of 89Zr-Df-bintrafusp alfa was assessed via a combined biodistribution and imaging experiment in the presence of competing cold bintrafusp alfa (1 mg/kg). RESULTS Nanomolar affinities for PD-L1 were achieved with 89Zr-Df-bintrafusp alfa and 89Zr-avelumab. Biodistribution and imaging studies in PD-L1- and TGF-β-positive EMT-6 tumour-bearing BALB/c mice demonstrated the biologic similarity of 89Zr-Df-bintrafusp alfa and 89Zr-avelumab indicating the in vivo distribution pattern of bintrafusp alfa is driven by its PD-L1 binding arm. Competition study with 1 mg of unlabelled bintrafusp alfa or avelumab co-administered with trace dose of 89Zr-labelled bintrafusp alfa demonstrated the impact of dose and specificity of PD-L1 targeting in vivo. CONCLUSION Molecular imaging of 89Zr-Df-bintrafusp alfa biodistribution was achievable and allows non-invasive quantitation of tumour uptake of 89Zr-Df-bintrafusp alfa, suitable for use in bioimaging clinical trials in cancer patients.
Collapse
Affiliation(s)
- Ingrid Julienne Georgette Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Yit Wooi Goh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia
| | - Hui Kong Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Diana Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Zhanqi Liu
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Uwe Ackermann
- School of Cancer Medicine, La Trobe University, Melbourne, Australia.,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Christian Werner Wichmann
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Alexander Franklin McDonald
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Nhi Huynh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia
| | - Graeme Joseph O'Keefe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Sylvia Jie Gong
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.,School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, Australia
| | - Fiona Elizabeth Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Linghui Li
- EMD Serono Research & Development Institute, Inc., a business of Merck KGaA, Darmstadt, Germany, Billerica, MA, USA
| | - Wanping Geng
- EMD Serono Research & Development Institute, Inc., a business of Merck KGaA, Darmstadt, Germany, Billerica, MA, USA
| | - Anup Zutshi
- EMD Serono Research & Development Institute, Inc., a business of Merck KGaA, Darmstadt, Germany, Billerica, MA, USA
| | - Yan Lan
- EMD Serono Research & Development Institute, Inc., a business of Merck KGaA, Darmstadt, Germany, Billerica, MA, USA
| | - Andrew Mark Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Melbourne, Australia. .,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia. .,Department of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
12
|
Liu S, Wang J, Li W, Shi H, Zhou C, Tang G, Zhang J, Yang Z. Dendritic cells transduced with TIPE-2 recombinant adenovirus induces T cells suppression. JOURNAL OF INFLAMMATION-LONDON 2021; 18:9. [PMID: 33568165 PMCID: PMC7877089 DOI: 10.1186/s12950-021-00274-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 01/29/2021] [Indexed: 11/10/2022]
Abstract
INTRODUCTION TIPE-2 has been identified as a negative regulator of both innate and adaptive immunity and is involved in several inflammatory diseases. However, the role of immune suppression of dendritic cells (DCs) transduced with TIPE-2 has not been well studied. METHODS In this study, DCs were transduced with TIPE-2 recombinant adenovirus, and then were cocultured with allogeneic CD4+ or CD8 + T cells. The proliferation, cytokine production and activation marker levels of CD4+ or CD8 + T cell were detected. RESULTS The data demonstrated that T cell proliferation, cytokine production and activation marker levels were attenuated after treated with TIPE-2 transduced DCs. CONCLUSIONS These results suggested that TIPE-2 transduced DCs are capable of inducing allogeneic CD4+ or CD8 + T cell immune suppression, which provide a promising way for the therapeutical strategies of transplantation or autoimmune diseases.
Collapse
Affiliation(s)
- Shudong Liu
- Department of Neurology and Chongqing Key Laboratory of Cerebrovascular Disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Jie Wang
- Department of Neurology, Chongqing traditional Chinese medicine hospital, Chongqing, 400021, China
| | - Wenyan Li
- Department of Neurology and Chongqing Key Laboratory of Cerebrovascular Disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Hui Shi
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Changlong Zhou
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Ge Tang
- Department of Neurology and Chongqing Key Laboratory of Cerebrovascular Disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Jiangwei Zhang
- Department of Neurology and Chongqing Key Laboratory of Cerebrovascular Disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Zhao Yang
- Department of Neurology and Chongqing Key Laboratory of Cerebrovascular Disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China.
| |
Collapse
|
13
|
Elucidating different pattern of immunoregulation in BALB/c and C57BL/6 mice and their F1 progeny. Sci Rep 2021; 11:1536. [PMID: 33452272 PMCID: PMC7810711 DOI: 10.1038/s41598-020-79477-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022] Open
Abstract
Helminths are large multicellular parasites that infect one quarter of the human population. To prolong their survival, helminths suppress the immune responses of their hosts. Strongyloides ratti delays its expulsion from the gut by induction of regulatory circuits in a mouse strain-specific manner: depletion of Foxp3+ regulatory T cells (Treg) improves the anti-S. ratti immunity in BALB/c but not in C57BL/6 mice. In the current study we compare the hierarchy of immunoregulatory pathways in BALB/c, C57BL/6 mice and their F1 progeny (BALB/c × C57BL/6). Using multicolor flow cytometry, we show that S. ratti induces a distinct pattern of inhibitory checkpoint receptors by Foxp3+ Treg and Foxp3- T cells. Intensity of expression was highest in C57BL/6 and lowest in BALB/c mice, while the F1 cross had an intermediate phenotype or resembled BALB/c mice. Treg subsets expanded during infection in all three mouse strains. Similar to BALB/c mice, depletion of Treg reduced intestinal parasite burden and increased mucosal mast cell activation in S. ratti-infected F1 mice. Our data indicate that Treg dominate the regulation of immune responses in BALB/c and F1 mice, while multiple regulatory layers exist in C57BL/6 mice that may compensate for the absence of Treg.
Collapse
|
14
|
Hokello J, Sharma AL, Tyagi M. Efficient Non-Epigenetic Activation of HIV Latency through the T-Cell Receptor Signalosome. Viruses 2020; 12:v12080868. [PMID: 32784426 PMCID: PMC7472175 DOI: 10.3390/v12080868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) can either undergo a lytic pathway to cause productive systemic infections or enter a latent state in which the integrated provirus remains transcriptionally silent for decades. The ability to latently infect T-cells enables HIV-1 to establish persistent infections in resting memory CD4+ T-lymphocytes which become reactivated following the disruption or cessation of intensive drug therapy. The maintenance of viral latency occurs through epigenetic and non-epigenetic mechanisms. Epigenetic mechanisms of HIV latency regulation involve the deacetylation and methylation of histone proteins within nucleosome 1 (nuc-1) at the viral long terminal repeats (LTR) such that the inhibition of histone deacetyltransferase and histone lysine methyltransferase activities, respectively, reactivates HIV from latency. Non-epigenetic mechanisms involve the nuclear restriction of critical cellular transcription factors such as nuclear factor-kappa beta (NF-κB) or nuclear factor of activated T-cells (NFAT) which activate transcription from the viral LTR, limiting the nuclear levels of the viral transcription transactivator protein Tat and its cellular co-factor positive transcription elongation factor b (P-TEFb), which together regulate HIV transcriptional elongation. In this article, we review how T-cell receptor (TCR) activation efficiently induces NF-κB, NFAT, and activator protein 1 (AP-1) transcription factors through multiple signal pathways and how these factors efficiently regulate HIV LTR transcription through the non-epigenetic mechanism. We further discuss how elongation factor P-TEFb, induced through an extracellular signal-regulated kinase (ERK)-dependent mechanism, regulates HIV transcriptional elongation before new Tat is synthesized and the role of AP-1 in the modulation of HIV transcriptional elongation through functional synergy with NF-κB. Furthermore, we discuss how TCR signaling induces critical post-translational modifications of the cyclin-dependent kinase 9 (CDK9) subunit of P-TEFb which enhances interactions between P-TEFb and the viral Tat protein and the resultant enhancement of HIV transcriptional elongation.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Basic Science, Faculty of Science and Technology, Kampala International University-Western Campus, P.O Box 71, Bushenyi, Uganda;
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA;
- Correspondence:
| |
Collapse
|
15
|
Yin Y, Frank D, Zhou W, Kaur N, French JB, Carpino N. An unexpected 2-histidine phosphoesterase activity of suppressor of T-cell receptor signaling protein 1 contributes to the suppression of cell signaling. J Biol Chem 2020; 295:8514-8523. [PMID: 32371395 DOI: 10.1074/jbc.ra120.013482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/30/2020] [Indexed: 11/06/2022] Open
Abstract
The suppressor of T-cell receptor (TCR) signaling (Sts) proteins Sts-1 and Sts-2 suppress receptor-mediated signaling pathways in various immune cells, including the TCR pathway in T cells and the Dectin-1 signaling pathway in phagocytes. As multidomain enzymes, they contain an N-terminal ubiquitin-association domain, a central Src homology 3 domain, and a C-terminal histidine phosphatase domain. Recently, a 2-histidine (2H) phosphoesterase motif was identified within the N-terminal portion of Sts. The 2H phosphoesterase motif defines an evolutionarily ancient protein domain present in several enzymes that hydrolyze cyclic phosphate bonds on different substrates, including cyclic nucleotides. It is characterized by two invariant histidine residues that play a critical role in catalytic activity. Consistent with its assignment as a phosphoesterase, we demonstrate here that the Sts-1 2H phosphoesterase domain displays catalytic, saturable phosphodiesterase activity toward the dinucleotide 2',3'-cyclic NADP. The enzyme exhibited a high degree of substrate specificity and selectively generated the 3'-nucleotide as the sole product. Sts-1 also had phosphodiesterase catalytic activity toward a 5-mer RNA oligonucleotide containing a 2',3'-cyclic phosphate group at its 3' terminus. To investigate the functional significance of Sts-1 2H phosphoesterase activity, we generated His-to-Ala variants and examined their ability to negatively regulate cellular signaling pathways. Substitution of either conserved histidine compromised the ability of Sts-1 to suppress signaling pathways downstream of both the TCR and the Dectin-1 receptor. Our results identify a heretofore unknown cellular enzyme activity associated with Sts-1 and indicate that this catalytic activity is linked to specific cell-signaling outcomes.
Collapse
Affiliation(s)
- Yue Yin
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - David Frank
- Department of Microbiology and Immunology, Stony Brook University Medical Center, Stony Brook, New York, USA
| | - Weijie Zhou
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Neena Kaur
- Department of Microbiology and Immunology, Stony Brook University Medical Center, Stony Brook, New York, USA
| | - Jarrod B French
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA .,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Nick Carpino
- Department of Microbiology and Immunology, Stony Brook University Medical Center, Stony Brook, New York, USA
| |
Collapse
|