1
|
Vaillant I, Tutois S, Jasencakova Z, Douet J, Schubert I, Tourmente S. Hypomethylation and hypermethylation of the tandem repetitive 5S rRNA genes in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:299-309. [PMID: 18208523 DOI: 10.1111/j.1365-313x.2008.03413.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
5S ribosomal DNA (5S rDNA) is organized in tandem repeats on chromosomes 3, 4 and 5 in Arabidopsis thaliana. One part of the 5S rDNA is located within the heterochromatic chromocenters, and the other fraction forms loops with euchromatic features that emanate from the chromocenters. We investigated whether the A. thaliana heterochromatin, and particularly the 5S rDNA, is modified when changing the culture conditions (cultivation in growth chamber versus greenhouse). Nuclei from challenged tissues displayed larger total, as well as 5S rDNA, heterochromatic fractions, and the DNA methyltransferase mutants met1 and cmt3 had different impacts in Arabidopsis. The enlarged fraction of heterochromatic 5S rDNA was observed, together with the reversal of the silencing of some 5S rRNA genes known as minor genes. We observed hypermethylation at CATG sites, and a concomitant DNA hypomethylation at CG/CXG sites in 5S rDNA. Our results show that the asymmetrical hypermethylation is correlated with the ageing of the plants, whereas hypomethylation results from the growth chamber/culture conditions. In spite of severely reduced DNA methylation, the met1 mutant revealed no increase in minor 5S rRNA transcripts in these conditions. The increasing proportion of cytosines in asymmetrical contexts during transition from the euchromatic to the heterochromatic state in the 5S rDNA array suggests that 5S rDNA units are differently affected by the (hypo and hyper)methylation patterns along the 5S rDNA locus. This might explain the different behaviour of 5S rDNA subpopulations inside a 5S array in terms of chromatin compaction and expression, i.e. some 5S rRNA genes would become derepressed, whereas others would join the heterochromatic fraction.
Collapse
Affiliation(s)
- Isabelle Vaillant
- Unité Mixte de Recherche CNRS 6247 GReD, INSERM, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | | | | | | | | | | |
Collapse
|
2
|
Duval FD, Renard M, Jaquinod M, Biou V, Montrichard F, Macherel D. Differential expression and functional analysis of three calmodulin isoforms in germinating pea (Pisum sativum L.) seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:481-93. [PMID: 12445120 DOI: 10.1046/j.1365-313x.2002.01409.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Implication of the ubiquitous, highly conserved, Ca2+ sensor calmodulin (CaM) in pea seed germination has been investigated. Mass spectrometry analysis of purified CaM revealed the coexistence in seeds of three protein isoforms, diverging from each other by single amino acid substitution in the N-terminal alpha-helix. CaM was shown to be encoded by a small multigenic family, and full-length cDNAs of the three isoforms (PsCaM1, 2 and 3) were isolated to allow the design of specific primers in more divergent 5' and 3' untranslated regions. Expression studies, performed by semiquantitative RT-PCR, demonstrated differential expression patterns of the three transcripts during germination. PsCaM1 and 2 were detected at different levels in dry axes and cotyledons, and they accumulated during imbibition and prior to radicle protrusion. In contrast, PsCaM3 appeared only upon radicle protrusion, then gradually increased in both tissues. To characterise the biochemical properties of the CaM isoforms, functional analyses were conducted in vitro using recombinant Strep-tagged proteins (CaM1-ST, CaM2-ST and CaM3-ST) expressed in Escherichia coli. Gel mobility shift assays revealed that CaM1-ST exhibited a stoichiometric binding of a synthetic amphiphilic CaM kinase II peptide while CaM2-ST and CaM3-ST affinities for the same peptide were reduced. Affinity differences were also observed for CaM isoform binding to Trp-3, an idealised helical CaM-binding peptide. However, the three proteins activated in the same way the CaM-dependent pea NAD kinase. Finally, the significance of the single substitutions upon CaM interaction with its targets is discussed in a structural context.
Collapse
Affiliation(s)
- Frédéric D Duval
- UMR 1191 Physiologie Moléculaire des Semences, LRPV, 16 bd Lavoisier, 49045 Angers Cedex 01, France
| | | | | | | | | | | |
Collapse
|
3
|
Snedden WA, Fromm H. Calmodulin as a versatile calcium signal transducer in plants. THE NEW PHYTOLOGIST 2001; 151:35-66. [PMID: 33873389 DOI: 10.1046/j.1469-8137.2001.00154.x] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The complexity of Ca2+ patterns observed in eukaryotic cells, including plants, has led to the hypothesis that specific patterns of Ca2+ propagation, termed Ca2+ signatures, encode information and relay it to downstream elements (effectors) for translation into appropriate cellular responses. Ca2+ -binding proteins (sensors) play a key role in decoding Ca2+ signatures and transducing signals by activating specific targets and pathways. Calmodulin is a Ca2+ sensor known to modulate the activity of many mammalian proteins, whose targets in plants are now being actively characterized. Plants possess an interesting and rapidly growing list of calmodulin targets with a variety of cellular roles. Nevertheless, many targets appear to be unique to plants and remain uncharacterized, calling for a concerted effort to elucidate their functions. Moreover, the extended family of calmodulin-related proteins in plants consists of evolutionarily divergent members, mostly of unknown function, although some have recently been implicated in stress responses. It is hoped that advances in functional genomics, and the research tools it generates, will help to explain themultiplicity of calmodulin genes in plants, and to identify their downstream effectors. This review summarizes current knowledge of the Ca2+ -calmodulin messenger system in plants and presents suggestions for future areas of research. Contents I. Introduction 36 II. CaM isoforms and CaM-like proteins 37 III. CaM-target proteins 42 IV. CaM and nuclear functions 46 V. Regulation of ion transport 49 VI. CaM and plant responses to environmental stimuli 52 VII. Conclusions and future studies 58 Acknowledgements 59 References 59.
Collapse
Affiliation(s)
- Wayne A Snedden
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Hillel Fromm
- Centre for Plant Sciences, Leeds Institute for Biotechnology and Agriculture (LIBA), School of Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
4
|
Abstract
Plants experience a wide array of environmental stimuli, not all of which are favorable, and, unlike animals, are unable to move away from stressful environments. They therefore require a mechanism with which to recognize and respond to abiotic stresses of many different types. Frequently this mechanism involves intracellular calcium. Stress-induced changes in the cytosolic concentration of Ca2+ ([Ca2+]cyt) occur as a result of influx of Ca2+ from outside the cell, or release of Ca2+ from intracellular stores. These alterations in [Ca2+]cyt constitute a signal that is transduced via calmodulin, calcium-dependent protein kinases, and other Ca(2+)-controlled proteins to effect a wide array of downstream responses involved in the protection of the plant and adjustment to the new environmental conditions. Ca2+ signaling has been implicated in plant responses to a number of abiotic stresses including low temperature, osmotic stress, heat, oxidative stress, anoxia, and mechanical perturbation, which are reviewed in this article.
Collapse
Affiliation(s)
- H Knight
- Department of Plant Sciences, University of Oxford, United Kingdom.
| |
Collapse
|
5
|
Abstract
Gravitropism is an adaptable mechanism corresponding to the directed growth by which plants orient in response to the gravity vector. The overall process is generally divided into three distinct stages: graviperception, gravitransduction, and asymmetric growth response. The phenomenology of these different steps has been described by using refined cell biology approaches combined with formal and molecular genetics. To date, it clearly appears that the cellular organization plays crucial roles in gravisensing and that gravitropism is genetically different between organs. Moreover, while interfering with other physical or chemical stimuli and sharing probably some common intermediary steps in the transduction pathway, gravity has its own perception and transduction systems. The intimate mechanisms involved in these processes have to be unveiled at the molecular level and their biological relevance addressed at the cellular and whole plant levels under normal and microgravitational conditions. gravitropism: a newcomer's view.
Collapse
Affiliation(s)
- R Ranjeva
- Signaux et Messages Cellulaires chez les Végétaux, UMR 5546 CNRS-UPS, Pôle de Biotechnologie Végétale, BP 17 Auzeville, 31326 Castanet-Tolosan, France.
| | | | | |
Collapse
|
6
|
Abstract
Calmodulin is a small Ca2+-binding protein that acts to transduce second messenger signals into a wide array of cellular responses. Plant calmodulins share many structural and functional features with their homologs from animals and yeast, but the expression of multiple protein isoforms appears to be a distinctive feature of higher plants. Calmodulin acts by binding to short peptide sequences within target proteins, thereby inducing structural changes, which alters their activities in response to changes in intracellular Ca2+ concentration. The spectrum of plant calmodulin-binding proteins shares some overlap with that found in animals, but a growing number of calmodulin-regulated proteins in plants appear to be unique. Ca2+-binding and enzymatic activation properties of calmodulin are discussed emphasizing the functional linkages between these processes and the diverse pathways that are dependent on Ca2+ signaling.
Collapse
Affiliation(s)
- Raymond E. Zielinski
- Department of Plant Biology and the Physiological and Molecular Plant Biology Program, University of Illinois, 1201 W. Gregory Drive, Urbana, Illinois 61801; e-mail:
| |
Collapse
|
7
|
Miller DJ. Light-regulated transcription of genes encoding peridinin chlorophyll a proteins and the major intrinsic light-harvesting complex proteins in the dinoflagellate amphidinium carterae hulburt (Dinophycae). Changes In cytosine methylation accompany photoadaptation. PLANT PHYSIOLOGY 1998; 117:189-196. [PMID: 9576788 PMCID: PMC35002 DOI: 10.1104/pp.117.1.189] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/1997] [Accepted: 12/29/1997] [Indexed: 05/22/2023]
Abstract
In the dinoflagellate Amphidinium carterae, photoadaptation involves changes in the transcription of genes encoding both of the major classes of light-harvesting proteins, the peridinin chlorophyll a proteins (PCPs) and the major a/c-containing intrinsic light-harvesting proteins (LHCs). PCP and LHC transcript levels were increased up to 86- and 6-fold higher, respectively, under low-light conditions relative to cells grown at high illumination. These increases in transcript abundance were accompanied by decreases in the extent of methylation of CpG and CpNpG motifs within or near PCP- and LHC-coding regions. Cytosine methylation levels in A. carterae are therefore nonstatic and may vary with environmental conditions in a manner suggestive of involvement in the regulation of gene expression. However, chemically induced undermethylation was insufficient in activating transcription, because treatment with two methylation inhibitors had no effect on PCP mRNA or protein levels. Regulation of gene activity through changes in DNA methylation has traditionally been assumed to be restricted to higher eukaryotes (deuterostomes and green plants); however, the atypically large genomes of dinoflagellates may have generated the requirement for systems of this type in a relatively "primitive" organism. Dinoflagellates may therefore provide a unique perspective on the evolution of eukaryotic DNA-methylation systems.
Collapse
|
8
|
Gao J, Yin DH, Yao Y, Sun H, Qin Z, Schöneich C, Williams TD, Squier TC. Loss of conformational stability in calmodulin upon methionine oxidation. Biophys J 1998; 74:1115-34. [PMID: 9512014 PMCID: PMC1299464 DOI: 10.1016/s0006-3495(98)77830-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have used electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), and fluorescence spectroscopy to investigate the secondary and tertiary structural consequences that result from oxidative modification of methionine residues in wheat germ calmodulin (CaM), and prevent activation of the plasma membrane Ca-ATPase. Using ESI-MS, we have measured rates of modification and molecular mass distributions of oxidatively modified CaM species (CaMox) resulting from exposure to H2O2. From these rates, we find that oxidative modification of methionine to the corresponding methionine sulfoxide does not predispose CaM to further oxidative modification. These results indicate that methionine oxidation results in no large-scale alterations in the tertiary structure of CaMox, because the rates of oxidative modification of individual methionines are directly related to their solvent exposure. Likewise, CD measurements indicate that methionine oxidation results in little change in the apparent alpha-helical content at 28 degrees C, and only a small (0.3 +/- 0.1 kcal mol(-1)) decrease in thermal stability, suggesting the disruption of a limited number of specific noncovalent interactions. Fluorescence lifetime, anisotropy, and quenching measurements of N-(1-pyrenyl)-maleimide (PMal) covalently bound to Cys26 indicate local structural changes around PMal in the amino-terminal domain in response to oxidative modification of methionine residues in the carboxyl-terminal domain. Because the opposing globular domains remain spatially distant in both native and oxidatively modified CaM, the oxidative modification of methionines in the carboxyl-terminal domain are suggested to modify the conformation of the amino-terminal domain through alterations in the structural features involving the interdomain central helix. The structural basis for the linkage between oxidative modification and these global conformational changes is discussed in terms of possible alterations in specific noncovalent interactions that have previously been suggested to stabilize the central helix in CaM.
Collapse
Affiliation(s)
- J Gao
- Department of Biochemistry, University of Kansas, Lawrence 66045-2106, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Harding SA, Oh SH, Roberts DM. Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species. EMBO J 1997; 16:1137-44. [PMID: 9135130 PMCID: PMC1169712 DOI: 10.1093/emboj/16.6.1137] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A strategy for elucidating specific molecular targets of calcium and calmodulin in plant defense responses has been developed. We have used a dominant-acting calmodulin mutant (VU-3, Lys to Arg115) to investigate the oxidative burst and nicotinamide co-enzyme fluxes after various stimuli (cellulase, harpin, incompatible bacteria, osmotic and mechanical) that elicit plant defense responses in transgenic tobacco cell cultures. VU-3 calmodulin differs from endogenous plant calmodulin in that it cannot be methylated post-translationally, and as a result it hyperactivates calmodulin-dependent NAD kinase. Cells expressing VU-3 calmodulin exhibited a stronger active oxygen burst that occurred more rapidly than in normal control cells challenged with the same stimuli. Increases in NADPH level were also greater in VU-3 cells and coincided both in timing and magnitude with development of the active oxygen species (AOS) burst. These data show that calmodulin is a target of calcium fluxes in response to elicitor or environmental stress, and provide the first evidence that plant NAD kinase may be a downstream target which potentiates AOS production by altering NAD(H)/NADP(H) homeostasis.
Collapse
Affiliation(s)
- S A Harding
- Department of Biochemistry, Cellular and Molecular Biology and Center for Legume Research, University of Tennessee, Knoxville 37996, USA
| | | | | |
Collapse
|