1
|
Zou Z, Fu X, Yi X, Li C, Huang J, Zhao Y. Integrative Analysis Provides Insights into Genes Encoding LEA_5 Domain-Containing Proteins in Tigernut ( Cyperus esculentus L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:762. [PMID: 40094764 PMCID: PMC11902115 DOI: 10.3390/plants14050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
LEA_5 domain-containing proteins constitute a small family of late embryogenesis-abundant proteins that are essential for seed desiccation tolerance and dormancy. However, their roles in non-seed storage organs such as underground tubers are largely unknown. This study presents the first genome-scale analysis of the LEA_5 family in tigernut (Cyperus esculentus L.), a Cyperaceae plant producing desiccation-tolerant tubers. Four LEA_5 genes identified from the tigernut genome are twice of two present in model plants Arabidopsis thaliana and Oryza sativa. A comparison of 86 members from 34 representative plant species revealed the monogenic origin and lineage-specific family evolution in Poales, which includes the Cyperaceae family. CeLEA5 genes belong to four out of five orthogroups identified in this study, i.e., LEA5a, LEA5b, LEA5c, and LEA5d. Whereas LEA5e is specific to eudicots, LEA5b and LEA5d appear to be Poales-specific and LEA5c is confined to families Cyperaceae and Juncaceae. Though no syntenic relationship was observed between CeLEA5 genes, comparative genomics analyses indicated that LEA5b and LEA5c are more likely to arise from LEA5a via whole-genome duplication. Additionally, local duplication, especially tandem duplication, also played a role in the family expansion in Juncus effuses, Joinvillea ascendens, and most Poaceae plants examined in this study. Structural variation (e.g., fragment insertion) and expression divergence of LEA_5 genes were also observed. Whereas LEA_5 genes in A. thaliana, O. sativa, and Zea mays were shown to be preferentially expressed in seeds/embryos, CeLEA5 genes have evolved to be predominantly expressed in tubers, exhibiting seed desiccation-like accumulation during tuber maturation. Moreover, CeLEA5 orthologs in C. rotundus showed weak expression in various stages of tuber development, which may explain the difference in tuber desiccation tolerance between these two close species. These findings highlight the lineage-specific evolution of the LEA_5 family, which facilitates further functional analysis and genetic improvement in tigernut and other species.
Collapse
Affiliation(s)
- Zhi Zou
- National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.F.); (X.Y.); (C.L.)
| | - Xiaowen Fu
- National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.F.); (X.Y.); (C.L.)
| | - Xiaoping Yi
- National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.F.); (X.Y.); (C.L.)
| | - Chunqiang Li
- National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.F.); (X.Y.); (C.L.)
| | - Jiaquan Huang
- National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.F.); (X.Y.); (C.L.)
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) and College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Yongguo Zhao
- National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.F.); (X.Y.); (C.L.)
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
2
|
Gupta V, Kumari P, Sonowal K, Sathe A, Mehta K, Salvi P. Molecular intricacies of intrinsically disordered proteins and drought stress in plants. Int J Biol Macromol 2025; 292:139314. [PMID: 39740709 DOI: 10.1016/j.ijbiomac.2024.139314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/09/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Intrinsically Disordered Proteins (IDPs) and Intrinsically Disordered Regions (IDRs) are renowned for their dynamic structural characteristics and conformational adaptability, allowing them to assume diverse conformations in response to prevailing environmental conditions. This inherent flexibility facilitates their interactions with molecular targets, enabling them to engage in numerous cellular processes without any excessive energy consumption. This adaptability is instrumental in shaping cellular complexity and enhancing adaptability. Notably, most investigations into IDPs/IDRs have concentrated on non-plant organisms, while this comprehensive review explores their multifaceted functions with a perspective of plant resilience to drought stress. Furthermore, the impact of IDPs on plant stress is discussed, highlighting their involvement in diverse biological processes extending beyond mere stress adaptation. This review incorporates a broad spectrum of methodological approaches, ranging from computational tools to experimental techniques, employed for the systematic study of IDPs. We also discussed limitations, challenges, and future directions in this dynamic and evolving field, aiming to provide insights into the unexplored facets of IDPs/IDRs in the intricate landscape of plant responses to drought stress.
Collapse
Affiliation(s)
- Vaishali Gupta
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Priya Kumari
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Kaberi Sonowal
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India; Regional Centre for Biotechnology, Faridabad 121001, India
| | - Atul Sathe
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Kritika Mehta
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India; Regional Centre for Biotechnology, Faridabad 121001, India
| | - Prafull Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India.
| |
Collapse
|
3
|
Li S, Meng H, Yang Y, Zhao J, Xia Y, Wang S, Wang F, Zheng G, Li J. Overexpression of AtruLEA1 from Acer truncatum Bunge Enhanced Arabidopsis Drought and Salt Tolerance by Improving ROS-Scavenging Capability. PLANTS (BASEL, SWITZERLAND) 2025; 14:117. [PMID: 39795377 PMCID: PMC11723042 DOI: 10.3390/plants14010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 01/13/2025]
Abstract
Late embryonic developmental abundant (LEA) genes play a crucial role in the response to abiotic stress and are important target genes for research on plant stress tolerance mechanisms. Acer truncatum Bunge is a promising candidate tree species for investigating the tolerance mechanism of woody plants against abiotic stress. In our previous study, AtruLEA1 was identified as being associated with seed drought tolerance. In this study, LEA1 was cloned from A. truncatum Bunge and functionally characterized. AtruLEA1 encodes an LEA protein and is located in the nucleus. Phylogenetic tree analysis revealed a recent affinity of the AtruLEA1 protein to AT3G15760.1. Overexpression of AtruLEA1 resulted in enhanced tolerance of Arabidopsis thaliana to drought and salt stress and heightened the ABA sensitivity. Compared to wild-type (WT) plants, plants with overexpressed AtruLEA1 exhibited increased activities of antioxidant enzymes under drought stress. Meanwhile, the ROS level of transgenic Arabidopsis was significantly less than that of the WT. Additionally, the stoma density and stoma openness of AtruLEA1 Arabidopsis were higher compared to those in the WT Arabidopsis under salt and drought stress conditions, which ensures that the biomass and relative water content of transgenic Arabidopsis are significantly better than those of the WT. These results indicated that AtruLEA1 was involved in salt and drought stress tolerances by maintaining ROS homeostasis, and its expression was positively regulated by abiotic stress. These results indicate a positive role of AtruLEA1 in drought and salt stress and provide theoretical evidence in the direction of cultivating resistant plants.
Collapse
Affiliation(s)
- Shaofeng Li
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (Y.X.); (S.W.); (F.W.)
| | - Huijing Meng
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China;
| | - Yanfei Yang
- College of Forestry, Shanxi Agricultural University, Taigu 030801, China; (Y.Y.); (J.Z.)
| | - Jinna Zhao
- College of Forestry, Shanxi Agricultural University, Taigu 030801, China; (Y.Y.); (J.Z.)
| | - Yongxiu Xia
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (Y.X.); (S.W.); (F.W.)
| | - Shaoli Wang
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (Y.X.); (S.W.); (F.W.)
| | - Fei Wang
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (Y.X.); (S.W.); (F.W.)
| | - Guangshun Zheng
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (Y.X.); (S.W.); (F.W.)
| | - Jianbo Li
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (Y.X.); (S.W.); (F.W.)
| |
Collapse
|
4
|
Saud S, Wang L. Mechanism of cotton resistance to abiotic stress, and recent research advances in the osmoregulation related genes. FRONTIERS IN PLANT SCIENCE 2022; 13:972635. [PMID: 36061778 PMCID: PMC9428623 DOI: 10.3389/fpls.2022.972635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/25/2022] [Indexed: 05/27/2023]
Abstract
Abiotic stress is an important factor affecting the normal growth and development of plants and crop yield. To reduce the impact of abiotic adversity on cotton growth and development, the material basis of cotton resistance and its physiological functions are analyzed at the molecular level. At the same time, the use of genetic engineering methods to recombine resistance genes has become a hot spot in cotton resistance research. This paper provides an overviews of the resistance mechanism of cotton against the threat of non-biological adversity, as well as the research progress of osmoregulation-related genes, protein-acting genes, and transcription regulatory factor genes in recent years, and outlines the explored gene resources in cotton resistance genetic engineering, with the aim to provide ideas and reference bases for future research on cotton resistance.
Collapse
|
5
|
Huang Z, Zhu P, Zhong X, Qiu J, Xu W, Song L. Transcriptome Analysis of Moso Bamboo ( Phyllostachys edulis) Reveals Candidate Genes Involved in Response to Dehydration and Cold Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:960302. [PMID: 35928710 PMCID: PMC9343960 DOI: 10.3389/fpls.2022.960302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Bamboo (Bambusoideae) belongs to the grass family (Poaceae) and has been utilized as one of the most important nontimber forest resources in the world. Moso bamboo (Phyllostachys edulis) is a large woody bamboo with high ecological and economic values. Global climate change brings potential challenges to the normal growth of moso bamboo, and hence its production. Despite the release of moso bamboo genome sequence, the knowledge on genome-wide responses to abiotic stress is still limited. In this study, we generated a transcriptome data set with respect to dehydration and cold responses of moso bamboo using RNA-seq technology. The differentially expressed genes (DEGs) under treatments of dehydration and cold stresses were identified. By combining comprehensive gene ontology (GO) analysis, time-series analysis, and co-expression analysis, candidate genes involved in dehydration and cold responses were identified, which encode abscisic acid (ABA)/water deficit stress (WDS)-induced protein, late embryogenesis abundant (LEA) protein, 9-cis-epoxycarotenoid dioxygenase (NCED), anti-oxidation enzymes, transcription factors, etc. Additionally, we used PeLEA14, a dehydration-induced gene encoding an "atypical" LEA protein, as an example to validate the function of the identified stress-related gene in tolerance to abiotic stresses, such as drought and salt. In this study, we provided a valuable genomic resource for future excavation of key genes involved in abiotic stress responses and genetic improvement of moso bamboo to meet the requirement for environmental resilience and sustainable production.
Collapse
|
6
|
Functional and Conformational Plasticity of an Animal Group 1 LEA Protein. Biomolecules 2022; 12:biom12030425. [PMID: 35327618 PMCID: PMC8946055 DOI: 10.3390/biom12030425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
Group 1 (Dur-19, PF00477, LEA_5) Late Embryogenesis Abundant (LEA) proteins are present in organisms from all three domains of life, Archaea, Bacteria, and Eukarya. Surprisingly, Artemia is the only genus known to include animals that express group 1 LEA proteins in their desiccation-tolerant life-history stages. Bioinformatics analysis of circular dichroism data indicates that the group 1 LEA protein AfLEA1 is surprisingly ordered in the hydrated state and undergoes during desiccation one of the most pronounced disorder-to-order transitions described for LEA proteins from A. franciscana. The secondary structure in the hydrated state is dominated by random coils (42%) and β-sheets (35%) but converts to predominately α-helices (85%) when desiccated. Interestingly, AfLEA1 interacts with other proteins and nucleic acids, and RNA promotes liquid–liquid phase separation (LLPS) of the protein from the solvent during dehydration in vitro. Furthermore, AfLEA1 protects the enzyme lactate dehydrogenase (LDH) during desiccation but does not aid in restoring LDH activity after desiccation-induced inactivation. Ectopically expressed in D. melanogaster Kc167 cells, AfLEA1 localizes predominantly to the cytosol and increases the cytosolic viscosity during desiccation compared to untransfected control cells. Furthermore, the protein formed small biomolecular condensates in the cytoplasm of about 38% of Kc167 cells. These findings provide additional evidence for the hypothesis that the formation of biomolecular condensates to promote water stress tolerance during anhydrobiosis may be a shared feature across several groups of LEA proteins that display LLPS behaviors.
Collapse
|
7
|
Hibshman JD, Goldstein B. LEA motifs promote desiccation tolerance in vivo. BMC Biol 2021; 19:263. [PMID: 34903234 PMCID: PMC8670023 DOI: 10.1186/s12915-021-01176-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cells and organisms typically cannot survive in the absence of water. However, some animals including nematodes, tardigrades, rotifers, and some arthropods are able to survive near-complete desiccation. One class of proteins known to play a role in desiccation tolerance is the late embryogenesis abundant (LEA) proteins. These largely disordered proteins protect plants and animals from desiccation. A multitude of studies have characterized stress-protective capabilities of LEA proteins in vitro and in heterologous systems. However, the extent to which LEA proteins exhibit such functions in vivo, in their native contexts in animals, is unclear. Furthermore, little is known about the distribution of LEA proteins in multicellular organisms or tissue-specific requirements in conferring stress protection. Here, we used the nematode C. elegans as a model to study the endogenous function of an LEA protein in an animal. RESULTS We created a null mutant of C. elegans LEA-1, as well as endogenous fluorescent reporters of the protein. LEA-1 mutant animals formed defective dauer larvae at high temperature. We confirmed that C. elegans lacking LEA-1 are sensitive to desiccation. LEA-1 mutants were also sensitive to heat and osmotic stress and were prone to protein aggregation. During desiccation, LEA-1 expression increased and became more widespread throughout the body. LEA-1 was required at high levels in body wall muscle for animals to survive desiccation and osmotic stress, but expression in body wall muscle alone was not sufficient for stress resistance, indicating a likely requirement in multiple tissues. We identified minimal motifs within C. elegans LEA-1 that were sufficient to increase desiccation survival of E. coli. To test whether such motifs are central to LEA-1's in vivo functions, we then replaced the sequence of lea-1 with these minimal motifs and found that C. elegans dauer larvae formed normally and survived osmotic stress and mild desiccation at the same levels as worms with the full-length protein. CONCLUSIONS Our results provide insights into the endogenous functions and expression dynamics of an LEA protein in a multicellular animal. The results show that LEA-1 buffers animals from a broad range of stresses. Our identification of LEA motifs that can function in both bacteria and in a multicellular organism in vivo suggests the possibility of engineering LEA-1-derived peptides for optimized desiccation protection.
Collapse
Affiliation(s)
- Jonathan D Hibshman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA.
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Gasulla F, del Campo EM, Casano LM, Guéra A. Advances in Understanding of Desiccation Tolerance of Lichens and Lichen-Forming Algae. PLANTS (BASEL, SWITZERLAND) 2021; 10:807. [PMID: 33923980 PMCID: PMC8073698 DOI: 10.3390/plants10040807] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022]
Abstract
Lichens are symbiotic associations (holobionts) established between fungi (mycobionts) and certain groups of cyanobacteria or unicellular green algae (photobionts). This symbiotic association has been essential in the colonization of terrestrial dry habitats. Lichens possess key mechanisms involved in desiccation tolerance (DT) that are constitutively present such as high amounts of polyols, LEA proteins, HSPs, a powerful antioxidant system, thylakoidal oligogalactolipids, etc. This strategy allows them to be always ready to survive drastic changes in their water content. However, several studies indicate that at least some protective mechanisms require a minimal time to be induced, such as the induction of the antioxidant system, the activation of non-photochemical quenching including the de-epoxidation of violaxanthin to zeaxanthin, lipid membrane remodeling, changes in the proportions of polyols, ultrastructural changes, marked polysaccharide remodeling of the cell wall, etc. Although DT in lichens is achieved mainly through constitutive mechanisms, the induction of protection mechanisms might allow them to face desiccation stress in a better condition. The proportion and relevance of constitutive and inducible DT mechanisms seem to be related to the ecology at which lichens are adapted to.
Collapse
Affiliation(s)
- Francisco Gasulla
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, 28802 Madrid, Spain; (E.M.d.C.); (L.M.C.)
| | | | | | - Alfredo Guéra
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, 28802 Madrid, Spain; (E.M.d.C.); (L.M.C.)
| |
Collapse
|
9
|
Wang X, Zhang M, Xie B, Jiang X, Gai Y. Functional Characteristics Analysis of Dehydrins in Larix kaempferi under Osmotic Stress. Int J Mol Sci 2021; 22:1715. [PMID: 33572055 PMCID: PMC7915896 DOI: 10.3390/ijms22041715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
Dehydrins (DHN) belong to the late embryogenesis abundant II family and have been found to enhance plant tolerance to abiotic stress. In the present study, we reported four DHNs in Larix kaempferi (LkDHN) which were identified from the published transcriptome. Alignment analysis showed that these four LkDHNs shared close relationships and belonged to SK3-type DHNs. The electrophoretic mobility shift assay indicated that these four LkDHNs all possess sequence-independent binding capacity for double-strands DNAs. The subcellular localizations of the four LkDHNs were in both the nucleus and cytoplasm, indicating that these LkDHNs enter the nucleus to exert the ability to bind DNA. The preparation of tobacco protoplasts with different concentrations of mannitol showed that LkDHNs enhanced the tolerance of plant cells under osmotic stress. The overexpression of LkDHNs in yeasts enhanced their tolerance to osmotic stress and helped the yeasts to survive severe stress. In addition, LkDHNs in the nucleus of salt treated tobacco increased. All of these results indicated that the four LkDHNs help plants survive from heavy stress by participating in DNA protection. These four LKDHNs played similar roles in the response to osmotic stress and assisted in the adaptation of L. kaempferi to the arid and cold winter of northern China.
Collapse
Affiliation(s)
- Xuechun Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (M.Z.); (B.X.); (X.J.)
| | - Meng Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (M.Z.); (B.X.); (X.J.)
| | - Baohui Xie
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (M.Z.); (B.X.); (X.J.)
| | - Xiangning Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (M.Z.); (B.X.); (X.J.)
- National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China
| | - Ying Gai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (M.Z.); (B.X.); (X.J.)
- National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China
| |
Collapse
|
10
|
Hibshman JD, Clegg JS, Goldstein B. Mechanisms of Desiccation Tolerance: Themes and Variations in Brine Shrimp, Roundworms, and Tardigrades. Front Physiol 2020; 11:592016. [PMID: 33192606 PMCID: PMC7649794 DOI: 10.3389/fphys.2020.592016] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/25/2020] [Indexed: 01/05/2023] Open
Abstract
Water is critical for the survival of most cells and organisms. Remarkably, a small number of multicellular animals are able to survive nearly complete drying. The phenomenon of anhydrobiosis, or life without water, has been of interest to researchers for over 300 years. In this review we discuss advances in our understanding of protectants and mechanisms of desiccation tolerance that have emerged from research in three anhydrobiotic invertebrates: brine shrimp (Artemia), roundworms (nematodes), and tardigrades (water bears). Discovery of molecular protectants that allow each of these three animals to survive drying diversifies our understanding of desiccation tolerance, and convergent themes suggest mechanisms that may offer a general model for engineering desiccation tolerance in other contexts.
Collapse
Affiliation(s)
- Jonathan D. Hibshman
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - James S. Clegg
- Bodega Marine Laboratory, University of California, Davis, Davis, CA, United States
| | - Bob Goldstein
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Kishor PBK, Suravajhala R, Rajasheker G, Marka N, Shridhar KK, Dhulala D, Scinthia KP, Divya K, Doma M, Edupuganti S, Suravajhala P, Polavarapu R. Lysine, Lysine-Rich, Serine, and Serine-Rich Proteins: Link Between Metabolism, Development, and Abiotic Stress Tolerance and the Role of ncRNAs in Their Regulation. FRONTIERS IN PLANT SCIENCE 2020; 11:546213. [PMID: 33343588 PMCID: PMC7744598 DOI: 10.3389/fpls.2020.546213] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/30/2020] [Indexed: 05/06/2023]
Abstract
Lysine (Lys) is indispensable nutritionally, and its levels in plants are modulated by both transcriptional and post-transcriptional control during plant ontogeny. Animal glutamate receptor homologs have been detected in plants, which may participate in several plant processes through the Lys catabolic products. Interestingly, a connection between Lys and serotonin metabolism has been established recently in rice. 2-Aminoadipate, a catabolic product of Lys appears to play a critical role between serotonin accumulation and the color of rice endosperm/grain. It has also been shown that expression of some lysine-methylated proteins and genes encoding lysine-methyltransferases (KMTs) are regulated by cadmium even as it is known that Lys biosynthesis and its degradation are modulated by novel mechanisms. Three complex pathways co-exist in plants for serine (Ser) biosynthesis, and the relative preponderance of each pathway in relation to plant development or abiotic stress tolerance are being unfolded slowly. But the phosphorylated pathway of L-Ser biosynthesis (PPSB) appears to play critical roles and is essential in plant metabolism and development. Ser, which participates indirectly in purine and pyrimidine biosynthesis and plays a pivotal role in plant metabolism and signaling. Also, L-Ser has been implicated in plant responses to both biotic and abiotic stresses. A large body of information implicates Lys-rich and serine/arginine-rich (SR) proteins in a very wide array of abiotic stresses. Interestingly, a link exists between Lys-rich K-segment and stress tolerance levels. It is of interest to note that abiotic stresses largely influence the expression patterns of SR proteins and also the alternative splicing (AS) patterns. We have checked if any lncRNAs form a cohort of differentially expressed genes from the publicly available PPSB, sequence read archives of NCBI GenBank. Finally, we discuss the link between Lys and Ser synthesis, catabolism, Lys-proteins, and SR proteins during plant development and their myriad roles in response to abiotic stresses.
Collapse
Affiliation(s)
- P. B. Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research (Deemed to be University), Guntur, India
- *Correspondence: P. B. Kavi Kishor,
| | | | | | - Nagaraju Marka
- Biochemistry Division, National Institute of Nutrition-ICMR, Hyderabad, India
| | | | - Divya Dhulala
- Department of Genetics, Osmania University, Hyderabad, India
| | | | - Kummari Divya
- Department of Genetics, Osmania University, Hyderabad, India
| | - Madhavi Doma
- Department of Genetics, Osmania University, Hyderabad, India
| | | | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | | |
Collapse
|
12
|
Yang K, Yang L, Fan W, Long GQ, Xie SQ, Meng ZG, Zhang GH, Yang SC, Chen JW. Illumina-based transcriptomic analysis on recalcitrant seeds of Panax notoginseng for the dormancy release during the after-ripening process. PHYSIOLOGIA PLANTARUM 2019; 167:597-612. [PMID: 30548605 DOI: 10.1111/ppl.12904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/28/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Panax notoginseng (Burk) F.H. Chen is an economically and medicinally important plant of the family Araliacease, with seed dormancy being a key factor limiting the extended cultivation of P. notoginseng. The seeds belong to the morphophysiological dormancy (MPD) group, and it has also been described as the recalcitrant seed. To date, the molecular mechanism of dormancy release in the recalcitrant seed of P. notoginseng is unknown. In the present study, the transcript profiles of seeds from different after-ripening stages (0, 20, 40 and 60 days) were investigated using Illumina Hiseq 2500 technology. 91 979 946 clean reads were generated, and 81 575 unigenes were annotated in at least one database. In addition, the differentially expressed genes (DEGs) were identified by the pairwise comparisons. We screened out 2483 DEGs by the three key groups of 20 days vs 0 d, 40 d vs 0 d and 60 d vs 0 d. The DEGs were analyzed by gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway annotation. Meanwhile, we obtained 78 DEGs related to seeds dormancy release at different after-ripening stages of P. notoginseng, of which 15 DEGs were associated with abscisic acid and gibberellin. 26 DEGs that encode late embryogenesis abundant protein and antioxidant enzyme were correlated with desiccation tolerance in seeds. In summary, the results obtained here showed that PECTINESTERASE-2-LIKE, GA-INSENSITIVE, ENT-KAURENE SYNTHASE, PROTEIN PHOSPHATASE 2C, GIBBERELLIN 2-BETA-DIOXYGENASE, SUPEROXIDE DISMUTASE, L-ASCORBATE PEROXIDASE, CATALASE, LATE EMBRYOGENESIS ABUNDANT PROTEIN DC3 and DEHYDRIN 9 were potentially involved in dormancy release and desiccation sensitivity of P. notoginseng seeds. The data might provide a basis for researches on MPD.
Collapse
Affiliation(s)
- Kai Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Ling Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Wei Fan
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Guang-Qiang Long
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Shi-Qing Xie
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhen-Gui Meng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Guang-Hui Zhang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Sheng-Chao Yang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
13
|
Wei H, Yang Y, Himmel ME, Tucker MP, Ding SY, Yang S, Arora R. Identification and Characterization of Five Cold Stress-Related Rhododendron Dehydrin Genes: Spotlight on a FSK-Type Dehydrin With Multiple F-Segments. Front Bioeng Biotechnol 2019; 7:30. [PMID: 30847341 PMCID: PMC6393390 DOI: 10.3389/fbioe.2019.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 02/05/2019] [Indexed: 11/13/2022] Open
Abstract
Dehydrins are a family of plant proteins that accumulate in response to dehydration stresses, such as low temperature, drought, high salinity, or during seed maturation. We have previously constructed cDNA libraries from Rhododendron catawbiense leaves of naturally non-acclimated (NA; leaf LT50, temperature that results in 50% injury of maximum, approximately -7°C) and cold-acclimated (CA; leaf LT50 approximately -50°C) plants and analyzed expressed sequence tags (ESTs). Five ESTs were identified as dehydrin genes. Their full-length cDNA sequences were obtained and designated as RcDhn 1-5. To explore their functionality vis-à-vis winter hardiness, their seasonal expression kinetics was studied at two levels. Firstly, in leaves of R. catawbiense collected from the NA, CA, and de-acclimated (DA) plants corresponding to summer, winter and spring, respectively. Secondly, in leaves collected monthly from August through February, which progressively increased freezing tolerance from summer through mid-winter. The expression pattern data indicated that RcDhn 1-5 had 6- to 15-fold up-regulation during the cold acclimation process, followed by substantial down-regulation during deacclimation (even back to NA levels for some). Interestingly, our data shows RcDhn 5 contains a histidine-rich motif near N-terminus, a characteristic of metal-binding dehydrins. Equally important, RcDhn 2 contains a consensus 18 amino acid sequence (i.e., ETKDRGLFDFLGKKEEEE) near the N-terminus, with two additional copies upstream, and it is the most acidic (pI of 4.8) among the five RcDhns found. The core of this consensus 18 amino acid sequence is a 11-residue amino acid sequence (DRGLFDFLGKK), recently designated in the literature as the F-segment (based on the pair of hydrophobic F residues it contains). Furthermore, the 208 orthologs of F-segment-containing RcDhn 2 were identified across a broad range of species in GenBank database. This study expands our knowledge about the types of F-segment from the literature-reported single F-segment dehydrins (FSKn) to two or three F-segment dehydrins: Camelina sativa dehydrin ERD14 as F2S2Kn type; and RcDhn 2 as F3SKn type identified here. Our results also indicate some consensus amino acid sequences flanking the core F-segment in dehydrins. Implications for these cold-responsive RcDhn genes in future genetic engineering efforts to improve plant cold hardiness are discussed.
Collapse
Affiliation(s)
- Hui Wei
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, United States.,Department of Horticulture, Iowa State University, Ames, IA, United States
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Michael E Himmel
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, United States
| | - Melvin P Tucker
- National Renewable Energy Laboratory, National Bioenergy Center, Golden, CO, United States
| | - Shi-You Ding
- DOE-Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States.,Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Rajeev Arora
- Department of Horticulture, Iowa State University, Ames, IA, United States
| |
Collapse
|
14
|
Mining Late Embryogenesis Abundant (LEA) Family Genes in Cleistogenes songorica, a Xerophyte Perennial Desert Plant. Int J Mol Sci 2018; 19:ijms19113430. [PMID: 30388835 PMCID: PMC6274777 DOI: 10.3390/ijms19113430] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 11/17/2022] Open
Abstract
Plant growth and development depends on its ability to maintain optimal cellular homeostasis during abiotic and biotic stresses. Cleistogenes songorica, a xerophyte desert plant, is known to have novel drought stress adaptation strategies and contains rich pools of stress tolerance genes. Proteins encoded by Late Embryogenesis Abundant (LEA) family genes promote cellular activities by functioning as disordered molecules, or by limiting collisions between enzymes during stresses. To date, functions of the LEA family genes have been heavily investigated in many plant species except perennial monocotyledonous species. In this study, 44 putative LEA genes were identified in the C. songorica genome and were grouped into eight subfamilies, based on their conserved protein domains and domain organizations. Phylogenetic analyses indicated that C. songorica Dehydrin and LEA_2 subfamily proteins shared high sequence homology with stress responsive Dehydrin proteins from Arabidopsis. Additionally, promoter regions of CsLEA_2 or CsDehydrin subfamily genes were rich in G-box, drought responsive (MBS), and/or Abscisic acid responsive (ABRE) cis-regulatory elements. In addition, gene expression analyses indicated that genes from these two subfamilies were highly responsive to heat stress and ABA treatment, in both leaves and roots. In summary, the results from this study provided a comprehensive view of C. songoricaLEA genes and the potential applications of these genes for the improvement of crop tolerance to abiotic stresses.
Collapse
|
15
|
Yu Z, Wang X, Zhang L. Structural and Functional Dynamics of Dehydrins: A Plant Protector Protein under Abiotic Stress. Int J Mol Sci 2018; 19:ijms19113420. [PMID: 30384475 PMCID: PMC6275027 DOI: 10.3390/ijms19113420] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022] Open
Abstract
Abiotic stress affects the growth and development of crops tremendously, worldwide. To avoid adverse environmental effects, plants have evolved various efficient mechanisms to respond and adapt to harsh environmental factors. Stress conditions are associated with coordinated changes in gene expressions at a transcriptional level. Dehydrins have been extensively studied as protectors in plant cells, owing to their vital roles in sustaining the integrity of membranes and lactate dehydrogenase (LDH). Dehydrins are highly hydrophilic and thermostable intrinsically disordered proteins (IDPs), with at least one Lys-rich K-segment. Many dehydrins are induced by multiple stress factors, such as drought, salt, extreme temperatures, etc. This article reviews the role of dehydrins under abiotic stress, regulatory networks of dehydrin genes, and the physiological functions of dehydrins. Advances in our understanding of dehydrin structures, gene regulation and their close relationships with abiotic stresses demonstrates their remarkable ability to enhance stress tolerance in plants.
Collapse
Affiliation(s)
- Zhengyang Yu
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Xin Wang
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Linsheng Zhang
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
16
|
Lim J, Lim CW, Lee SC. The Pepper Late Embryogenesis Abundant Protein, CaDIL1, Positively Regulates Drought Tolerance and ABA Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:1301. [PMID: 30233631 PMCID: PMC6131619 DOI: 10.3389/fpls.2018.01301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
Plants as sessile organisms constantly respond to environmental stress during their growth and development. The regulation of transpiration via stomata plays crucial roles in plant adaptation to drought stress. Many enzyme-encoding genes are involved in regulation of transpiration via modulating stomatal opening and closure. Here, we demonstrate that Capsicum annuum Drought Induced Late embryogenesis abundant protein 1 (CaDIL1) gene is a critical regulator of transpirational water loss in pepper. The expression of CaDIL1 in pepper leaves was upregulated after exposure to abscisic acid (ABA) and drought. Phenotype analysis showed that CaDIL1-silenced pepper and CaDIL1-overexpressing (OX) Arabidopsis transgenic plants exhibited reduced and enhanced drought tolerance, respectively, accompanied by an altered water loss. Furthermore, ABA sensitivity was significantly lower in CaDIL1-silenced pepper, but higher in CaDIL1-OX plants, than that in control plants, which resulted in opposite responses to drought stress in these two plant types. Collectively, our data suggest that CaDIL1 positively regulates the ABA signaling and drought stress tolerance.
Collapse
|
17
|
Quintero FOC, Pinto LG, Barsalobres-Cavallari CF, Arcuri MDLC, Pino LE, Peres LEP, Maluf MP, Maia IG. Identification of a seed maturation protein gene from Coffea arabica (CaSMP) and analysis of its promoter activity in tomato. PLANT CELL REPORTS 2018; 37:1257-1268. [PMID: 29947954 DOI: 10.1007/s00299-018-2310-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
A seed maturation protein gene (CaSMP) from Coffea arabica is expressed in the endosperm of yellow/green fruits. The CaSMP promoter drives reporter expression in the seeds of immature tomato fruits. In this report, an expressed sequence tag-based approach was used to identify a seed-specific candidate gene for promoter isolation in Coffea arabica. The tissue-specific expression of the cognate gene (CaSMP), which encodes a yet uncharacterized coffee seed maturation protein, was validated by RT-qPCR. Additional expression analysis during coffee fruit development revealed higher levels of CaSMP transcript accumulation in the yellow/green phenological stage. Moreover, CaSMP was preferentially expressed in the endosperm and was down-regulated during water imbibition of the seeds. The presence of regulatory cis-elements known to be involved in seed- and endosperm-specific expression was observed in the CaSMP 5'-upstream region amplified by genome walking (GW). Additional histochemical analysis of transgenic tomato (cv. Micro-Tom) lines harboring the GW-amplified fragment (~ 1.4 kb) fused to uidA reporter gene confirmed promoter activity in the ovule of immature tomato fruits, while no activity was observed in the seeds of ripening fruits and in the other organs/tissues examined. These results indicate that the CaSMP promoter can be used to drive transgene expression in coffee beans and tomato seeds, thus representing a promising biotechnological tool.
Collapse
Affiliation(s)
- Fabíola OCampo Quintero
- Department of Genetics, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-689, Brazil
| | - Layra G Pinto
- Department of Genetics, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-689, Brazil
| | - Carla F Barsalobres-Cavallari
- Department of Genetics, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-689, Brazil
| | - Mariana de Lara Campos Arcuri
- Department of Genetics, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-689, Brazil
| | - Lilian Ellen Pino
- Department of Biological Sciences (LCB), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of Sao Paulo (USP), Piracicaba, Sao Paulo, 13418-900, Brazil
| | - Lázaro Eustáquio Pereira Peres
- Department of Biological Sciences (LCB), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of Sao Paulo (USP), Piracicaba, Sao Paulo, 13418-900, Brazil
| | - Mirian P Maluf
- Embrapa Coffee and Coffee Center Alcides Carvalho, Agronomic Institute of Campinas, Campinas, Sao Paulo, 13012-970, Brazil
| | - Ivan G Maia
- Department of Genetics, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-689, Brazil.
| |
Collapse
|
18
|
Abstract
The late embryogenesis abundant (LEA) family is composed of a diverse collection of multidomain and multifunctional proteins found in all three domains of the tree of life, but they are particularly common in plants. Most members of the family are known to play an important role in abiotic stress response and stress tolerance in plants but are also part of the plant hypersensitive response to pathogen infection. The mechanistic basis for LEA protein functionality is still poorly understood. The group of LEA 2 proteins harbor one or more copies of a unique domain, the water stress and hypersensitive response (WHy) domain. This domain sequence has recently been identified as a unique open reading frame (ORF) in some bacterial genomes (mostly in the phylum Firmicutes), and the recombinant bacterial WHy protein has been shown to exhibit a stress tolerance phenotype in Escherichia coli and an in vitro protein denaturation protective function. Multidomain phylogenetic analyses suggest that the WHy protein gene sequence may have ancestral origins in the domain Archaea, with subsequent acquisition in Bacteria and eukaryotes via endosymbiont or horizontal gene transfer mechanisms. Here, we review the structure, function, and nomenclature of LEA proteins, with a focus on the WHy domain as an integral component of the LEA constructs and as an independent protein.
Collapse
|
19
|
Abhinandan K, Skori L, Stanic M, Hickerson NMN, Jamshed M, Samuel MA. Abiotic Stress Signaling in Wheat - An Inclusive Overview of Hormonal Interactions During Abiotic Stress Responses in Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:734. [PMID: 29942321 PMCID: PMC6004395 DOI: 10.3389/fpls.2018.00734] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/15/2018] [Indexed: 05/19/2023]
Abstract
Rapid global warming directly impacts agricultural productivity and poses a major challenge to the present-day agriculture. Recent climate change models predict severe losses in crop production worldwide due to the changing environment, and in wheat, this can be as large as 42 Mt/°C rise in temperature. Although wheat occupies the largest total harvested area (38.8%) among the cereals including rice and maize, its total productivity remains the lowest. The major production losses in wheat are caused more by abiotic stresses such as drought, salinity, and high temperature than by biotic insults. Thus, understanding the effects of these stresses becomes indispensable for wheat improvement programs which have depended mainly on the genetic variations present in the wheat genome through conventional breeding. Notably, recent biotechnological breakthroughs in the understanding of gene functions and access to whole genome sequences have opened new avenues for crop improvement. Despite the availability of such resources in wheat, progress is still limited to the understanding of the stress signaling mechanisms using model plants such as Arabidopsis, rice and Brachypodium and not directly using wheat as the model organism. This review presents an inclusive overview of the phenotypic and physiological changes in wheat due to various abiotic stresses followed by the current state of knowledge on the identified mechanisms of perception and signal transduction in wheat. Specifically, this review provides an in-depth analysis of different hormonal interactions and signaling observed during abiotic stress signaling in wheat.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcus A. Samuel
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Zhang B, Guo G, Lu F, Song Y, Liu Y, Xu J, Gao W. PicW2 from Picea wilsonii: preparation, purification, crystallization and X-ray diffraction analysis. Acta Crystallogr F Struct Biol Commun 2018; 74:363-366. [PMID: 29870021 PMCID: PMC5987745 DOI: 10.1107/s2053230x18007537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/18/2018] [Indexed: 11/10/2022] Open
Abstract
Low temperature is a major limiting factor for plant growth and development. Dehydrin proteins are generally induced in response to low-temperature stress. In previous research, a full-length dehydrin gene, PicW2, was isolated from Picea wilsonii and its expression was associated with hardiness to cold. In order to gain insight into the mechanism of low-temperature tolerance by studying its three-dimensional crystal structure, prokaryotically expressed PicW2 dehydrin protein was purified using chitosan-affinity chromatography and gel filtration, and crystallized using the vapour-diffusion method. The crystal grew in a condition consisting of 0.1 M HEPES pH 8.0, 25%(w/v) PEG 3350 using 4 mg ml-1 protein solution at 289 K. X-ray diffraction data were collected from a crystal at 100 K to 2.82 Å resolution. The crystal belonged to space group C121, with unit-cell parameters a = 121.55, b = 33.26, c = 73.39 Å, α = γ = 90.00, β = 109.01°. The asymmetric unit contained one molecule of the protein, with a corresponding Matthews coefficient of 2.87 Å3 Da-1 and a solvent content of 57.20%. Owing to a lack of structures of homologous dehydrin proteins, molecular-replacement trials failed. Data collection for selenium derivatization of PicW2 and crystal structure determination is currently in progress.
Collapse
Affiliation(s)
- Bei Zhang
- School of Science, Beijing Forestry University, 35 Qinghuadong Road, Haidian District, Beijing 100083, People’s Republic of China
| | - Gangxing Guo
- School of Science, Beijing Forestry University, 35 Qinghuadong Road, Haidian District, Beijing 100083, People’s Republic of China
| | - Fang Lu
- School of Science, Beijing Forestry University, 35 Qinghuadong Road, Haidian District, Beijing 100083, People’s Republic of China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 35 Qinghuadong Road, Haidian District, Beijing 100083, People’s Republic of China
| | - Ying Song
- School of Science, Beijing Forestry University, 35 Qinghuadong Road, Haidian District, Beijing 100083, People’s Republic of China
| | - Yong Liu
- School of Science, Beijing Forestry University, 35 Qinghuadong Road, Haidian District, Beijing 100083, People’s Republic of China
| | - JiChen Xu
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 35 Qinghuadong Road, Haidian District, Beijing 100083, People’s Republic of China
| | - Wei Gao
- School of Science, Beijing Forestry University, 35 Qinghuadong Road, Haidian District, Beijing 100083, People’s Republic of China
| |
Collapse
|
21
|
Onelli E, Moscatelli A, Gagliardi A, Zaninelli M, Bini L, Baldi A, Caccianiga M, Reggi S, Rossi L. Retarded germination of Nicotiana tabacum seeds following insertion of exogenous DNA mimics the seed persistent behavior. PLoS One 2017; 12:e0187929. [PMID: 29216220 PMCID: PMC5720674 DOI: 10.1371/journal.pone.0187929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/09/2017] [Indexed: 01/23/2023] Open
Abstract
Tobacco seeds show a coat-imposed dormancy in which the seed envelope tissues (testa and endosperm) impose a physical constraint on the radicle protrusion. The germination-limiting process is represented by the endosperm rupture which is induced by cell-wall weakening. Transgenic tobacco seeds, obtained by insertion of exogenous genes codifying for seed-based oral vaccines (F18 and VT2eB), showed retarded germination with respect to the wild type and modified the expression of endogenous proteins. Morphological and proteomic analyses of wild type and transgenic seeds revealed new insights into factors influencing seed germination. Our data showed that the interference of exogenous DNA influences the germination rather than the dormancy release, by modifying the maturation process. Dry seeds of F18 and VT2eB transgenic lines accumulated a higher amount of reserve and stress-related proteins with respect to the wild type. Moreover, the storage proteins accumulated in tobacco F18 and VT2eB dry seeds have structural properties that do not enable the early limited proteolysis observed in the wild type. Morphological observations by electron and light microscopy revealed a retarded mobilization of the storage material from protein and lipid bodies in transgenic seeds, thus impairing water imbibition and embryo elongation. In addition, both F18 and VT2eB dry seeds are more rounded than the wild type. Both the morphological and biochemical characteristics of transgenic seeds mimic the seed persistent profile, in which their roundness enables them to be buried in the soil, while the higher content of storage material enables the hypocotyl to elongate more and the cotyledons to emerge.
Collapse
Affiliation(s)
| | | | - Assunta Gagliardi
- Laboratory of Functional Proteomic, Department of Life Science, University of Siena, Siena, Italy
| | - Mauro Zaninelli
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele Roma, Italy, Rome, Italy
| | - Luca Bini
- Laboratory of Functional Proteomic, Department of Life Science, University of Siena, Siena, Italy
| | - Antonella Baldi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| | | | | | - Luciana Rossi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
22
|
Pathak N, Ikeno S. In vivo expression of a short peptide designed from late embryogenesis abundant protein for enhancing abiotic stress tolerance in Escherichia coli. Biochem Biophys Res Commun 2017; 492:386-390. [DOI: 10.1016/j.bbrc.2017.08.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022]
|
23
|
Krishnan HB, Natarajan SS, Oehrle NW, Garrett WM, Darwish O. Proteomic Analysis of Pigeonpea (Cajanus cajan) Seeds Reveals the Accumulation of Numerous Stress-Related Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4572-4581. [PMID: 28532149 DOI: 10.1021/acs.jafc.7b00998] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pigeonpea is one of the major sources of dietary protein for more than a billion people living in South Asia. This hardy legume is often grown in low-input and risk-prone marginal environments. Considerable research effort has been devoted by a global research consortium to develop genomic resources for the improvement of this legume crop. These efforts have resulted in the elucidation of the complete genome sequence of pigeonpea. Despite these developments, little is known about the seed proteome of this important crop. Here, we report the proteome of pigeonpea seed. To enable the isolation of maximum number of seed proteins, including those that are present in very low amounts, three different protein fractions were obtained by employing different extraction media. High-resolution two-dimensional (2-D) electrophoresis followed by MALDI-TOF-TOF-MS/MS analysis of these protein fractions resulted in the identification of 373 pigeonpea seed proteins. Consistent with the reported high degree of synteny between the pigeonpea and soybean genomes, a large number of pigeonpea seed proteins exhibited significant amino acid homology with soybean seed proteins. Our proteomic analysis identified a large number of stress-related proteins, presumably due to its adaptation to drought-prone environments. The availability of a pigeonpea seed proteome reference map should shed light on the roles of these identified proteins in various biological processes and facilitate the improvement of seed composition.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri , Columbia, Missouri 65211, United States
| | - Savithiry S Natarajan
- Soybean Genomics and Improvement Laboratory, PSI, Agricultural Research Service, U.S. Department of Agriculture , Beltsville, Maryland 20705, United States
| | - Nathan W Oehrle
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri , Columbia, Missouri 65211, United States
| | - Wesley M Garrett
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, U.S. Department of Agriculture , Beltsville, Maryland 20705, United States
| | - Omar Darwish
- Department of Computer and Information Sciences, Towson University , Towson, Maryland 21252, United States
| |
Collapse
|
24
|
Rodriguez-Salazar J, Moreno S, Espín G. LEA proteins are involved in cyst desiccation resistance and other abiotic stresses in Azotobacter vinelandii. Cell Stress Chaperones 2017; 22:397-408. [PMID: 28258486 PMCID: PMC5425371 DOI: 10.1007/s12192-017-0781-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 10/20/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins constitute a large protein family that is closely associated with resistance to abiotic stresses in multiple organisms and protect cells against drought and other stresses. Azotobacter vinelandii is a soil bacterium that forms desiccation-resistant cysts. This bacterium possesses two genes, here named lea1 and lea2, coding for avLEA1 and avLEA2 proteins, both containing 20-mer motifs characteristic of eukaryotic plant LEA proteins. In this study, we found that disruption of the lea1 gene caused a loss of the cysts' viability after 3 months of desiccation, whereas at 6 months, wild-type or lea2 mutant strain cysts remained viable. Vegetative cells of the lea1 mutant were more sensitive to osmotic stress; cysts developed by this mutant were also more sensitive to high temperatures than cysts or vegetative cells of the wild type or of the lea2 mutant. Expression of lea1 was induced several fold during encystment. In addition, the protective effects of these proteins were assessed in Escherichia coli cells. We found that E. coli cells overexpressing avLEA1 were more tolerant to salt stress than control cells; finally, in vitro analysis showed that avLEA1 protein was able to prevent the freeze thaw-induced inactivation of lactate dehydrogenase. In conclusion, avLEA1 is essential for the survival of A. vinelandii in dry conditions and for protection against hyper-osmolarity, two major stress factors that bacteria must cope with for survival in the environment. This is the first report on the role of bacterial LEA proteins on the resistance of cysts to desiccation.
Collapse
Affiliation(s)
- Julieta Rodriguez-Salazar
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Soledad Moreno
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
25
|
Perigone Lobe Transcriptome Analysis Provides Insights into Rafflesia cantleyi Flower Development. PLoS One 2016; 11:e0167958. [PMID: 27977777 PMCID: PMC5158018 DOI: 10.1371/journal.pone.0167958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/23/2016] [Indexed: 11/19/2022] Open
Abstract
Rafflesia is a biologically enigmatic species that is very rare in occurrence and possesses an extraordinary morphology. This parasitic plant produces a gigantic flower up to one metre in diameter with no leaves, stem or roots. However, little is known about the floral biology of this species especially at the molecular level. In an effort to address this issue, we have generated and characterised the transcriptome of the Rafflesia cantleyi flower, and performed a comparison with the transcriptome of its floral bud to predict genes that are expressed and regulated during flower development. Approximately 40 million sequencing reads were generated and assembled de novo into 18,053 transcripts with an average length of 641 bp. Of these, more than 79% of the transcripts had significant matches to annotated sequences in the public protein database. A total of 11,756 and 7,891 transcripts were assigned to Gene Ontology categories and clusters of orthologous groups respectively. In addition, 6,019 transcripts could be mapped to 129 pathways in Kyoto Encyclopaedia of Genes and Genomes Pathway database. Digital abundance analysis identified 52 transcripts with very high expression in the flower transcriptome of R. cantleyi. Subsequently, analysis of differential expression between developing flower and the floral bud revealed a set of 105 transcripts with potential role in flower development. Our work presents a deep transcriptome resource analysis for the developing flower of R. cantleyi. Genes potentially involved in the growth and development of the R. cantleyi flower were identified and provide insights into biological processes that occur during flower development.
Collapse
|
26
|
Huang Z, Zhong XJ, He J, Jin SH, Guo HD, Yu XF, Zhou YJ, Li X, Ma MD, Chen QB, Long H. Genome-Wide Identification, Characterization, and Stress-Responsive Expression Profiling of Genes Encoding LEA (Late Embryogenesis Abundant) Proteins in Moso Bamboo (Phyllostachys edulis). PLoS One 2016; 11:e0165953. [PMID: 27829056 PMCID: PMC5102402 DOI: 10.1371/journal.pone.0165953] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/20/2016] [Indexed: 01/10/2023] Open
Abstract
Late embryogenesis abundant (LEA) proteins have been identified in a wide range of organisms and are believed to play a role in the adaptation of plants to stress conditions. In this study, we performed genome-wide identification of LEA proteins and their coding genes in Moso bamboo (Phyllostachys edulis) of Poaceae. A total of 23 genes encoding LEA proteins (PeLEAs) were found in P. edulis that could be classified to six groups based on Pfam protein family and homologous analysis. Further in silico analyses of the structures, gene amount, and biochemical characteristics were conducted and compared with those of O. sativa (OsLEAs), B. distachyon (BdLEAs), Z. mays (ZmLEAs), S. bicolor (SbLEAs), Arabidopsis, and Populus trichocarpa. The less number of PeLEAs was found. Evolutionary analysis revealed orthologous relationship and colinearity between P. edulis, O. sativa, B. distachyon, Z. mays, and S. bicolor. Analyses of the non-synonymous (Ka) and synonymous (Ks)substitution rates and their ratios indicated that the duplication of PeLEAs may have occurred around 18.8 million years ago (MYA), and divergence time of LEA family among the P. edulis-O. sativa and P. edulis–B. distachyon, P. edulis-S. bicolor, and P. edulis-Z. mays was approximately 30 MYA, 36 MYA, 48 MYA, and 53 MYA, respectively. Almost all PeLEAs contain ABA- and (or) stress-responsive regulatory elements. Further RNA-seq analysis revealed approximately 78% of PeLEAs could be up-regulated by dehydration and cold stresses. The present study makes insights into the LEA family in P. edulis and provides inventory of stress-responsive genes for further functional validation and transgenic research aiming to plant genetic improvement of abiotic stress tolerance.
Collapse
Affiliation(s)
- Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
- * E-mail: (ZH); (HL)
| | - Xiao-Juan Zhong
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Jiao He
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Si-Han Jin
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Han-Du Guo
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Xiao-Fang Yu
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Yu-Jue Zhou
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Ming-Dong Ma
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Qi-Bing Chen
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
- * E-mail: (ZH); (HL)
| |
Collapse
|
27
|
Subramanian S, Ricci E, Souleimanov A, Smith DL. A Proteomic Approach to Lipo-Chitooligosaccharide and Thuricin 17 Effects on Soybean GerminationUnstressed and Salt Stress. PLoS One 2016; 11:e0160660. [PMID: 27560934 PMCID: PMC4999219 DOI: 10.1371/journal.pone.0160660] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/23/2016] [Indexed: 12/13/2022] Open
Abstract
Salt stress is an important abiotic stressor affecting crop growth and productivity. Of the 20 percent of the terrestrial earth's surface available as agricultural land, 50 percent is estimated by the United Nations Environment Program to be salinized to the level that crops growing on it will be salt-stressed. Increased soil salinity has profound effects on seed germination and germinating seedlings as they are frequently confronted with much higher salinities than vigorously growing plants, because germination usually occurs in surface soils, the site of greatest soluble salt accumulation. The growth of soybean exposed to 40 mM NaCl is negatively affected, while an exposure to 80 mM NaCl is often lethal. When treated with the bacterial signal compounds lipo-chitooligosaccharide (LCO) and thuricin 17 (Th17), soybean seeds (variety Absolute RR) responded positively at salt stress of up to 150 mM NaCl. Shotgun proteomics of unstressed and 100 mM NaCl stressed seeds (48 h) in combination with the LCO and Th17 revealed many known, predicted, hypothetical and unknown proteins. In all, carbon, nitrogen and energy metabolic pathways were affected under both unstressed and salt stressed conditions when treated with signals. PEP carboxylase, Rubisco oxygenase large subunit, pyruvate kinase, and isocitrate lyase were some of the noteworthy proteins enhanced by the signals, along with antioxidant glutathione-S-transferase and other stress related proteins. These findings suggest that the germinating seeds alter their proteome based on bacterial signals and on stress, the specificity of this response plays a crucial role in organ maturation and transition from one stage to another in the plants' life cycle; understanding this response is of fundamental importance in agriculture and, as a result, global food security. The mass spectrometry proteomics data have been deposited to the ProteomeXchange with identifier PXD004106.
Collapse
Affiliation(s)
- Sowmyalakshmi Subramanian
- Department of Plant Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, H9X3V9, Canada
| | - Emily Ricci
- Department of Plant Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, H9X3V9, Canada
| | - Alfred Souleimanov
- Department of Plant Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, H9X3V9, Canada
| | - Donald L. Smith
- Department of Plant Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, H9X3V9, Canada
| |
Collapse
|
28
|
Sharma A, Kumar D, Kumar S, Rampuria S, Reddy AR, Kirti PB. Ectopic Expression of an Atypical Hydrophobic Group 5 LEA Protein from Wild Peanut, Arachis diogoi Confers Abiotic Stress Tolerance in Tobacco. PLoS One 2016; 11:e0150609. [PMID: 26938884 PMCID: PMC4777422 DOI: 10.1371/journal.pone.0150609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/16/2016] [Indexed: 11/23/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are a group of hydrophilic proteins, which accumulate in plants under varied stress conditions like drought, salinity, extreme temperatures and oxidative stress suggesting their role in the protection of plants against these stresses. A transcript derived fragment (TDF) corresponding to LEA gene, which got differentially expressed in wild peanut, Arachis diogoi against the late leaf spot pathogen, Phaeoisariopsis personata was used in this study. We have cloned its full length cDNA by RACE-PCR, which was designated as AdLEA. AdLEA belongs to the atypical Group 5C of LEA protein family as confirmed by sequence analysis. Group 5C LEA protein subfamily contains Pfam LEA_2 domain and is highly hydrophobic. In native conditions, expression of AdLEA was upregulated considerably upon hormonal and abiotic stress treatments emphasizing its role in abiotic stress tolerance. Subcellular localization studies showed that AdLEA protein is distributed in both nucleus and cytosol. Ectopic expression of AdLEA in tobacco resulted in enhanced tolerance of plants to dehydration, salinity and oxidative stress with the transgenic plants showing higher chlorophyll content and reduced lipid peroxidation as compared to wild type plants. Overexpressed AdLEA tobacco plants maintained better photosynthetic efficiency under drought conditions as demonstrated by chlorophyll fluorescence measurements. These plants showed enhanced transcript accumulation of some stress-responsive genes. Our study also elucidates that ROS levels were significantly reduced in leaves and stomatal guard cells of transgenic plants upon stress treatments. These results suggest that AdLEA confers multiple stress tolerance to plants, which make it a potential gene for genetic modification in plants.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Dilip Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
- Department of Postharvest Science of Fresh Produce, ARO, The Volcani Center, Bet Dagan, 50250, Israel
| | - Sumit Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sakshi Rampuria
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Attipalli R. Reddy
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | |
Collapse
|
29
|
Gao J, Lan T. Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli. Sci Rep 2016; 6:19467. [PMID: 26781930 PMCID: PMC4726009 DOI: 10.1038/srep19467] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/14/2015] [Indexed: 11/21/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are a large and highly diverse gene family present in a wide range of plant species. LEAs are proposed to play a role in various stress tolerance responses. Our study represents the first-ever survey of LEA proteins and their encoding genes in a widely distributed pine (Pinus tabuliformis) in China. Twenty-three LEA genes were identified from the P. tabuliformis belonging to seven groups. Proteins with repeated motifs are an important feature specific to LEA groups. Ten of 23 pine LEA genes were selectively expressed in specific tissues, and showed expression divergence within each group. In addition, we selected 13 genes representing each group and introduced theses genes into Escherichia coli to assess the protective function of PtaLEA under heat and salt stresses. Compared with control cells, the E. coli cells expressing PtaLEA fusion protein exhibited enhanced salt and heat resistance and viability, indicating the protein may play a protective role in cells under stress conditions. Furthermore, among these enhanced tolerance genes, a certain extent of function divergence appeared within a gene group as well as between gene groups, suggesting potential functional diversity of this gene family in conifers.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
| | - Ting Lan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 10093, China
| |
Collapse
|
30
|
Challabathula D, Puthur JT, Bartels D. Surviving metabolic arrest: photosynthesis during desiccation and rehydration in resurrection plants. Ann N Y Acad Sci 2015; 1365:89-99. [PMID: 26376004 DOI: 10.1111/nyas.12884] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photosynthesis is the key process that is affected by dehydration in plants. Desiccation-tolerant resurrection plants can survive conditions of very low relative water content. During desiccation, photosynthesis is not operational, but is recovered within a short period after rehydration. While homoiochlorophyllous resurrection plants retain their photosynthetic apparatus during desiccation, poikilochlorophyllous resurrection species dismantle chloroplasts and degrade chlorophyll but resynthesize them again during rehydration. Dismantling the chloroplasts avoids the photooxidative stress in poikilochlorophyllous resurrection plants, whereas it is minimized in homoiochlorophyllous plants through the synthesis of antioxidant enzymes and protective proteins or metabolites. Although the cellular protection mechanisms in both of these species vary, these mechanisms protect cells from desiccation-induced damage and restore photosynthesis upon rehydration. Several of the proteins synthesized during dehydration are localized in chloroplasts and are believed to play major roles in the protection of photosynthetic structures and in recovery in resurrection species. This review focuses on the strategies of resurrection plants in terms of how they protect their photosynthetic apparatus from oxidative stress during desiccation without membrane damage and with full recovery during rehydration. We review the role of the dehydration-induced protection mechanisms in chloroplasts and how photosynthesis is restored during rehydration.
Collapse
Affiliation(s)
- Dinakar Challabathula
- Department of Life Sciences, School of Basic and Applied Sciences, Central University of Tamil Nadu, Tamil Nadu, India.,Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Kerala, India
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| |
Collapse
|
31
|
Lim CW, Lim S, Baek W, Lee SC. The pepper late embryogenesis abundant protein CaLEA1 acts in regulating abscisic acid signaling, drought and salt stress response. PHYSIOLOGIA PLANTARUM 2015; 154:526-42. [PMID: 25302464 DOI: 10.1111/ppl.12298] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/11/2014] [Accepted: 09/26/2014] [Indexed: 05/08/2023]
Abstract
As sessile organisms, plants are constantly challenged by environmental stresses, including drought and high salinity. Among the various abiotic stresses, osmotic stress is one of the most important factors for growth and significantly reduces crop productivity in agriculture. Here, we report a function of the CaLEA1 protein in the defense responses of plants to osmotic stress. Our analyses showed that the CaLEA1 gene was strongly induced in pepper leaves exposed to drought and increased salinity. Furthermore, we determined that the CaLEA1 protein has a late embryogenesis abundant (LEA)_3 homolog domain highly conserved among other known group 5 LEA proteins and is localized in the processing body. We generated CaLEA1-silenced peppers and CaLEA1-overexpressing (OX) transgenic Arabidopsis plants to evaluate their responses to dehydration and high salinity. Virus-induced gene silencing of CaLEA1 in pepper plants conferred enhanced sensitivity to drought and salt stresses, which was accompanied by high levels of lipid peroxidation in dehydrated and NaCl-treated leaves. CaLEA1-OX plants exhibited enhanced sensitivity to abscisic acid (ABA) during seed germination and in the seedling stage; furthermore, these plants were more tolerant to drought and salt stress than the wild-type plants because of enhanced stomatal closure and increased expression of stress-responsive genes. Collectively, our data suggest that CaLEA1 positively regulates drought and salinity tolerance through ABA-mediated cell signaling.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Sohee Lim
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Woonhee Baek
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| |
Collapse
|
32
|
Wang M, Li P, Li C, Pan Y, Jiang X, Zhu D, Zhao Q, Yu J. SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC PLANT BIOLOGY 2014; 14:290. [PMID: 25404037 PMCID: PMC4243736 DOI: 10.1186/s12870-014-0290-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/15/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Late embryogenesis abundant (LEA) proteins are involved in protecting higher plants from damage caused by environmental stresses. Foxtail millet (Setaria italica) is an important cereal crop for food and feed in semi-arid areas. However, the molecular mechanisms underlying tolerance to these conditions are not well defined. RESULTS Here, we characterized a novel atypical LEA gene named SiLEA14 from foxtail millet. It contains two exons separated by one intron. SiLEA14 was expressed in roots, stems, leaves, inflorescences and seeds at different levels under normal growth conditions. In addition, SiLEA14 was dramatically induced by osmotic stress, NaCl and exogenous abscisic acid. The SiLEA14 protein was localized in the nucleus and the cytoplasm. Overexpression of SiLEA14 improved Escherichia coli growth performance compared with the control under salt stress. To further assess the function of SiLEA14 in plants, transgenic Arabidopsis and foxtail millet plants that overexpressed SiLEA14 were obtained. The transgenic Arabidopsis seedlings showed higher tolerance to salt and osmotic stress than the wild type (WT). Similarly, the transgenic foxtail millet showed improved growth under salt and drought stresses compared with the WT. Taken together, our results indicated that SiLEA14 is a novel atypical LEA protein and plays important roles in resistance to abiotic stresses in plants. CONCLUSION We characterized a novel atypical LEA gene SiLEA14 from foxtail millet, which plays important roles in plant abiotic stress resistance. Modification of SiLEA14 expression may improve abiotic stress resistance in agricultural crops.
Collapse
Affiliation(s)
- Meizhen Wang
- />State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
- />Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193 China
| | - Ping Li
- />State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Cong Li
- />State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Yanlin Pan
- />State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Xiyuan Jiang
- />State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Dengyun Zhu
- />State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Qian Zhao
- />State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Jingjuan Yu
- />State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| |
Collapse
|
33
|
Jia F, Qi S, Li H, Liu P, Li P, Wu C, Zheng C, Huang J. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance. Biochem Biophys Res Commun 2014; 454:505-11. [PMID: 25450686 DOI: 10.1016/j.bbrc.2014.10.136] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
Abstract
Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis.
Collapse
Affiliation(s)
- Fengjuan Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Shengdong Qi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Hui Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Pu Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Pengcheng Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
34
|
Liu Y, Wang L, Jiang S, Pan J, Cai G, Li D. Group 5 LEA protein, ZmLEA5C, enhance tolerance to osmotic and low temperature stresses in transgenic tobacco and yeast. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:22-31. [PMID: 25240107 DOI: 10.1016/j.plaphy.2014.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/18/2014] [Indexed: 05/08/2023]
Abstract
Group 5 LEA (Late Embryogenesis Abundant) proteins contain a significantly higher proportion of hydrophobic residues but lack significant signature motifs or consensus sequences. This group is considered as an atypical group of LEA proteins. Up to now, there is little known about group 5C LEA proteins in maize. Here, we identified a novel group 5C LEA protein from maize. The accumulation of transcripts demonstrated that ZmLEA5C displayed similar induced characteristics in leaves and roots. Transcription of ZmLEA5C could be induced by low temperature, osmotic and oxidative stress and some signaling molecules, such as abscisic acid (ABA), salicylic acid (SA) and methyl jasmonate (MeJA). However, transcription of ZmLEA5C was significantly inhibited by high salinity. Further study indicated that the ZmLEA5C protein could be phosphorylated by the protein kinase CKII. ZmLEA5C could protect the activity of LDH under water deficit and low temperature stresses. Overexpression of ZmLEA5C conferred to transgenic tobacco (Nicotiana benthamiana) and yeast (GS115) tolerance to osmotic and low temperature stresses.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Li Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shanshan Jiang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jiaowen Pan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Guohua Cai
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Dequan Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
35
|
Rahman H, Jagadeeshselvam N, Valarmathi R, Sachin B, Sasikala R, Senthil N, Sudhakar D, Robin S, Muthurajan R. Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing. PLANT MOLECULAR BIOLOGY 2014; 85:485-503. [PMID: 24838653 DOI: 10.1007/s11103-014-0199-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/10/2014] [Indexed: 05/20/2023]
Abstract
Finger millet (Eleusine coracana L.) is a hardy cereal known for its superior level of tolerance against drought, salinity, diseases and its nutritional properties. In this study, attempts were made to unravel the physiological and molecular basis of salinity tolerance in two contrasting finger millet genotypes viz., CO 12 and Trichy 1. Physiological studies revealed that the tolerant genotype Trichy 1 had lower Na(+) to K(+) ratio in leaves and shoots, higher growth rate (osmotic tolerance) and ability to accumulate higher amount of total soluble sugar in leaves under salinity stress. We sequenced the salinity responsive leaf transcriptome of contrasting finger millet genotypes using IonProton platform and generated 27.91 million reads. Mapping and annotation of finger millet transcripts against rice gene models led to the identification of salinity responsive genes and genotype specific responses. Several functional groups of genes like transporters, transcription factors, genes involved in cell signaling, osmotic homeostasis and biosynthesis of compatible solutes were found to be highly up-regulated in the tolerant Trichy 1. Salinity stress inhibited photosynthetic capacity and photosynthesis related genes in the susceptible genotype CO 12. Several genes involved in cell growth and differentiation were found to be up-regulated in both the genotypes but more specifically in tolerant genotype. Genes involved in flavonoid biosynthesis were found to be down-regulated specifically in the salinity tolerant Trichy 1. This study provides a genome-wide transcriptional analysis of two finger millet genotypes differing in their level of salinity tolerance during a gradually progressing salinity stress under greenhouse conditions.
Collapse
Affiliation(s)
- Hifzur Rahman
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Molecular characterization, heterologous expression and resistance analysis of OsLEA3-1 from Oryza sativa. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0362-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Wang Y, Xu H, Zhu H, Tao Y, Zhang G, Zhang L, Zhang C, Zhang Z, Ma Z. Classification and expression diversification of wheat dehydrin genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 214:113-20. [PMID: 24268169 DOI: 10.1016/j.plantsci.2013.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/05/2013] [Accepted: 10/07/2013] [Indexed: 05/02/2023]
Abstract
Dehydrins (DHNs) are late embryonic abundant proteins characterized by the dehydrin domains that are involved in plant abiotic stress tolerance. In this study, fifty-four wheat DHN unigenes were identified in the expressed sequence tags database. These genes encode seven types of dehydrins (KS, SK3, YSK2, Y2SK2, Kn, Y2SK3, and YSK3) and separate in 32 homologous clusters. The gene amplification differed among the dehydrin types, and members of the YSK2- and Kn-type DHNs are more numerous in wheat than in other cereals. The relative expression of all of these DHN clusters was analyzed using an in silico method in seven tissue types (i.e. normal growing shoots, roots, and reproductive tissues; developing and germinating seeds; drought- and cold-stressed shoots) as well as semi-quantitative reverse transcription polymerase chain reaction in seedling leaves and roots treated by dehydration, cold, and salt, respectively. The role of the ABA pathway in wheat DHN expression regulation was analyzed. Transcripts of certain types of DHNs accumulated specifically according to tissue type and treatment, which suggests their differentiated roles in wheat abiotic stress tolerance.
Collapse
Affiliation(s)
- Yuezhi Wang
- The Applied Plant Genomics Lab, Crop Genomics and Bioinformatics Center & National Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu 210095, China; Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021 China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Amara I, Zaidi I, Masmoudi K, Ludevid MD, Pagès M, Goday A, Brini F. Insights into Late Embryogenesis Abundant (LEA) Proteins in Plants: From Structure to the Functions. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.522360] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Sasaki K, Christov NK, Tsuda S, Imai R. Identification of a novel LEA protein involved in freezing tolerance in wheat. PLANT & CELL PHYSIOLOGY 2014; 55:136-47. [PMID: 24265272 DOI: 10.1093/pcp/pct164] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are a family of hyper-hydrophilic proteins that accumulate in response to cellular dehydration. Originally identified as plant proteins associated with seed desiccation tolerance, LEA proteins have been identified in a wide range of organisms such as invertebrates and microorganisms. LEA proteins are thought to protect proteins and biomembranes under water-deficit conditions. Here, we characterized WCI16, a wheat (Triticum aestivum) protein that belongs to a class of plant proteins of unknown function, and provide evidence that WCI16 shares common features with LEA proteins. WCI16 was induced during cold acclimation in winter wheat. Based on its amino acid sequence, WCI16 is highly hydrophilic, like LEA proteins, despite having no significant sequence similarity to any of the known classes of LEA proteins. Recombinant WCI16 protein was soluble after boiling, and (1)H-nuclear magnetic resonance (NMR) spectroscopy revealed that the structure of WCI16 is random and has no hydrophobic regions. WCI16 exhibited in vitro cryoprotection of the freeze-labile enzyme l-lactate dehydrogenase as well as double-stranded DNA binding activity, suggesting that WCI16 may protect both proteins and DNA during environmental stresses. The biological relevance of these activities was supported by the subcellular localization of a green fluorescent protein (GFP)-fused WCI16 protein in the nucleus and cytoplasm. Heterologous expression of WCI16 in Arabidopsis (Arabidopsis thaliana) plants conferred enhanced freezing tolerance. Taken together, our results indicate that WCI16 represents a novel class of LEA proteins and is involved in freezing tolerance.
Collapse
Affiliation(s)
- Kentaro Sasaki
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Hitsujigaoka 1, Toyohira-ku, Sapporo, 062-8555 Japan
| | | | | | | |
Collapse
|
40
|
JcLEA, a novel LEA-like protein from Jatropha curcas, confers a high level of tolerance to dehydration and salinity in Arabidopsis thaliana. PLoS One 2013; 8:e83056. [PMID: 24391737 PMCID: PMC3877014 DOI: 10.1371/journal.pone.0083056] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/30/2013] [Indexed: 12/20/2022] Open
Abstract
Jatropha curcas L. is a highly drought and salt tolerant plant species that is typically used as a traditional folk medicine and biofuel crop in many countries. Understanding the molecular mechanisms that underlie the response to various abiotic environmental stimuli, especially to drought and salt stresses, in J. curcas could be important to crop improvement efforts. In this study, we cloned and characterized the gene for a late embryogenesis abundant (LEA) protein from J. curcas that we designated JcLEA. Sequence analyses showed that the JcLEA protein belongs to group 5, a subgroup of the LEA protein family. In young seedlings, expression of JcLEA is significantly induced by abscisic acid (ABA), dehydration, and salt stress. Subcellular localization analysis shows that that JcLEA protein is distributed in both the nucleus and cytoplasm. Moreover, based on growth status and physiological indices, the overexpression of JcLEA in transgenic Arabidopsis plants conferred increased resistance to both drought and salt stresses compared to the WT. Our data suggests that the group 5 JcLEA protein contributes to drought and salt stress tolerance in plants. Thus, JcLEA is a potential candidate gene for plant genetic modification.
Collapse
|
41
|
Amara I, Capellades M, Ludevid MD, Pagès M, Goday A. Enhanced water stress tolerance of transgenic maize plants over-expressing LEA Rab28 gene. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:864-73. [PMID: 23384757 DOI: 10.1016/j.jplph.2013.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 05/03/2023]
Abstract
Late Embryogenesis Abundant (LEA) proteins participate in plant stress responses and contribute to the acquisition of desiccation tolerance. In this report Rab28 LEA gene has been over-expressed in maize plants under a constitutive maize promoter. The expression of Rab28 transcripts led to the accumulation and stability of Rab28 protein in the transgenic plants. Native Rab28 protein is localized to nucleoli in wild type maize embryo cells; here we find by whole-mount immunocytochemistry that in root cells of Rab28 transgenic and wild-type plants the protein is also associated to nucleolar structures. Transgenic plants were tested for stress tolerance and resulted in sustained growth under polyethyleneglycol (PEG)-mediated dehydration compared to wild-type controls. Under osmotic stress transgenic seedlings showed increased leaf and root areas, higher relative water content (RWC), reduced chlorophyll loss and lower Malondialdehyde (MDA) production in relation to wild-type plants. Moreover, transgenic seeds exhibited higher germination rates than wild-type seeds under water deficit. Overall, our results highlight the presence of transgenic Rab28 protein in nucleolar structures and point to the potential of group 5 LEA Rab28 gene as candidate to enhance stress tolerance in maize plants.
Collapse
Affiliation(s)
- Imen Amara
- Department of Molecular Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | | | | | | | | |
Collapse
|
42
|
Mishra MK, Chaturvedi P, Singh R, Singh G, Sharma LK, Pandey V, Kumari N, Misra P. Overexpression of WsSGTL1 gene of Withania somnifera enhances salt tolerance, heat tolerance and cold acclimation ability in transgenic Arabidopsis plants. PLoS One 2013; 8:e63064. [PMID: 23646175 PMCID: PMC3639950 DOI: 10.1371/journal.pone.0063064] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 03/28/2013] [Indexed: 01/07/2023] Open
Abstract
Background Sterol glycosyltrnasferases (SGT) are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant’s adaptation to abiotic stress. Methodology The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses - salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA) and the 3D structures were predicted by using Discovery Studio Ver. 2.5. Results The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana. Conclusions Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found to have stress responsive elements. The 3D structure showed functional similarity with sterol glycosyltransferases.
Collapse
Affiliation(s)
- Manoj K. Mishra
- Council of Scientific and Industrial Research - National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Pankaj Chaturvedi
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Ruchi Singh
- Council of Scientific and Industrial Research - National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Gaurav Singh
- Council of Scientific and Industrial Research - National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Lokendra K. Sharma
- Council of Scientific and Industrial Research - National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Vibha Pandey
- Council of Scientific and Industrial Research - National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Nishi Kumari
- Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Pratibha Misra
- Council of Scientific and Industrial Research - National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
43
|
Wei L, Miao H, Zhao R, Han X, Zhang T, Zhang H. Identification and testing of reference genes for Sesame gene expression analysis by quantitative real-time PCR. PLANTA 2013; 237:873-89. [PMID: 23229061 PMCID: PMC3579469 DOI: 10.1007/s00425-012-1805-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/30/2012] [Indexed: 05/07/2023]
Abstract
Sesame (Sesamum indicum L.) is an ancient and important oilseed crop. However, few sesame reference genes have been selected for quantitative real-time PCR until now. Screening and validating reference genes is a requisite for gene expression normalization in sesame functional genomics research. In this study, ten candidate reference genes, i.e., SiACT, SiUBQ6, SiTUB, Si18S rRNA, SiEF1α, SiCYP, SiHistone, SiDNAJ, SiAPT and SiGAPDH, were chosen and examined systematically in 32 sesame samples. Three qRT-PCR analysis methods, i.e., geNorm, NormFinder and BestKeeper, were evaluated systematically. Results indicated that all ten candidate reference genes could be used as reference genes in sesame. SiUBQ6 and SiAPT were the optimal reference genes for sesame plant development; SiTUB was suitable for sesame vegetative tissue development, SiDNAJ for pathogen treatment, SiHistone for abiotic stress, SiUBQ6 for bud development and SiACT for seed germination. As for hormone treatment and seed development, SiHistone, SiCYP, SiDNAJ or SiUBQ6, as well as SiACT, SiDNAJ, SiTUB or SiAPT, could be used as reference gene, respectively. To illustrate the suitability of these reference genes, we analyzed the expression variation of three functional sesame genes of SiSS, SiLEA and SiGH in different organs using the optimal qRT-PCR system for the first time. The stability levels of optimal and worst reference genes screened for seed development, anther sterility and plant development were validated in the qRT-PCR normalization. Our results provided a reference gene application guideline for sesame gene expression characterization using qRT-PCR system.
Collapse
Affiliation(s)
- Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Ruihong Zhao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Xiuhua Han
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Tide Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| |
Collapse
|
44
|
Teoh KT, Requesens DV, Devaiah SP, Johnson D, Huang X, Howard JA, Hood EE. Transcriptome analysis of embryo maturation in maize. BMC PLANT BIOLOGY 2013; 13:19. [PMID: 23379350 PMCID: PMC3621147 DOI: 10.1186/1471-2229-13-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/28/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Maize is one of the most important crops in the world. With the exponentially increasing population and the need for ever increased food and feed production, an increased yield of maize grain (as well as rice, wheat and other grains) will be critical. Maize grain development is understood from the perspective of morphology, hormone responses, and storage reserve accumulation. This includes various studies on gene expression during embryo development and maturation but a global study of gene expression of the embryo has not been possible until recently. Transcriptome analysis is a powerful new tool that can be used to understand the genetic basis of embryo maturation. RESULTS We undertook a transcriptomic analysis of normal maturing embryos at 15, 21 and 27 days after pollination (DAP), of one elite maize germplasm line that was utilized in crosses to transgenic plants. More than 19,000 genes were analyzed by this method and the challenge was to select subsets of genes that are vitally important to embryo development and maturation for the initial analysis. We describe the changes in expression for genes relating to primary metabolic pathways, DNA synthesis, late embryogenesis proteins and embryo storage proteins, shown through transcriptome analysis and confirmed levels of transcription for some genes in the transcriptome using qRT-PCR. CONCLUSIONS Numerous genes involved in embryo maturation have been identified, many of which show changes in expression level during the progression from 15 to 27 DAP. An expected array of genes involved in primary metabolism was identified. Moreover, more than 30% of transcripts represented un-annotated genes, leaving many functions to be discovered. Of particular interest are the storage protein genes, globulin-1, globulin-2 and an unidentified cupin family gene. When expressing foreign proteins in maize, the globulin-1 promoter is most often used, but this cupin family gene has much higher expression and may be a better candidate for foreign gene expression in maize embryos. Results such as these allow identification of candidate genes and promoters that may not otherwise be available for use. mRNA seq data archived in NCBI SRA; Accession number: ACC=SRA060791 subid=108584.
Collapse
Affiliation(s)
- Keat Thomas Teoh
- Arkansas State University Biosciences Institute, PO Box 639, 72467, State University, AR, USA
| | | | - Shivakumar P Devaiah
- Arkansas State University Biosciences Institute, PO Box 639, 72467, State University, AR, USA
| | - Daniel Johnson
- Arkansas State University Biosciences Institute, PO Box 639, 72467, State University, AR, USA
| | - Xiuzhen Huang
- Arkansas State University Biosciences Institute, PO Box 639, 72467, State University, AR, USA
| | - John A Howard
- Applied Biotechnology Institute, San Luis Obispo, CA, USA
| | - Elizabeth E Hood
- Arkansas State University Biosciences Institute, PO Box 639, 72467, State University, AR, USA
| |
Collapse
|
45
|
Perdiguero P, Barbero MC, Cervera MT, Soto A, Collada C. Novel conserved segments are associated with differential expression patterns for Pinaceae dehydrins. PLANTA 2012; 236:1863-74. [PMID: 22922940 DOI: 10.1007/s00425-012-1737-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 08/03/2012] [Indexed: 05/12/2023]
Abstract
Dehydrins are thought to play an essential role in the response, acclimation and tolerance to different abiotic stresses, such as cold and drought. These proteins have been classified into five groups according to the presence of conserved and repeated motifs in their amino acid sequence. Due to their putative functions in the response to stress, dehydrins have been often used as candidate genes in studies on population variability and local adaptation to environmental conditions. However, little is still known regarding the differential role played by such groups or the mechanism underlying their function. Based on the sequences corresponding to dehydrins available in public databases we have isolated eight different dehydrins from cDNA of Pinus pinaster. We have obtained also their genomic sequences and identified their intron/exon structure. Quantitative RT-PCR analysis of their expression pattern in needles, stems and roots during a severe and prolonged drought stress, similar to the ones trees must face in nature, is also reported. Additionally, we have identified two amino acid motifs highly conserved and repeated in Pinaceae dehydrins and absent in angiosperms, presumably related to the divergent expression profiles observed.
Collapse
Affiliation(s)
- Pedro Perdiguero
- GENFOR Grupo de investigación en Genética y Fisiología Forestal, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | | | | | | | | |
Collapse
|
46
|
Duan J, Cai W. OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS One 2012; 7:e45117. [PMID: 23024799 PMCID: PMC3443202 DOI: 10.1371/journal.pone.0045117] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/13/2012] [Indexed: 11/18/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are involved in tolerance to drought, cold and high salinity in many different organisms. In this report, a LEA protein producing full-length gene OsLEA3-2 was identified in rice (Oryza sativa) using the Rapid Amplification of cDNA Ends (RACE) method. OsLEA3-2 was found to be only expressed in the embryo and can be induced by abiotic stresses. The coding protein localizes to the nucleus and overexpression of OsLEA3-2 in yeast improved growth performance compared with control under salt- and osmotic-stress conditions. OsLEA3-2 was also inserted into pHB vector and overexpressed in Arabidopsis and rice. The transgenic Arabidopsis seedlings showed better growth on MS media supplemented with 150 mM mannitol or 100 mM NaCl as compared with wild type plants. The transgenic rice also showed significantly stronger growth performance than control under salinity or osmotic stress conditions and were able to recover after 20 days of drought stress. In vitro analysis showed that OsLEA3-2 was able to protect LDH from aggregation on freezing and inactivation on desiccation. These results indicated that OsLEA3-2 plays an important role in tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Jianli Duan
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- Graduate University of the Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Weiming Cai
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|
47
|
Julca I, Alaminos M, González-López J, Manzanera M. Xeroprotectants for the stabilization of biomaterials. Biotechnol Adv 2012; 30:1641-54. [PMID: 22814234 DOI: 10.1016/j.biotechadv.2012.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/03/2012] [Accepted: 07/08/2012] [Indexed: 12/20/2022]
Abstract
With the advancement of science and technology, it is crucial to have effective preservation methods for the stable long-term storage of biological material (biomaterials). As an alternative to cryopreservation, various techniques have been developed, which are based on the survival mechanism of anhydrobiotic organisms. In this sense, it has been found that the synthesis of xeroprotectants can effectively stabilize biomaterials in a dry state. The most widely studied xeroprotectant is trehalose, which has excellent properties for the stabilization of certain proteins, bacteria, and biological membranes. There have also been attempts to apply trehalose to the stabilization of eukaryotic cells but without conclusive results. Consequently, a xeroprotectant or method that is useful for the stable drying of a particular biomaterial might not necessarily be suitable for another one. This article provides an overview of recent advances in the use of new techniques to stabilize biomaterials and compare xeroprotectants with other more standard methods.
Collapse
Affiliation(s)
- I Julca
- Institute for Water Research, and Department of Microbiology, Faculty of Medicine, University of Granada, Granada, Spain
| | | | | | | |
Collapse
|
48
|
Ruibal C, Salamó IP, Carballo V, Castro A, Bentancor M, Borsani O, Szabados L, Vidal S. Differential contribution of individual dehydrin genes from Physcomitrella patens to salt and osmotic stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 190:89-102. [PMID: 22608523 DOI: 10.1016/j.plantsci.2012.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/16/2012] [Accepted: 03/28/2012] [Indexed: 05/02/2023]
Abstract
The moss Physcomitrella patens can withstand extreme environmental conditions including drought and salt stress. Tolerance to dehydration in mosses is thought to rely on efficient limitation of stress-induced cell damage and repair of cell injury upon stress relief. Dehydrin proteins (DHNs) are part of a conserved cell protecting mechanism in plants although their role in stress tolerance is not well understood. Four DHNs and two DHN-like proteins were identified in the predicted proteome of P. patens. Expression of PpDHNA and PpDHNB was induced by salt and osmotic stress and controlled by abscisic acid. Subcellular localization of the encoded proteins suggested that these dehydrins are localized in cytosol and accumulate near membranes during stress. Comparative analysis of dhnA and dhnB targeted knockout mutants of P. patens revealed that both genes play a role in cellular protection during salt and osmotic stress, although PpDHNA has a higher contribution to stress tolerance. Overexpression of PpDHNA and PpDHNB genes in transgenic Arabidopsis improved rosette and root growth in stress conditions, although PpDHNA was more efficient in this role. These results suggest that specific DHNs contribute considerably to the high stress tolerance of mosses and offer novel tools for genetic engineering stress tolerance of higher plants.
Collapse
Affiliation(s)
- Cecilia Ruibal
- Laboratorio de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Goltsev V, Zaharieva I, Chernev P, Kouzmanova M, Kalaji HM, Yordanov I, Krasteva V, Alexandrov V, Stefanov D, Allakhverdiev SI, Strasser RJ. Drought-induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1490-8. [PMID: 22609146 DOI: 10.1016/j.bbabio.2012.04.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/25/2012] [Accepted: 04/28/2012] [Indexed: 11/25/2022]
Abstract
Water deficit is one of the most important environmental factors limiting sustainable crop yields and it requires a reliable tool for fast and precise quantification. In this work we use simultaneously recorded signals of photoinduced prompt fluorescence (PF) and delayed fluorescence (DF) as well as modulated reflection (MR) of light at 820nm for analysis of the changes in the photosynthetic activity in detached bean leaves during drying. Depending on the severity of the water deficit we identify different changes in the primary photosynthetic processes. When the relative water content (RWC) is decreased to 60% there is a parallel decrease in the ratio between the rate of excitation trapping in the Photosystem (PS) II reaction center and the rate of reoxidation of reduced PSII acceptors. A further decrease of RWC to 20% suppresses the electron transfer from the reduced plastoquinone pool to the PSI reaction center. At RWC below values 15%, the reoxidation of the photoreduced primary quinone acceptor of PSII, Q(A)(-), is inhibited and at less than 5%, the primary photochemical reactions in PSI and II are inactivated. Using the collected sets of PF, DF and MR signals, we construct and train an artificial neural network, capable of recognizing the RWC in a series of "unknown" samples with a correlation between calculated and gravimetrically determined RWC values of about R(2)≈0.98. Our results demonstrate that this is a reliable method for determination of RWC in detached leaves and after further development it could be used for quantifying of drought stress of crop plants in situ. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Vasilij Goltsev
- Department of Biophysics and Radiobiology, St. Kliment Ohridski University of Sofia, Sofia, Bulgaria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Reddy PS, Reddy GM, Pandey P, Chandrasekhar K, Reddy MK. Cloning and molecular characterization of a gene encoding late embryogenesis abundant protein from Pennisetum glaucum: protection against abiotic stresses. Mol Biol Rep 2012; 39:7163-74. [PMID: 22311039 DOI: 10.1007/s11033-012-1548-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
Abstract
Late embryogenesis abundant (LEA) protein family is a large protein family that protects other proteins from aggregation due to desiccation or osmotic stresses. A cDNA clone encoding a group 7 late embryogenesis abundant protein, termed PgLEA, was isolated from Pennisetum glaucum by screening a heat stress cDNA library. PgLEA cDNA encodes a 176 amino acid polypeptide with a predicted molecular mass of 19.21 kDa and an estimated isoelectric point of 7.77. PgLEA shares 70-74% sequence identity with other plant homologs. Phylogenetic analysis revealed that PgLEA is evolutionarily close to the LEA 7 group. Recombinant PgLEA protein expressed in Escherichia coli possessed in vitro chaperone activity and protected PgLEA-producing bacteria from damage caused by heat and salinity. Positive correlation existed between differentially up-regulated PgLEA transcript levels and the duration and intensity of different environmental stresses. In silico analysis of the promoter sequence of PgLEA revealed the presence of a distinct set of cis-elements and transcription factor binding sites. Transcript induction data, the presence of several putative stress-responsive transcription factor binding sites in the promoter region of PgLEA, the in vitro chaperone activity of this protein and its protective effect against heat and salt damage in E. coli suggest a role in conferring abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Palakolanu Sudhakar Reddy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | |
Collapse
|