1
|
Optimized Method for the Identification of Candidate Genes and Molecular Maker Development Related to Drought Tolerance in Oil Palm (Elaeis guineensis Jacq.). PLANTS 2022; 11:plants11172317. [PMID: 36079700 PMCID: PMC9460821 DOI: 10.3390/plants11172317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
Drought is a major constraint in oil palm (Elaeis guineensis Jacq.) production. As oil palm breeding takes a long time, molecular markers of genes related to drought tolerance characteristics were developed for effective selection. Two methods of gene identification associated with drought, differential display reverse transcription polymerase chain reaction (DDRT-PCR) and pyrosequencing platform, were conducted before developing the EST-SSR marker. By DDRT-PCR, fourteen out of twenty-four primer combinations yielded the polymorphism in leaf as 77.66% and root as 96.09%, respectively. BLASTN and BLASTX revealed nucleotides from 8 out of 236 different banding similarities to genes associated with drought stress. Five out of eight genes gave a similarity with our pyrosequencing sequencing database. Furthermore, pyrosequencing analysis of two oil palm libraries, drought-tolerant, and drought sensitive, found 117 proteins associated with drought tolerance. Thirteen out of sixty EST-SSR primers could be distinguished in 119 oil palm parents in our breeding program. All of our found genes revealed an ability to develop as a molecular marker for drought tolerance. However, the function of the validated genes on drought response in oil palm must be evaluated.
Collapse
|
2
|
DafaAlla TEIM, Abdalla M, El-Arabey AA, Eltayb WA, Mohapatra RK. Botrytis cinerea alcohol dehydrogenase mediates fungal development, environmental adaptation and pathogenicity. J Biomol Struct Dyn 2021; 40:12426-12438. [PMID: 34472419 DOI: 10.1080/07391102.2021.1971112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022]
Abstract
Botrytis cinerea is an economically critical necrotrophic fungus that infecting many types of plants species. Although the lifestyle adaptations and genetic foundations of several enzymes and metabolites involved in B. cinerea virulence during host plant infection are well studied, the role of B. cinerea alcohol dehydrogenase (ADH) enzymes in these processes is poorly understood. Herein, we identified a significant up-regulation of the transcriptional levels of the BcADH1 gene during the tomato - B. cinerea strain B0510 interaction and at the early stage of infection. Substantially, we used a recent approach for replacement of gene by utilizing homologous recombination to generate knock-out mutants (Δbcadh1) and their effective complementary strains (Δbcadh1/C). A strong difference in the morphology of Δbcadh1 mutants from the wild type (WT) was detected, with respect to the conidiospore, conidial germination, and formation of branches, sporulation and sclerotia. In addition, the Δbcadh1 mutants showed significant differences in their virulence on tomato leaves relative to the WT. Moreover, the Δbcadh1 mutants appeared to have higher sensitivity to oxygen limitation (hypoxia) and reactive oxygen species, and had lost their ability of alcoholic fermentation compared with the WT and complementary strains. These results provide strong evidence for the requirement of the ADH1 gene for fungal development, environmental adaptation and its ability for full pathogenicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tayb Elassma I M DafaAlla
- College of Plant Sciences, Jilin University, Changchun, China
- College of Natural Resources and Environmental Studies, Sinnar University, Sinnar, Sudan
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Amr Ahmed El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Wafa Ali Eltayb
- Department biotechnology, Faculty of Science and Technology, Shendi University, Shendi, Sudan
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Keonjhar, India
| |
Collapse
|
3
|
Benito-Pescador D, Santander D, Arranz M, Díaz-Mínguez JM, Eslava AP, van Kan JAL, Benito EP. Bcmimp1, a Botrytis cinerea Gene Transiently Expressed in planta, Encodes a Mitochondrial Protein. Front Microbiol 2016; 7:213. [PMID: 26952144 PMCID: PMC4767927 DOI: 10.3389/fmicb.2016.00213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/09/2016] [Indexed: 11/19/2022] Open
Abstract
Botrytis cinerea is a widespread necrotrophic fungus which infects more than 200 plant species. In an attempt to characterize the physiological status of the fungus in planta and to identify genetic factors contributing to its ability to infect the host cells, a differential gene expression analysis during the interaction B. cinerea-tomato was carried out. Gene Bcmimp1 codes for a mRNA detected by differential display in the course of this analysis. During the interaction with the host, it shows a transient expression pattern with maximal expression levels during the colonization and maceration of the infected tissues. Bioinformatic analysis suggested that BCMIMP1 is an integral membrane protein located in the mitochondrial inner membrane. Co-localization experiments with a BCMIMP1-GFP fusion protein confirmed that the protein is targeted to the mitochondria. ΔBcmimp1 mutants do not show obvious phenotypic differences during saprophytic growth and their infection ability was unaltered as compared to the wild-type. Interestingly, the mutants produced increased levels of reactive oxygen species, likely as a consequence of disturbed mitochondrial function. Although Bcmimp1 expression is enhanced in planta it cannot be considered a pathogenicity factor.
Collapse
Affiliation(s)
- David Benito-Pescador
- Instituto Hispano-Luso de Investigaciones Agrarias - Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Daniela Santander
- Instituto Hispano-Luso de Investigaciones Agrarias - Departamento de Microbiología y Genética, Universidad de SalamancaSalamanca, Spain; Facultad de Ciencias Agropecuarias y Ambientale, Universidad Técnica del NorteIbarra, Ecuador
| | - M Arranz
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - José M Díaz-Mínguez
- Instituto Hispano-Luso de Investigaciones Agrarias - Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Arturo P Eslava
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University Wageningen, Netherlands
| | - Ernesto P Benito
- Instituto Hispano-Luso de Investigaciones Agrarias - Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| |
Collapse
|
4
|
Efficiency of different strategies for gene silencing in Botrytis cinerea. Appl Microbiol Biotechnol 2014; 98:9413-24. [PMID: 25293582 DOI: 10.1007/s00253-014-6087-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/05/2014] [Accepted: 09/07/2014] [Indexed: 12/31/2022]
Abstract
The generation of knock-out mutants in fungal pathogens by gene replacement and insertional mutagenesis is the classical method to validate virulence factors. An alternative strategy consists of silencing the candidate virulence gene by making use of the phenomenon of RNA interference (RNAi), adding features such as the possibility of generating knock-down mutants with variable expression levels of the target gene or the ability to simultaneously target multiple genes. Two different approaches have been assayed to generate knock-down mutants by RNAi in the phytopathogenic fungus Botrytis cinerea. In the first one, the single nitrate reductase gene in the B. cinerea genome, niaD, was silenced by transformation with a construct containing a 400-bp niaD fragment between two opposing promoters, so that a dsRNA fragment was generated. As an alternative approach, the mgfp4 gene coding for the green fluorescent protein (GFP) was silenced by transforming two different GFP-expressing strains of B. cinerea with a hairpin RNA (hpRNA)-expressing vector, containing two inverted copies of a 300-bp mgfp4 fragment separated by a spacer DNA. While the opposing dual-promoter strategy produced gene silencing in about half of the transformants assayed, the efficiency of the hpRNA-expressing vector was higher, inducing a decrease in GFP levels in more than 90 % of transformants. The degree of silencing achieved was high with both methods, but the hpRNA strategy resulted in a higher proportion of strongly silenced transformants.
Collapse
|
5
|
Nafisi M, Stranne M, Zhang L, van Kan JAL, Sakuragi Y. The endo-arabinanase BcAra1 is a novel host-specific virulence factor of the necrotic fungal phytopathogen Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:781-92. [PMID: 24725206 DOI: 10.1094/mpmi-02-14-0036-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The plant cell wall is one of the first physical interfaces encountered by plant pathogens and consists of polysaccharides, of which arabinan is an important constituent. During infection, the necrotrophic plant pathogen Botrytis cinerea secretes a cocktail of plant cell-wall-degrading enzymes, including endo-arabinanase activity, which carries out the breakdown of arabinan. The roles of arabinan and endo-arabinanases during microbial infection were thus far elusive. In this study, the gene Bcara1 encoding for a novel α-1,5-L-endo-arabinanase was identified and the heterologously expressed BcAra1 protein was shown to hydrolyze linear arabinan with high efficiency whereas little or no activity was observed against the other oligo- and polysaccharides tested. The Bcara1 knockout mutants displayed reduced arabinanase activity in vitro and severe retardation in secondary lesion formation during infection of Arabidopsis leaves. These results indicate that BcAra1 is a novel endo-arabinanase and plays an important role during the infection of Arabidopsis. Interestingly, the level of Bcara1 transcript was considerably lower during the infection of Nicotiana benthamiana compared with Arabidopsis and, consequently, the ΔBcara1 mutants showed the wild-type level of virulence on N. benthamiana leaves. These results support the conclusion that the expression of Bcara1 is host dependent and is a key determinant of the disease outcome.
Collapse
|
6
|
Hafez EE, Abdelkhalek AA, El-Wahab ASEDA, Galal FH. Altered Gene Expression: Induction/Suppression in Leek Elicited by Iris Yellow Spot Virus Infection (IYSV) Egyptian Isolate. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2013.0068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
7
|
Williamson B, Tudzynski B, Tudzynski P, van Kan JAL. Botrytis cinerea: the cause of grey mould disease. MOLECULAR PLANT PATHOLOGY 2007; 8:561-80. [PMID: 20507522 DOI: 10.1111/j.1364-3703.2007.00417.x] [Citation(s) in RCA: 843] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Botrytis cinerea (teleomorph: Botryotinia fuckeliana) is an airborne plant pathogen with a necrotrophic lifestyle attacking over 200 crop hosts worldwide. Although there are fungicides for its control, many classes of fungicides have failed due to its genetic plasticity. It has become an important model for molecular study of necrotrophic fungi. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, subphylum: Pezizomycotina, class: Leotiomycetes, order: Helotiales, family: Sclerotiniaceae, genus: Botryotinia. HOST RANGE AND SYMPTOMS Over 200 mainly dicotyledonous plant species, including important protein, oil, fibre and horticultural crops, are affected in temperate and subtropical regions. It can cause soft rotting of all aerial plant parts, and rotting of vegetables, fruits and flowers post-harvest to produce prolific grey conidiophores and (macro)conidia typical of the disease. PATHOGENICITY B. cinerea produces a range of cell-wall-degrading enzymes, toxins and other low-molecular-weight compounds such as oxalic acid. New evidence suggests that the pathogen triggers the host to induce programmed cell death as an attack strategy. Resistance: There are few examples of robust genetic host resistance, but recent work has identified quantitative trait loci in tomato that offer new approaches for stable polygenic resistance in future. USEFUL WEBSITES http://www.phi-base.org/query.php, http://www.broad.mit.edu/annotation/genome/botrytis_cinerea/Home.html, http://urgi.versailles.inra.fr/projects/Botrytis/, http://cogeme.ex.ac.uk.
Collapse
Affiliation(s)
- Brian Williamson
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | | | | | | |
Collapse
|
8
|
Mehli L, Kjellsen TD, Dewey FM, Hietala AM. A case study from the interaction of strawberry and Botrytis cinerea highlights the benefits of comonitoring both partners at genomic and mRNA level. THE NEW PHYTOLOGIST 2005; 168:465-74. [PMID: 16219085 DOI: 10.1111/j.1469-8137.2005.01526.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Strawberry Fragaria x ananassa (cv. Korona) was inoculated with Botrytis cinerea by dipping berries in a conidial suspension. Colonization by the pathogen was monitored using real-time PCR, ELISA and ergosterol assays, the first showing the highest sensitivity. The expression of pathogen beta-tubulin and six polygalacturonases (Bcpg1-6) and three host defence genes (polygalacturonase-inhibiting protein (FaPGIP) and two class II chitinases) were monitored using real-time RT-PCR. The maximum transcript levels of the host defence genes occurred at 16 h postinoculation (hpi) at the presumed initial penetration stage. The unique transcript profile of Bcpg2 over the 96-h incubation time and its high transcript levels relative to those of the other Bcpgs at 8-24 hpi suggest that the gene has a specific role in the penetration stage. Bcpg1 was expressed constitutively at a relatively high level in actively growing mycelia throughout the experimental period. Comparison of the transcript profiles indicated that Bcpg1 and Bcpg3-6 were coordinately regulated.
Collapse
Affiliation(s)
- Lisbeth Mehli
- Sør-Trøndelag University College, Faculty of Food Science and Medical Technology, Trondheim, Norway.
| | | | | | | |
Collapse
|
9
|
Warren JM, Covert SF. Differential expression of pine and Cronartium quercuum f. sp. fusiforme genes in fusiform rust galls. Appl Environ Microbiol 2004; 70:441-51. [PMID: 14711673 PMCID: PMC321230 DOI: 10.1128/aem.70.1.441-451.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2003] [Accepted: 10/07/2003] [Indexed: 11/20/2022] Open
Abstract
Cronartium quercuum f. sp. fusiforme is the causative agent of fusiform rust disease of southern pines in the United States. This disease is characterized by the formation of woody branch and stem galls. Differential display was used to identify pine genes whose expression is altered by C. quercuum f. sp. fusiforme infection and to identify C. quercuum f. sp. fusiforme genes that are expressed in fusiform rust galls. Six pine cDNAs that appeared to be differentially expressed in galled and healthy stems and 13 C. quercuum f. sp. fusiforme cDNAs expressed in galled tissues were identified. A probe that hybridizes specifically to C. quercuum f. sp. fusiforme 18S rRNA was used to estimate that 14% of the total RNA in fusiform rust galls was from C. quercuum f. sp. fusiforme. This finding was used to calibrate gene expression levels in galls when comparing them to expression levels in uninfected pines or in isolated C. quercuum f. sp. fusiforme cultures. According to Northern analysis and reverse transcriptase PCR analysis, all six of the pine clones were expressed at lower levels in galls than in healthy tissues. Seven of the nine C. quercuum f. sp. fusiforme clones that were assayed were expressed at higher levels in galls than in axenic culture. A number of the cDNAs encode proteins that are similar to those that play roles in plant development, plant defense, or fungal stress responses.
Collapse
Affiliation(s)
- Jaimie M Warren
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
10
|
Sánchez-Torres P, González-Candelas L. Isolation and characterization of genes differentially expressed during the interaction between apple fruit and Penicillium expansum. MOLECULAR PLANT PATHOLOGY 2003; 4:447-457. [PMID: 20569404 DOI: 10.1046/j.1364-3703.2003.00190.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Differences in gene expression during the susceptible interaction between 'Golden Delicious' apple fruits and the fungus Penicillium expansum were investigated by differential display (DD) RT-PCR. Partial cDNAs from 26 clones from both the fungus and the fruit were selected for nucleotide sequence determination and homology searches, and 20 were subsequently selected for further analyses. In a preliminary series of Northern blot analyses, 18 genes were confirmed as showing a higher expression level during the apple-fungus interaction than in control tissues. Southern analyses permitted an assignation of the fruit or fungal origin of each cDNA. Thirteen clones were derived from P. expansum and five from apple. A more detailed analysis of their expression patterns was conducted in an independent infection experiment confirming the differential expression for 12 of them. Among the differentially expressed genes were one fungal gene encoding an unknown protein and two apple genes, homologous to a beta-glucosidase and a phosphatase 2C, respectively, that were exclusively expressed during the infection process. Several up-regulated P. expansum genes seem to mediate adaptive responses to the host environment.
Collapse
Affiliation(s)
- Paloma Sánchez-Torres
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Apdo. de Correos 73, Burjassot. 46100-Valencia, Spain
| | | |
Collapse
|
11
|
Recorbet G, Steinberg C, Olivain C, Edel V, Trouvelot S, Dumas-Gaudot E, Gianinazzi S, Alabouvette C. Wanted: pathogenesis-related marker molecules for Fusarium oxysporum. THE NEW PHYTOLOGIST 2003; 159:73-92. [PMID: 33873682 DOI: 10.1046/j.1469-8137.2003.00795.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Although Fusarium oxysporum pathogens cause severe wilts in about 80 botanical species, the mechanisms of pathogenicity and symptom induction are poorly understood. Knowledge about the genetic and biochemical pathways involved in the pathogenesis of F. oxysporum would be invaluable in getting targets for both fungicide development and search for biocontrol agents. In this respect, we described the main approaches that have been developed to identify some mechanisms underlying the pathogenesis of F. oxysporum. During the last decades, the potential functions triggering of F. oysporum pathogenicity have mainly been investigated by comparing soilborne pathogenic strains with nonpathogenic ones with regards to the analysis of the pre- and infection stages and of the resulting plant-fungus interactions. The relatively recent progress in the molecular biology of this fungus has allowed complementary approaches to be developed in order to identify key factors involved in F. oxysporum pathogenicity. Screening mutants of F. oxysporum for loss of virulence led to the successful identification of some pathogenesis-related factors, such as hydrophobicity or attachment of germlings. Taken together, the strategies described above support the idea that changes in fungal metabolism is also of importance in triggering of F. oxysporum pathogenesis.
Collapse
Affiliation(s)
- Ghislaine Recorbet
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Christian Steinberg
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Chantal Olivain
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Véronique Edel
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Sophie Trouvelot
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Eliane Dumas-Gaudot
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Silvio Gianinazzi
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Claude Alabouvette
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| |
Collapse
|
12
|
Company P, González-Bosch C. Identification of a copper chaperone from tomato fruits infected with Botrytis cinerea by differential display. Biochem Biophys Res Commun 2003; 304:825-30. [PMID: 12727232 DOI: 10.1016/s0006-291x(03)00680-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Differential display was used to isolate tomato genes responding to fungal infection. Here we describe the isolation and characterization of a gene that is down-regulated in tomato fruits infected with the phytopathogen Botrytis cinerea. The cDNA identified encodes a protein that shares sequence similarity to the amino terminal region of CCH, a copper chaperone from Arabidopsis thaliana, that participates in intracellular copper homeostasis by delivering Cu to the secretory pathway. The fact that this newly characterized tomato gene, referred to as LeCCH (Lycopersicon esculentum copper chaperone), be differentially expressed after fungal infection, suggests an interesting relationship between copper homeostasis and plant defense responses. LeCCH contains the conserved metal-binding domain MXCXGC but interestingly, lacks the C-terminal extension present in previously described plant members of this copper chaperone family, that seems to be involved in metallochaperone intercellular transport. This fact indicates that LeCCH is a novel plant copper chaperone that could act locally at the infection site, affecting the copper homeostasis in this particular stress situation.
Collapse
Affiliation(s)
- Patricia Company
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, IATA (CSIC) Polígono de la Coma s/n Paterna, Valencia 46980, Spain
| | | |
Collapse
|
13
|
Blasco JL, García-Sánchez MA, Ruiz-Herrera J, Eslava AP, Iturriaga EA. A gene coding for ornithine decarboxylase (odcA) is differentially expressed during the Mucor circinelloides yeast-to-hypha transition. Res Microbiol 2002; 153:155-64. [PMID: 12002565 DOI: 10.1016/s0923-2508(02)01301-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The differential display technique was used to identify genes from Mucor circinelloides involved in the yeast-to-hypha transition. Using a limited set of primer combinations, cDNA fragments corresponding to mRNAs differentially expressed during the dimorphic transition were isolated. Northern analyses showed that the accumulation of the transcript detected by hybridisation with one of the cDNA fragments increased during the transition and was undetectable at the mycelial stage. Sequence analysis and database searches of this fragment revealed high similarity to ornithine decarboxylase (ODC) encoding genes. The odcA gene of M. circinelloides was isolated from genomic and cDNA libraries and characterised. Electrophoretic karyotyping and hybridisations showed that the odcA gene is single-copy and linked to the leuA and rDNA genes. The single transcript detected (2.1 kb), was considerably longer than the deduced ORF. Through non-radioactive primer extension analysis four transcription initiation sites were mapped to positions -61, -167, -239 and -436 from the start codon. The ODC mRNA levels increased during the yeast-to-hypha transition, reaching a maximum at 120 min, which was accompanied by a rise in ODC enzymatic activity. The expression pattern of the odcA gene showed that in M. circinelloides the ODC levels are transcriptionally regulated, in contrast with other dimorphic fungi in which a post-transcriptional regulation has been proposed.
Collapse
Affiliation(s)
- José L Blasco
- Departamento de Microbiología y Genética, Universidad de Salamanca, Spain
| | | | | | | | | |
Collapse
|
14
|
cDNA-AFLP analysis reveals that maize resistance toBipolaris maydis is associated with the induction of multiple defense-related genes. CHINESE SCIENCE BULLETIN-CHINESE 2001. [DOI: 10.1007/bf03187030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Beyer K, Binder A, Boller T, Collinge M. Identification of potato genes induced during colonization by Phytophthora infestans. MOLECULAR PLANT PATHOLOGY 2001; 2:125-34. [PMID: 20573000 DOI: 10.1046/j.1364-3703.2001.00059.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Summary Suppression Subtractive Hybridization (SSH) was applied in a search for genes induced during the compatible interaction between Phytophthora infestans and potato. Using potato leaves that had been treated with benzo(1,2,3)thiadiazole-7-carbothioic acid S-methylester (BTH) as the control tissue, a low redundancy library with a relatively low frequency of the classic plant Pathogenesis-Related (PR) genes was generated. 288 of the clones were screened for induced sequences using Inverse Northern analysis (hybridizing the arrayed clones with radiolabelled cDNA populations). Of the 75 clones that were detectable by this method, 43 appeared to be induced. Eleven of these clones were then analysed by total RNA blot analysis, and elevation of transcript levels during P. infestans infection was confirmed for 10 of them. Some of the cDNAs analysed by RNA blot analysis have homology to genes already known to be induced during infection, e.g. to beta-1,3-glucanase. Another group of cDNAs have homology to enzymes involved in detoxification: gamma-glutamylcysteine synthetase, cytochrome P450, glutathione S-transferase and an MRP-type ABC transporter. Other infection induced cDNAs encode putative proteins that have not previously been reported to be induced by infection: e.g. the ER-located chaperone BiP, and a homologue of Aspergillus nidulans SudD, which was isolated as a suppressor of a mutation in chromosome disjunction. The differential library therefore presents the opportunity to analyse the metabolic changes occurring during infection, and the disease process itself in more detail.
Collapse
Affiliation(s)
- K Beyer
- Friedrich Miescher Institute, PO Box 2543, CH-4002 Basel, Switzerland
| | | | | | | |
Collapse
|
16
|
Jagoueix-Eveillard S, Tarendeau F, Guolter K, Danet JL, Bové JM, Garnier M. Catharanthus roseus genes regulated differentially by mollicute infections. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:225-233. [PMID: 11204786 DOI: 10.1094/mpmi.2001.14.2.225] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A differential display of mRNAs was used to isolate periwinkle cDNAs differentially expressed following infection with one of three mollicutes: Spiroplasma citri, Candidatus Phytoplasma aurantifolia, and stolbur phytoplasma. Twenty-four differentially expressed cDNAs were characterized by Northern blots and sequence analysis. Eight of them had homologies with genes in databanks coding for proteins involved in photosynthesis, sugar transport, response to stress, or pathways of phytosterol synthesis. The regulation of these genes in periwinkle plants infected by additional phloem-restricted bacteria showed that they were not specific to a given mollicute, but correlations with particular symptoms could be established. Expression of transketolase was down regulated following infection with a pathogenic strain of S. citri. No down regulation was observed for the nonphytopathogenic mutant GMT553, which is deficient for fructose utilization.
Collapse
Affiliation(s)
- S Jagoueix-Eveillard
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut de Biologie Végétale Moléculaire INRA & Université Victor Ségalen Bordeaux 2, Villenave d'Ornon, France
| | | | | | | | | | | |
Collapse
|
17
|
Applications of differential-display reverse transcription-PCR to molecular pathogenesis and medical mycology. Clin Microbiol Rev 2000. [PMID: 10885984 DOI: 10.1128/cmr.13.3.408-427.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The host-fungus interaction is characterized by changes in gene expression in both host and pathogen. Differential-display reverse transcription PCR (DDRT-PCR) is a PCR-based method that allows extensive analysis of gene expression among several cell populations. Several limitations and drawbacks to this procedure have now been addressed, including the large number of false-positive results and the difficulty in confirming differential expression. Modifications that simplify the reaction time, allow the use of minute quantities of RNA, or address unusual species- or gene-specific sequences have been reported. DDRT-PCR has been used to address biological questions in mammalian systems, including cell differentiation, cell activation, cell stress, and identification of drug targets. In microbial pathogenesis and plant pathogenesis, DDRT-PCR has allowed the identification of virulence factors, genes involved in cell death, and signaling genes. In Candida albicans, DDRT-PCR studies identified TIF-2, which may play a role in the upregulation of phospholipases, and the stress-related genes, CIP1 and CIP2. In Histoplasma capsulatum and C. albicans, genes involved in the host-pathogen interaction, including a member of the 100-kDa family in Histoplasma and an ALS and 14-3-3 gene in Candida, were potentially identified by DDRT-PCR. Although very few reports have been published in medical mycology, studies in mammalian, nonfungal microbial, and plant pathogen systems are easily applied to basic questions in fungal pathogenesis and antifungal therapeutics.
Collapse
|
18
|
Sturtevant J. Applications of differential-display reverse transcription-PCR to molecular pathogenesis and medical mycology. Clin Microbiol Rev 2000; 13:408-27. [PMID: 10885984 PMCID: PMC88940 DOI: 10.1128/cmr.13.3.408] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The host-fungus interaction is characterized by changes in gene expression in both host and pathogen. Differential-display reverse transcription PCR (DDRT-PCR) is a PCR-based method that allows extensive analysis of gene expression among several cell populations. Several limitations and drawbacks to this procedure have now been addressed, including the large number of false-positive results and the difficulty in confirming differential expression. Modifications that simplify the reaction time, allow the use of minute quantities of RNA, or address unusual species- or gene-specific sequences have been reported. DDRT-PCR has been used to address biological questions in mammalian systems, including cell differentiation, cell activation, cell stress, and identification of drug targets. In microbial pathogenesis and plant pathogenesis, DDRT-PCR has allowed the identification of virulence factors, genes involved in cell death, and signaling genes. In Candida albicans, DDRT-PCR studies identified TIF-2, which may play a role in the upregulation of phospholipases, and the stress-related genes, CIP1 and CIP2. In Histoplasma capsulatum and C. albicans, genes involved in the host-pathogen interaction, including a member of the 100-kDa family in Histoplasma and an ALS and 14-3-3 gene in Candida, were potentially identified by DDRT-PCR. Although very few reports have been published in medical mycology, studies in mammalian, nonfungal microbial, and plant pathogen systems are easily applied to basic questions in fungal pathogenesis and antifungal therapeutics.
Collapse
Affiliation(s)
- J Sturtevant
- Department of Microbiology, Georgetown University Medical School, Washington, DC 20007, USA.
| |
Collapse
|
19
|
Kumar VB, Franko MW, Farr SA, Armbrecht HJ, Morley JE. Identification of age-dependent changes in expression of senescence-accelerated mouse (SAMP8) hippocampal proteins by expression array analysis. Biochem Biophys Res Commun 2000; 272:657-61. [PMID: 10860810 DOI: 10.1006/bbrc.2000.2719] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aging is associated with extensive cognitive impairments, although the biochemical and physiological basis of these deficits are unknown. As the hippocampus plays a vital role in cognitive functions, we have selected this tissue to analyze changes in gene expression at two different ages. Array technology is utilized to explore how gene expression in hippocampus is affected by accelerated cognitive impairment in Senescence-Accelerated Mouse (SAM P8) strain. We show that the expression of genes associated with stress response and xenobiotic metabolism are strongly affected at a time when cognitive impairment occurs. Affected genes include those involved both in signaling and chaperone function. The effector and regulator family of chaperones, which play an important role in protein folding, and also the xenobiotic metabolizing enzymes that play crucial role in antioxidant systems, show significant changes in gene expression between 4 and 12 months.
Collapse
Affiliation(s)
- V B Kumar
- Geriatric Research, Education, and Clinical Center, St. Louis VA Medical Center, Missouri 63125, USA.
| | | | | | | | | |
Collapse
|
20
|
Prins TW, Wagemakers L, Schouten A, van Kan JA. Cloning and characterization of a glutathione S-transferase homologue from the plant pathogenic fungus Botrytis cinereadouble dagger. MOLECULAR PLANT PATHOLOGY 2000; 1:169-178. [PMID: 20572963 DOI: 10.1046/j.1364-3703.2000.00021.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Abstract A gene was cloned from Botrytis cinerea that encodes a protein homologous to glutathione S-transferase (GST). The gene, denominated Bcgst1, is present in a single copy and represents the first example of such a gene from a filamentous fungus. The biochemical function of GSTs is to conjugate toxic compounds to glutathione, thereby detoxifying the compound. In many other organisms, GST plays a role in chemical stress tolerance. We anticipated that GST functions for B. cinerea as a potential virulence factor, enabling the fungus to tolerate fungitoxic plant defence compounds. The expression of Bcgst1 mRNA under various presumably stressful conditions was investigated. Bcgst1 mRNA is expressed at a basal level in liquid cultures and is induced upon addition of hydrogen peroxide to the medium. The level of Bcgst1 mRNA expression during infection of tomato leaves parallels the level of actin mRNA. The role of the Bcgst1 gene in the virulence of Botrytis cinerea was evaluated by constructing gene disruption mutants. Three independent disruption mutants were obtained. The virulence of two mutants on tomato leaves was evaluated. Neither of the mutants showed a decrease in virulence, indicating that the Bcgst1 gene is not essential for virulence on tomato leaves under the conditions tested.
Collapse
Affiliation(s)
- T W Prins
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 9, 6709 PD Wageningen, The Netherlands
| | | | | | | |
Collapse
|
21
|
Maffei M. Sustainable Methods for a Sustainable Production of Peppermint (MenthaxpiperitaL.) Essential Oil. JOURNAL OF ESSENTIAL OIL RESEARCH 1999. [DOI: 10.1080/10412905.1999.9701134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Geri C, Cecchini E, Giannakou ME, Covey SN, Milner JJ. Altered patterns of gene expression in Arabidopsis elicited by cauliflower mosaic virus (CaMV) infection and by a CaMV gene VI transgene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1999; 12:377-384. [PMID: 10226370 DOI: 10.1094/mpmi.1999.12.5.377] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cauliflower mosaic virus (CaMV) gene VI protein (P6) is an important determinant of symptom expression. Differential display polymerase chain reaction (PCR) was used to identify changes in gene expression in Arabidopsis elicited by a P6 transgene that causes a symptomatic phenotype. We used slot blot hybridization to measure the abundance of mRNAs complementary to 66 candidate PCR products in transgenic, CaMV-infected, and uninfected Arabidopsis plants. CaMV-infected and P6 transgenic plants showed broadly similar changes in abundance of mRNA species. In P6 transgenic plants we detected 18 PCR products that showed unambiguous changes in abundance plus another 15 that showed more limited changes (approximately twofold). CaMV-infected plants showed 17 unambiguous and 13 limited changes. Down-regulated species include those encoding a novel, phenol-like sulfotransferase, and a glycine-rich, RNA-binding protein. Up-regulated species included ones encoding an myb protein, glycine-rich and stress-inducible proteins, and a member of a previously unreported gene family. CaMV infection causes alterations in expression of many Arabidopsis genes. Transgene-mediated expression of P6 mimics virus infection in its effect on host gene expression, providing a potential mechanism for this process.
Collapse
Affiliation(s)
- C Geri
- Plant Molecular Science Group, Glasgow University, Scotland, U.K
| | | | | | | | | |
Collapse
|
23
|
Baldwin D, Crane V, Rice D. A comparison of gel-based, nylon filter and microarray techniques to detect differential RNA expression in plants. CURRENT OPINION IN PLANT BIOLOGY 1999; 2:96-103. [PMID: 10322196 DOI: 10.1016/s1369-5266(99)80020-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An initial application of plant genomics has been to monitor gene expression on a scale much larger than previously possible. Although multiplexed assays of RNA abundance have developed more quickly than those for protein and metabolite levels, some combination of these approaches will soon be providing our best views yet into plant molecular biology. Three techniques that have made contributions to the RNA transcript portion of this combination are reviewed. Currently, each can produce a profile of expression levels for a large but incomplete set of plant genes, at reproducibly high levels of accuracy and over a range of labor and financial expenses.
Collapse
Affiliation(s)
- D Baldwin
- Disease Resistance Group, Trait and Technology Development, Pioneer Hi-Bred International Inc., 7300 NW 62nd Ave., Johnston, IA 50131-1004,USA.
| | | | | |
Collapse
|
24
|
Zhao XJ, Newsome JT, Cihlar RL. Up-regulation of two Candida albicans genes in the rat model of oral candidiasis detected by differential display. Microb Pathog 1998; 25:121-9. [PMID: 9790871 DOI: 10.1006/mpat.1998.0218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Candida albicans is an opportunistic fungal pathogen responsible for the largest percentage of fungal-mediated oral and oesophageal disease. In this regard, knowledge concerning patterns of gene expression during the establishment and/or maintenance of infection may be the key to the design of new strategies for treatment, as well as providing insight into pathogenesis. To address this issue, experiments were performed that utilized differential display to compare the spectrum of C. albicans genes expressed during oral infection versus growth in in vitroculture. Experimentally, the rat model of oral candidiasis served as the in vivo source. After initiation of infection and subsequent harvesting of C. albicans from the rat oral cavity, RNA was isolated, and used with a small number of primers in reverse-transcriptase polymerase chain reaction (RT-PCR) and differential display experiments. Fragments unique to in vivo samples were subcloned and sequenced. Southern blot analysis verified the origin of seven fragments as fromC. albicans. Additionally, specific RT-PCR confirmed that two of these fragments represented genes that were up-regulated during C. albicans in vivo growth in the rat model. Database searches indicated the fragments share homology with a member of the C. albicans agglutinin gene family and to a bacterial gene (gidB) possibly involved in cell division.
Collapse
Affiliation(s)
- X J Zhao
- Department of Microbiology and Immunology, Georgetown University, Washington, DC 20007, USA
| | | | | |
Collapse
|
25
|
Coleman M, Henricot B, Arnau J, Oliver RP. Starvation-induced genes of the tomato pathogen Cladosporium fulvum are also induced during growth in planta. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:1106-1109. [PMID: 9390425 DOI: 10.1094/mpmi.1997.10.9.1106] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The pathogenicity of fungal pathogens is presumably dependent on genes that are expressed during infection. In order to isolate such genes from the tomato pathogen Cladosporium fulvum, and to test the hypothesis that starvation-induced genes are also plant induced, a cDNA library was prepared from mycelia grown in a defined medium and then transferred to a starvation medium. The library was then screened with cDNA prepared from starved and replete fungal mycelium. Five unique, differentially expressed cDNAs were isolated from 1,000 clones screened. Northern (RNA) hybridization confirmed that all five were starvation induced. Interestingly, all five were also found to be plant induced. The identity of two of the clones was indicated by partial DNA sequencing as alcohol and aldehyde dehydrogenase. The observed correlation between starvation induction and plant induction in discussed.
Collapse
Affiliation(s)
- M Coleman
- Norwich Molecular Plant Pathology Group, School of Biological Sciences, University of East Anglia, Norwich, U.K
| | | | | | | |
Collapse
|