1
|
Kim SJ, Zemelis-Durfee S, Mckinley B, Sokoloski R, Aufdemberge W, Mullet J, Brandizzi F. Cell- and development-specific degradation controls the levels of mixed-linkage glucan in sorghum leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:360-374. [PMID: 37395650 DOI: 10.1111/tpj.16376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Mixed-linkage glucan (MLG) is a component of the cell wall (CW) of grasses and is composed of glucose monomers linked by β-1,3 and β-1,4 bonds. MLG is believed to have several biological functions, such as the mobilizable storage of carbohydrates and structural support of the CW. The extracellular levels of MLG are largely controlled by rates of synthesis mediated by cellulose synthase-like (CSL) enzymes, and turnover by lichenases. Economically important crops like sorghum accumulate MLG to variable levels during development. While in sorghum, like other grasses, there is one major MLG synthase (CSLF6), the identity of lichenases is yet unknown. To fill this gap, we identified three sorghum lichenases (SbLCH1-3) and characterized them in leaves in relation to the expression of SbCSLF6, and the abundance of MLG and starch. We established that SbLCH1-3 are secreted to the apoplast, consistent with a role of degrading MLG extracellularly. Furthermore, while SbCSLF6 expression was associated with cell development, the SbLCH genes exhibited distinct development-, cell-type-specific and diel-regulated expression. Therefore, our study identifies three functional sorghum MLG lichenases and highlights that MLG accumulation in sorghum leaves is likely controlled by the activity of lichenases that tune MLG levels, possibly to suit distinct cell and developmental needs in planta. These findings have important implications for improving the growth, yield, and composition of sorghum as a feedstock.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Starla Zemelis-Durfee
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Brian Mckinley
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, 77845, USA
| | - Rylee Sokoloski
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - William Aufdemberge
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - John Mullet
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, 77845, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
2
|
Francin-Allami M, Bouder A, Geairon A, Alvarado C, Le-Bot L, Daniel S, Shao M, Laudencia-Chingcuanco D, Vogel JP, Guillon F, Bonnin E, Saulnier L, Sibout R. Mixed-Linkage Glucan Is the Main Carbohydrate Source and Starch Is an Alternative Source during Brachypodium Grain Germination. Int J Mol Sci 2023; 24:ijms24076821. [PMID: 37047802 PMCID: PMC10095428 DOI: 10.3390/ijms24076821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Seeds of the model grass Brachypodium distachyon are unusual because they contain very little starch and high levels of mixed-linkage glucan (MLG) accumulated in thick cell walls. It was suggested that MLG might supplement starch as a storage carbohydrate and may be mobilised during germination. In this work, we observed massive degradation of MLG during germination in both endosperm and nucellar epidermis. The enzymes responsible for the MLG degradation were identified in germinated grains and characterized using heterologous expression. By using mutants targeting MLG biosynthesis genes, we showed that the expression level of genes coding for MLG and starch-degrading enzymes was modified in the germinated grains of knocked-out cslf6 mutants depleted in MLG but with higher starch content. Our results suggest a substrate-dependent regulation of the storage sugars during germination. These overall results demonstrated the function of MLG as the main carbohydrate source during germination of Brachypodium grain. More astonishingly, cslf6 Brachypodium mutants are able to adapt their metabolism to the lack of MLG by modifying the energy source for germination and the expression of genes dedicated for its use.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingqin Shao
- DOE Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - John P Vogel
- DOE Joint Genome Institute, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
3
|
Perrot T, Pauly M, Ramírez V. Emerging Roles of β-Glucanases in Plant Development and Adaptative Responses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091119. [PMID: 35567119 PMCID: PMC9099982 DOI: 10.3390/plants11091119] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 05/04/2023]
Abstract
Plant β-glucanases are enzymes involved in the synthesis, remodelling and turnover of cell wall components during multiple physiological processes. Based on the type of the glycoside bond they cleave, plant β-glucanases have been grouped into three categories: (i) β-1,4-glucanases degrade cellulose and other polysaccharides containing 1,4-glycosidic bonds to remodel and disassemble the wall during cell growth. (ii) β-1,3-glucanases are responsible for the mobilization of callose, governing the symplastic trafficking through plasmodesmata. (iii) β-1,3-1,4-glucanases degrade mixed linkage glucan, a transient wall polysaccharide found in cereals, which is broken down to obtain energy during rapid seedling growth. In addition to their roles in the turnover of self-glucan structures, plant β-glucanases are crucial in regulating the outcome in symbiotic and hostile plant-microbe interactions by degrading non-self glucan structures. Plants use these enzymes to hydrolyse β-glucans found in the walls of microbes, not only by contributing to a local antimicrobial defence barrier, but also by generating signalling glucans triggering the activation of global responses. As a counterpart, microbes developed strategies to hijack plant β-glucanases to their advantage to successfully colonize plant tissues. This review outlines our current understanding on plant β-glucanases, with a particular focus on the latest advances on their roles in adaptative responses.
Collapse
|
4
|
Kraemer FJ, Lunde C, Koch M, Kuhn BM, Ruehl C, Brown PJ, Hoffmann P, Göhre V, Hake S, Pauly M, Ramírez V. A mixed-linkage (1,3;1,4)-β-D-glucan specific hydrolase mediates dark-triggered degradation of this plant cell wall polysaccharide. PLANT PHYSIOLOGY 2021; 185:1559-1573. [PMID: 33793956 PMCID: PMC8133622 DOI: 10.1093/plphys/kiab009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/17/2020] [Indexed: 05/21/2023]
Abstract
The presence of mixed-linkage (1,3;1,4)-β-d-glucan (MLG) in plant cell walls is a key feature of grass species such as cereals, the main source of calorie intake for humans and cattle. Accumulation of this polysaccharide involves the coordinated regulation of biosynthetic and metabolic machineries. While several components of the MLG biosynthesis machinery have been identified in diverse plant species, degradation of MLG is poorly understood. In this study, we performed a large-scale forward genetic screen for maize (Zea mays) mutants with altered cell wall polysaccharide structural properties. As a result, we identified a maize mutant with increased MLG content in several tissues, including adult leaves and senesced organs, where only trace amounts of MLG are usually detected. The causative mutation was found in the GRMZM2G137535 gene, encoding a GH17 licheninase as demonstrated by an in vitro activity assay of the heterologously expressed protein. In addition, maize plants overexpressing GRMZM2G137535 exhibit a 90% reduction in MLG content, indicating that the protein is not only required, but its expression is sufficient to degrade MLG. Accordingly, the mutant was named MLG hydrolase 1 (mlgh1). mlgh1 plants show increased saccharification yields upon enzymatic digestion. Stacking mlgh1 with lignin-deficient mutations results in synergistic increases in saccharification. Time profiling experiments indicate that wall MLG content is modulated during day/night cycles, inversely associated with MLGH1 transcript accumulation. This cycling is absent in the mlgh1 mutant, suggesting that the mechanism involved requires MLG degradation, which may in turn regulate MLGH1 gene expression.
Collapse
Affiliation(s)
- Florian J Kraemer
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California Berkeley, California 94720, USA
| | - China Lunde
- Plant Gene Expression Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, USA
| | - Moritz Koch
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California Berkeley, California 94720, USA
| | - Benjamin M Kuhn
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California Berkeley, California 94720, USA
| | - Clemens Ruehl
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California Berkeley, California 94720, USA
| | - Patrick J Brown
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | - Philipp Hoffmann
- Institute of Microbiology/Group Pathogenicity, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Vera Göhre
- Institute of Microbiology/Group Pathogenicity, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Sarah Hake
- Plant Gene Expression Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, USA
| | - Markus Pauly
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California Berkeley, California 94720, USA
- Institute for Plant Cell Biology and Biotechnology—Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Vicente Ramírez
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California Berkeley, California 94720, USA
- Institute for Plant Cell Biology and Biotechnology—Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
5
|
Nepali S, Ki HH, Lee JH, Cha JY, Lee YM, Kim DK. Triticum aestivum sprout-derived polysaccharide exerts hepatoprotective effects against ethanol-induced liver damage by enhancing the antioxidant system in mice. Int J Mol Med 2017; 40:1243-1252. [PMID: 28849040 DOI: 10.3892/ijmm.2017.3095] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/28/2017] [Indexed: 11/05/2022] Open
Abstract
Triticum aestivum sprout-derived polysaccharide (TASP) has anti-diabetic properties, but no information is available in regards to its protective effect against ethanol-induced hepatic injury. This study aimed to investigate the mechanism behind the protective role of TASP against ethanol-induced liver injury in vivo. Male C57BL/6 mice were administered ethanol with or without TASP for 10 consecutive days by oral gavage. Silymarin was administered in the same manner as a positive control. TASP reduced ethanol-induced hepatic lipid accumulation and serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. TASP also prevented glutathione (GSH) depletion and increased the superoxide dismutase (SOD) in liver tissue. In addition, TASP significantly inhibited ethanol-induced cytochrome P450 2E1 (CYP2E1) activation, and upregulated the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1), and downregulated NADPH oxidase genes in ethanol fed mice. Furthermore, the upregulation of Nrf2 was found to be regulated by a phosphatidylinositol 3-kinase (PI3K)/Akt pathway. TASP also attenuated hepatic injury by modulation of caspase-3 and apoptosis-associated mitochondrial proteins including B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X (Bax) in liver tissues of mice. The study demonstrated that TASP treatment protects against ethanol-induced hepatic injury via multiple pathways by inhibiting steatosis and improving antioxidant marker levels during hepatic injury. Such properties provide a basis for therapeutic agents against alcohol-induced liver injury.
Collapse
Affiliation(s)
- Sarmila Nepali
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Hyeon-Hui Ki
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Ji-Hyun Lee
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Ji-Yun Cha
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicine Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicine Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| |
Collapse
|
6
|
Anderson VA, Haley SD, Peairs FB, van Eck L, Leach JE, Lapitan NLV. Virus-induced gene silencing suggests (1,3;1,4)-β-glucanase is a susceptibility factor in the compatible russian wheat aphid-wheat interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:913-922. [PMID: 24964057 DOI: 10.1094/mpmi-05-13-0141-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), is a significant insect pest of wheat (Triticum aestivum L.) and has a major economic impact worldwide, especially on winter wheat in the western United States. The continuing emergence of new RWA biotypes virulent to existing resistance genes reinforces the need for more durable resistance. Studies have indicated that resistance in previously susceptible plants can be produced by knock-down of susceptibility genes or other genes involved in host plant susceptibility. Therefore, investigation into genes involved in compatible RWA-wheat interactions could be a feasible approach to achieving durable RWA resistance. The objective of this study was to test whether silencing (1,3;1,4)-β-glucanase, previously observed to be highly induced in susceptible compared with resistant wheat during aphid infestation, would confer resistance to a susceptible wheat genotype. Barley stripe mosaic virus-mediated virus-induced gene silencing was employed to test whether (1,3;1,4)-β-glucanase is involved in the susceptible reaction of 'Gamtoos-S' (GS). Controlled infestation with U.S. biotype RWA2 was done to assess aphid reproduction and host symptom development. Aphids on (1,3;1,4)-β-glucanase-silenced plants reproduced less per day and had longer prenymphipositional periods than those on control GS plants. Furthermore, the (1,3;1,4)-β-glucanase-silenced plants exhibited less chlorosis and greater dry weight compared with GS. Aphid reproduction and host plant symptom development showed linear relationships with (1,3;1,4)-β-glucanase transcript levels. Our results suggest that (1,3;1,4)-β-glucanase is required for successful infestation by the RWA and may be a susceptibility factor that could be exploited as a potential target for RWA resistance breeding.
Collapse
|
7
|
Mohammadi M, Srivastava S, Hall JC, Kav NNV, Deyholos MK. Two wheat (Triticum aestivum) pathogenesis-related 10 (PR-10) transcripts with distinct patterns of abundance in different organs. Mol Biotechnol 2012; 51:103-8. [PMID: 21818707 DOI: 10.1007/s12033-011-9441-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PR-10 genes encode small, acidic, intracellular proteins that respond to abiotic and biotic stimuli. Transgenic expression of PR-10 genes has been shown to enhance early seedling growth of dicots in saline environments. To identify candidate PR-10 genes in cereals for increasing stress tolerance, we conducted phylogenetic analyses and real-time polymerase chain reaction of representatives of the two major clades of putative PR-10 genes in wheat. We observed that the abundance of BQ752893 was generally greater than the abundance of CV778999, particularly when measured in roots across four wheat genotypes. However, CV778999 transcripts were more abundant than BQ752893 in flag leaves. These data suggest that the transcripts define two functionally divergent groups of PR-10 type genes in wheat, both of which may be suitable targets for biotechnological manipulation under different circumstances.
Collapse
Affiliation(s)
- Mohsen Mohammadi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | | | | | | | | |
Collapse
|
8
|
Akiyama T, Jin S, Yoshida M, Hoshino T, Opassiri R, Ketudat Cairns JR. Expression of an endo-(1,3;1,4)-beta-glucanase in response to wounding, methyl jasmonate, abscisic acid and ethephon in rice seedlings. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1814-25. [PMID: 19570592 DOI: 10.1016/j.jplph.2009.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/04/2009] [Accepted: 06/09/2009] [Indexed: 05/14/2023]
Abstract
We isolated two rice endo-(1,3;1,4)-beta-glucanase genes, denoted OsEGL1 and OsEGL2, which encoded proteins that shared 64% amino acid sequence identity. Both the OsEGL1 and OsEGL2 genes were successfully expressed in Escherichia coli to produce functional proteins. Purified OsEGL1 and OsEGL2 proteins hydrolyzed (1,3;1,4)-beta-glucans, but not (1,3;1,6)-beta-linked or (1,3)-beta-linked glucopolysaccharides nor carboxymethyl cellulose, similar to previously characterized grass endo-(1,3;1,4)-beta-glucanases. RNA blot analysis revealed that the OsEGL1 gene is expressed constitutively not only in young roots of rice seedlings, but also in mature roots of adult rice plants. Little or no expression of the OsEGL2 gene was observed in all tissues or treatments tested, but database and RT-PCR analysis indicated it is expressed in ripening panicle. In rice seedling leaves, OsEGL1 gene expression significantly increased in response to methyl jasmonate, abscisic acid, ethephon and mechanical wounding. Mechanical wounding also increased the leaf elongation rate in rice seedlings by 16% relative to that of control seedlings at day 4 after treatment. The increase in the leaf elongation rate of rice seedlings treated under mechanical wounding was concomitant with an increase in OsEGL1 expression levels in seedling leaves.
Collapse
Affiliation(s)
- Takashi Akiyama
- National Agricultural Research Center for Hokkaido Region, 1 Hitsujigaoka, Toyohira-ku, Sapporo 062-8555, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Structural modeling of glucanase-substrate complexes suggests a conserved tyrosine is involved in carbohydrate recognition in plant 1,3-1,4-beta-D-glucanases. J Comput Aided Mol Des 2008; 22:915-23. [PMID: 18663584 DOI: 10.1007/s10822-008-9228-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
Abstract
Glycosyl hydrolase family 16 (GHF16) truncated Fibrobacter succinogenes (TFs) and GHF17 barley 1,3-1,4-beta-D-glucanases (beta-glucanases) possess different structural folds, beta-jellyroll and (beta/alpha)8, although they both catalyze the specific hydrolysis of beta-1,4 glycosidic bonds adjacent to beta-1,3 linkages in mixed beta-1,3 and beta-1,4 beta-D-glucans or lichenan. Differences in the active site region residues of TFs beta-glucanase and barley beta-glucanase create binding site topographies that require different substrate conformations. In contrast to barley beta-glucanase, TFs beta-glucanase possesses a unique and compact active site. The structural analysis results suggest that the tyrosine residue, which is conserved in all known 1,3-1,4-beta-D-glucanases, is involved in the recognition of mixed beta-1,3 and beta-1,4 linked polysaccharide.
Collapse
|
10
|
Grass Degrading β-1,3-1,4-d-glucanases from Bacillus subtilis GN156: Purification and Characterization of Glucanase J1 and pJ2 Possessing Extremely Acidic pI. Appl Biochem Biotechnol 2007; 149:53-66. [DOI: 10.1007/s12010-007-8058-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
|
11
|
Higa-Nishiyama A, Ohsato S, Banno S, Woo SH, Fujimura M, Yamaguchi I, Kimura M. Cloning and characterization of six highly similar endo-1,3-beta-glucanase genes in hexaploid wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:666-73. [PMID: 17110121 DOI: 10.1016/j.plaphy.2006.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 10/09/2006] [Indexed: 05/09/2023]
Abstract
Pathogenesis-related (PR) proteins are often used as a marker of plant defense reactions. Some endo-1,3-beta-glucanase (Gns) genes encode proteins that belong to the PR protein family 2 (PR-2). Although the number of homologous family member genes is significantly greater in hexaploid wheat (Triticum aestivum L.) compared to other model plants, earlier studies did not evaluate the possible contribution of their homologs to hybridization signals in Northern blot analysis. In this study, we have examined whether routine transcriptional analyses of a PR gene is of high reliability or not by isolating six highly similar Gns genes (TaGlb2a, TaGlb2b, TaGlb2c, TaGlb2d, TaGlb2e, and TaGlb2f) and characterizing their expression patterns in detail. While TaGlb2b was shown to be a PR-2 gene, transcription of TaGlb2c and TaGlb2d was not induced upon infection with either powdery mildew (Erysiphe graminis) or head blight (Fusarium graminearum) pathogens; their transcripts were most abundant in healthy spikes (lemmas and in particular paleae). Therefore, in some cases, the conventional analyses do not necessarily provide accurate information on expression pattern of a PR gene in hexaploid wheat. This is also the first report of wheat genes that are specifically expressed in lemma/palea tissues of flowering spikelets.
Collapse
MESH Headings
- Base Sequence
- Cloning, Molecular
- Gene Expression Regulation, Enzymologic/physiology
- Gene Expression Regulation, Plant/physiology
- Genes, Plant
- Glucan 1,3-beta-Glucosidase/biosynthesis
- Glucan 1,3-beta-Glucosidase/genetics
- Molecular Sequence Data
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- Ploidies
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Plant/biosynthesis
- RNA, Plant/genetics
- Triticum/enzymology
- Triticum/genetics
Collapse
Affiliation(s)
- A Higa-Nishiyama
- Plant and Microbial Metabolic Engineering Research Unit and Laboratory for Remediation Research, Discovery Research Institute (DRI) and Plant Science Center (PSC1), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Choi CJ, Ju HJ, Park BH, Qin R, Jahng KY, Han DM, Chae KS. Isolation and characterization of the Aspergillus nidulans eglC gene encoding a putative β-1,3-endoglucanase. Fungal Genet Biol 2005; 42:590-600. [PMID: 15950156 DOI: 10.1016/j.fgb.2005.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 01/27/2005] [Accepted: 02/18/2005] [Indexed: 11/30/2022]
Abstract
The Aspergillus nidulans eglC gene, which encodes a putative beta-1,3-endoglucanase, was isolated from a chromosome-specific library by using an expressed sequence tag, esd0113. The EglC open reading frame encodes a 465 amino acid polypeptide, of which the amino acid sequence showed 46% similarity to that of Saccharomyces cerevisiae beta-1,3-endoglucanase. The eglC transcript level at the early stages of asexual and sexual developments was dependent on the presence of the nsdD gene that encodes a GATA-type transcription factor, confirming that the nsdD gene is necessary for full accumulation of the eglC transcript. Deletion of the eglC gene did not affect the radial growth rate, the germination rate of conidia, and both of asexual and sexual development. However, deletion of the gene led to hyphae more resistant to a cell wall-lyzing enzyme, implying that the cell wall structure of the eglC-null mutant is altered from a wild type one. Furthermore, deletion of the fadA and sfaD genes, that encode a Galpha and a Gbeta subunits of a heterotrimeric G protein, respectively, did not affect the eglC transcript level at the early developmental stages. In contrast, deletion of the flbA gene, that codes for a regulatory protein having an RGS (regulator of G protein signaling) motif, led to decrease in the eglC transcript level. The eglC transcript level was not higher in a creA mutant than in a wild type, indicating that the eglC gene is not sensitive to carbon-catabolite repression.
Collapse
Affiliation(s)
- Chang-Jun Choi
- Division of Biological Sciences, Basic Science Research Institute, Chonbuk National University, Chonju, Chonbuk 561-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Anand A, Schmelz EA, Muthukrishnan S. Development of a lesion-mimic phenotype in a transgenic wheat line overexpressing genes for pathogenesis-related (PR) proteins is dependent on salicylic acid concentration. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:916-925. [PMID: 14558693 DOI: 10.1094/mpmi.2003.16.10.916] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the course of coexpressing genes for pathogenesis-related (PR) proteins for a class IV chitinase and an acidic glucanase in transgenic wheat plants, we regenerated a wheat line that developed necrotic lesions containing dead cells in the T2 and subsequent generations. Lesion spots were detected at the booting stage (5- to 6-week-old plants) in lines homozygous for the transgene loci. In contrast, lesions were not observed in hemizygous transgenic lines or lines silenced for transgene expression, indicating a requirement for high levels of transgene expression for the development of the lesioned phenotype. Lesion development was associated with the accumulation of host-encoded PR proteins, e.g., chitinases, beta-1,3-glucanases, thaumatin-like protein, and production of reactive oxygen intermediates. F1 progeny of a cross between the lesion-plus transgenic line and wild-type nontransgenic plants produced progeny with a normal phenotype, while the F2 progenies segregated for the lesion phenotype. Salicylic acid (SA) levels in plants with the lesion-plus phenotype were found to be several times higher than controls and nearly double the levels in hemizygous transgenic plants that lack lesions. SA application activated lesion development in excised leaf pieces of these hemizygous transgenic plants. Similar activation of lesion development in control plants occurred only when high concentrations of SA were applied for prolonged periods. Transcripts for phenylalanine-ammonia lyase, which provides precursors of SA, were elevated in homozygous transgenic plants. Our data suggest that transgene-induced lesion-mimic phenotype correlates with enhanced SA biosynthesis.
Collapse
Affiliation(s)
- Ajith Anand
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
14
|
Chen L, Higashitani A, Suge H, Takeda K, Takahashi H. Spiral growth and cell wall properties of the gibberellin-treated first internodes in the seedlings of a wheat cultivar tolerant to deep-sowing conditions. PHYSIOLOGIA PLANTARUM 2003; 118:147-155. [PMID: 12702023 DOI: 10.1034/j.1399-3054.2003.00093.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Hong Mang Mai wheat cultivar is tolerant to deep-sowing conditions because it has an elongated first internode that is sensitive to gibberellin (GA3). The cells in the GA-treated first internodes were approximately 4.2 mm long, twice as long as the untreated Hong Mang Mai first internode cells. The elongation of the first internode of Hong Mang Mai, particularly when treated with GA3, was accompanied by remarkable spiral growth. In contrast, the first internodes of the GA-insensitive cultivar Norin 10 did not exhibit GA3-induced elongation or spiral growth. The walls of the first internode cells of GA3-treated Hong Mang Mai seedlings showed increased extensibility and higher (1-->3), (1-->4)-beta-d-glucanase activity, autolysis and glucan contents than the cell walls of untreated Hong Mang Mai first internodes. The changes in the cell wall extensibility due to GA3 treatment correlated strongly with the GA3-induced changes in cell wall glucan content, autolysis, and glucanase activity. GA3-treated Hong Mang Mai seedlings showed elevated expression of Glucanase EI gene in the first internode compared to GA3-treated Norin 10. Thus, GA aids first internode elongation in Hong Mang Mai by enhancing glucan turnover and thus increasing cell wall loosening. The spiral growth of the first internode also helps the plant elongate against soil resistance, thereby promoting the deep-sowing tolerance of this cultivar.
Collapse
Affiliation(s)
- Lei Chen
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan Research Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan
| | | | | | | | | |
Collapse
|
15
|
Roulin S, Feller U. Reversible accumulation of (1-->3,1-->4)-beta-glucan endohydrolase in wheat leaves under sugar depletion. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:2323-2332. [PMID: 11709582 DOI: 10.1093/jexbot/52.365.2323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A (1-->3,1-->4)-beta-D-glucan endohydrolase [(1-->3,1-->4)-beta-glucanase, EC 3.2.1.73] was detected in wheat (Triticum aestivum L.) leaves by Western analyses and activity measurements. This enzyme is able to degrade the (1-->3,1-->4)-beta-glucans present in the cell walls of cereals and other grass species. In wheat, enzyme levels clearly increased during leaf development, reaching maximum values at full expansion and then decreasing upon leaf ageing. To test whether the abundance of (1-->3,1-->4)-beta-glucanase might be controlled by the carbohydrate status, environmental and nutritional conditions capable of altering the leaf soluble sugar contents were used. Both the activity and enzyme protein levels rapidly and markedly increased when mature leaves were depleted of sugars (e.g. during extended dark periods), whereas elevated carbohydrate contents (e.g. following continuous illumination, glucose supply in the dark or nitrogen deficiency during a light/dark cycle) caused a rapid decrease in (1-->3,1-->4)-beta-glucanase abundance or prevented its accumulation in the leaves. The physiological significance of (1-->3,1-->4)-beta-glucanase accumulation under sugar depletion remains to be elucidated.
Collapse
Affiliation(s)
- S Roulin
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | | |
Collapse
|
16
|
Midoro-Horiuti T, Brooks EG, Goldblum RM. Pathogenesis-related proteins of plants as allergens. Ann Allergy Asthma Immunol 2001; 87:261-71. [PMID: 11686417 DOI: 10.1016/s1081-1206(10)62238-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Many pathogenesis-related (PR) proteins from plants are allergenic. We review the evidence that PR proteins represent an increasingly important group of plant-derived allergens. DATA SOURCES A detailed literature search was conducted through PubMed and GenBank databases. STUDY SELECTION All reports in PubMed and GenBank related to PR protein allergens for which at least partial amino acid sequence is known were included. RESULTS Production of PR proteins by plants is induced in plants by stress. Members of PR-protein groups 2, 3, 4, 5, 8, 10, and 14 have demonstrated allergenicity. PR2-, 3-, 4-, and 8-homologous allergens are represented by the latex allergens. Cross-reactivity of PR3 latex allergen, Hev b 6.02, with some fruit allergens may be a reflection of the representation of homologous PR proteins among varied plants. The expression of one of the representative PR5-homologous cedar pollen allergens, Jun a 3, is highly variable across years and geographic areas, possibly because of variable induction of this PR protein by environmental factors. PR10-homologous birch pollen allergen, Bet v 1, is structurally similar to and cross-reacts with PR10 proteins from fruits (eg, Mal d 1) which cause oral allergy syndrome. PR14 allergens (eg, Zea m 14) consist of lipid transfer proteins found in grains and fruits and are inducers of anaphylaxis. CONCLUSIONS PR-homologous allergens are pervasive in nature. Similarity in the amino acid sequences among members of PR proteins may be responsible for cross-reactivity among allergens from diverse plants. Induced expression of PR-homologous allergens by environmental factors may explain varying degrees of allergenicity. Man-made environmental pollutants may also alter the expression of some PR protein allergens.
Collapse
Affiliation(s)
- T Midoro-Horiuti
- Department of Pediatrics, Child Health Research Center, University of Texas Medical Branch, Galveston 77555-0366, USA.
| | | | | |
Collapse
|
17
|
Münch-Garthoff S, Neuhaus JM, Boller T, Kemmerling B, Kogel KH. Expression of beta-1,3-glucanase and chitinase in healthy, stem-rust-affected and elicitor-treated near-isogenic wheat lines showing Sr5-or Sr24-specified race-specific rust resistance. PLANTA 1997; 201:235-244. [PMID: 9084219 DOI: 10.1007/bf01007709] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pathogenesis-related expression of the two antifungal hydrolases beta-1,3-glucanase (EC 3.2.1.39) and chitinase (EC 3.2.1.14) was studied in wheat (Triticum aestivum L.) as part of the defence response to stem rust (Puccinia graminis f.sp. tritici, Pgt), mediated by the semi-dominantly acting resistance genes Sr5 and Sr24. Complete resistance (infection type 0), mediated by the Sr5 gene in cultivar Pre-Sr5, closely correlates with the hypersensitive response of penetrated cells at early stage of the interaction, when the first haustorium is formed. In contrast, cultivar Pre-Sr24 shows intermediate resistance (infection type 2-3) which is not directly linked to cell death. In both cases, the plant response included a rapid increase in beta-1,3-glucanase activity between 24 and 48 h after inoculation. One main extracellular 30-kDa isform of beta-1,3-glucanase was present in both lines, as shown by polyacrylamide-gel electrophoresis. Two additional minor isoforms (32 and 23 kDa) were detected only in Pre-Sr24, and only at later time points. Increased enzme activity and the appearance of new isoforms in the resistance lines was preceded by accumulation of mRNAs encoding beta-1,3-glucanase and chitinases. However, there were no changes in chitinase activity or isoforms. A high constitutive level of chitinase activity was observed in all wheat genotypes. Serological studies indicated the presence of a class II chitinase of 26 kDa. Accumulation of beta-1,3-glucanase and chitinase transcripts was detected before the pathogen penetrated the leaves through stomata and approximately 16 h before the typical hypersensitive response was observed, indicating that signal(s) for defense gene activation were recognised by the host plant long before a tight contact between the pathogen and a host cell is established. A glycoprotein (Pgt elicitor) derived from hyphal walls, strongly induced beta-1,3-glucanase. We discuss the possible role of the elicitor in the early signalling mediating Sr5- and Sr24-specified resistance in wheat.
Collapse
|