1
|
Peng Y, Wang Z, Li M, Wang T, Su Y. Characterization and analysis of multi-organ full-length transcriptomes in Sphaeropteris brunoniana and Alsophila latebrosa highlight secondary metabolism and chloroplast RNA editing pattern of tree ferns. BMC PLANT BIOLOGY 2024; 24:73. [PMID: 38273309 PMCID: PMC10811885 DOI: 10.1186/s12870-024-04746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Sphaeropteris brunoniana and Alsophila latebrosa are both old relict and rare tree ferns, which have experienced the constant changes of climate and environment. However, little is known about their high-quality genetic information and related research on environmental adaptation mechanisms of them. In this study, combined with PacBio and Illumina platforms, transcriptomic analysis was conducted on the roots, rachis, and pinna of S. brunoniana and A. latebrosa to identify genes and pathways involved in environmental adaptation. Additionally, based on the transcriptomic data of tree ferns, chloroplast genes were mined to analyze their gene expression levels and RNA editing events. RESULTS In the study, we obtained 11,625, 14,391 and 10,099 unigenes of S. brunoniana root, rachis, and pinna, respectively. Similarly, a total of 13,028, 11,431 and 12,144 unigenes were obtained of A. latebrosa root, rachis, and pinna, respectively. According to the enrichment results of differentially expressed genes, a large number of differentially expressed genes were enriched in photosynthesis and secondary metabolic pathways of S. brunoniana and A. latebrosa. Based on gene annotation results and phenylpropanoid synthesis pathways, two lignin synthesis pathways (H-lignin and G-lignin) were characterized of S. brunoniana. Among secondary metabolic pathways of A. latebrosa, three types of WRKY transcription factors were identified. Additionally, based on transcriptome data obtained in this study, reported transcriptome data, and laboratory available transcriptome data, positive selection sites were identified from 18 chloroplast protein-coding genes of four tree ferns. Among them, RNA editing was found in positive selection sites of four tree ferns. RNA editing affected the protein secondary structure of the rbcL gene. Furthermore, the expression level of chloroplast genes indicated high expression of genes related to the chloroplast photosynthetic system in all four species. CONCLUSIONS Overall, this work provides a comprehensive transcriptome resource of S. brunoniana and A. latebrosa, laying the foundation for future tree fern research.
Collapse
Affiliation(s)
- Yang Peng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Minghui Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ting Wang
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
| |
Collapse
|
2
|
Hajrah NH, Obaid AY, Atef A, Ramadan AM, Arasappan D, Nelson CA, Edris S, Mutwakil MZ, Alhebshi A, Gadalla NO, Makki RM, Al-Kordy MA, El-Domyati FM, Sabir JSM, Khiyami MA, Hall N, Bahieldin A, Jansen RK. Transcriptomic analysis of salt stress responsive genes in Rhazya stricta. PLoS One 2017; 12:e0177589. [PMID: 28520766 PMCID: PMC5433744 DOI: 10.1371/journal.pone.0177589] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/29/2017] [Indexed: 11/24/2022] Open
Abstract
Rhazya stricta is an evergreen shrub that is widely distributed across Western and South Asia, and like many other members of the Apocynaceae produces monoterpene indole alkaloids that have anti-cancer properties. This species is adapted to very harsh desert conditions making it an excellent system for studying tolerance to high temperatures and salinity. RNA-Seq analysis was performed on R. stricta exposed to severe salt stress (500 mM NaCl) across four time intervals (0, 2, 12 and 24 h) to examine mechanisms of salt tolerance. A large number of transcripts including genes encoding tetrapyrroles and pentatricopeptide repeat (PPR) proteins were regulated only after 12 h of stress of seedlings grown in controlled greenhouse conditions. Mechanisms of salt tolerance in R. stricta may involve the upregulation of genes encoding chaperone protein Dnaj6, UDP-glucosyl transferase 85a2, protein transparent testa 12 and respiratory burst oxidase homolog protein b. Many of the highly-expressed genes act on protecting protein folding during salt stress and the production of flavonoids, key secondary metabolites in stress tolerance. Other regulated genes encode enzymes in the porphyrin and chlorophyll metabolic pathway with important roles during plant growth, photosynthesis, hormone signaling and abiotic responses. Heme biosynthesis in R. stricta leaves might add to the level of salt stress tolerance by maintaining appropriate levels of photosynthesis and normal plant growth as well as by the participation in reactive oxygen species (ROS) production under stress. We speculate that the high expression levels of PPR genes may be dependent on expression levels of their targeted editing genes. Although the results of PPR gene family indicated regulation of a large number of transcripts under salt stress, PPR actions were independent of the salt stress because their RNA editing patterns were unchanged.
Collapse
Affiliation(s)
- Nahid H. Hajrah
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Abdullah Y. Obaid
- Department of Chemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Ahmed Atef
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Ahmed M. Ramadan
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Dhivya Arasappan
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Charllotte A. Nelson
- Centre of Genomic Research, Institute for Integrative Biology, Crown Street, Liverpool, United Kingdom
| | - Sherif Edris
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Mohammed Z. Mutwakil
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Alawia Alhebshi
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Nour O. Gadalla
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Rania M. Makki
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Madgy A. Al-Kordy
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Fotouh M. El-Domyati
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Jamal S. M. Sabir
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Mohammad A. Khiyami
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Neil Hall
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- The Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Ahmed Bahieldin
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Robert K. Jansen
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
3
|
He P, Huang S, Xiao G, Zhang Y, Yu J. Abundant RNA editing sites of chloroplast protein-coding genes in Ginkgo biloba and an evolutionary pattern analysis. BMC PLANT BIOLOGY 2016; 16:257. [PMID: 27903241 PMCID: PMC5131507 DOI: 10.1186/s12870-016-0944-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/22/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND RNA editing is a posttranscriptional modification process that alters the RNA sequence so that it deviates from the genomic DNA sequence. RNA editing mainly occurs in chloroplasts and mitochondrial genomes, and the number of editing sites varies in terrestrial plants. Why and how RNA editing systems evolved remains a mystery. Ginkgo biloba is one of the oldest seed plants and has an important evolutionary position. Determining the patterns and distribution of RNA editing in the ancient plant provides insights into the evolutionary trend of RNA editing, and helping us to further understand their biological significance. RESULTS In this paper, we investigated 82 protein-coding genes in the chloroplast genome of G. biloba and identified 255 editing sites, which is the highest number of RNA editing events reported in a gymnosperm. All of the editing sites were C-to-U conversions, which mainly occurred in the second codon position, biased towards to the U_A context, and caused an increase in hydrophobic amino acids. RNA editing could change the secondary structures of 82 proteins, and create or eliminate a transmembrane region in five proteins as determined in silico. Finally, the evolutionary tendencies of RNA editing in different gene groups were estimated using the nonsynonymous-synonymous substitution rate selection mode. CONCLUSIONS The G. biloba chloroplast genome possesses the highest number of RNA editing events reported so far in a seed plant. Most of the RNA editing sites can restore amino acid conservation, increase hydrophobicity, and even influence protein structures. Similar purifying selections constitute the dominant evolutionary force at the editing sites of essential genes, such as the psa, some psb and pet groups, and a positive selection occurred in the editing sites of nonessential genes, such as most ndh and a few psb genes.
Collapse
Affiliation(s)
- Peng He
- College of life sciences, Shaanxi Normal University, Xi'an, China
| | - Sheng Huang
- College of life sciences, Shaanxi Normal University, Xi'an, China
| | - Guanghui Xiao
- College of life sciences, Shaanxi Normal University, Xi'an, China
| | - Yuzhou Zhang
- College of life sciences, Shaanxi Normal University, Xi'an, China
| | - Jianing Yu
- College of life sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
4
|
Schmitz-Linneweber C, Tillich M, Herrmann RG, Maier RM. Heterologous, splicing-dependent RNA editing in chloroplasts: allotetraploidy provides trans-factors. EMBO J 2001; 20:4874-83. [PMID: 11532951 PMCID: PMC125269 DOI: 10.1093/emboj/20.17.4874] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2001] [Revised: 07/10/2001] [Accepted: 07/12/2001] [Indexed: 11/14/2022] Open
Abstract
RNA editing is unique among post-transcriptional processes in plastids, as it exhibits extraordinary phylogenetic dynamics leading to species-specific editing site patterns. The evolutionary loss of a site is considered to entail the loss of the corresponding nuclear-encoded site-specific factor, which prevents the editing of foreign, i.e. heterologous, sites. We investigated the editing of short 'spliced' and 'unspliced' ndhA gene fragments from spinach in Nicotiana tabacum (tobacco) in vivo using biolistic transformation. Surprisingly, it turned out that the spinach site is edited in the heterologous nuclear background. Furthermore, only exon-exon fusions were edited, whereas intron-containing messages remained unprocessed. A homologue of the spinach site was found to be present and edited in Nicotiana tomentosiformis, representing the paternal parent, but absent from Nicotiana sylvestris, representing the maternal parent of tobacco. Our data show that: (i) the cis-determinants for ndhA editing are split by an intron; (ii) the editing capacity cannot be deduced from editing sites; and (iii) allopolyploidization can increase the editing capacity, which implies that it can influence speciation processes in evolution.
Collapse
Affiliation(s)
| | | | | | - Rainer M. Maier
- Botanisches Institut der Ludwig Maximilians Universität München, Menzinger Strasse 67, 80638 München, Germany
Corresponding author e-mail: C.Schmitz-Linneweber and M.Tillich contributed equally to this work
| |
Collapse
|
5
|
Hirose T, Sugiura M. Involvement of a site-specific trans-acting factor and a common RNA-binding protein in the editing of chloroplast mRNAs: development of a chloroplast in vitro RNA editing system. EMBO J 2001; 20:1144-52. [PMID: 11230137 PMCID: PMC145495 DOI: 10.1093/emboj/20.5.1144] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2000] [Revised: 01/15/2001] [Accepted: 01/15/2001] [Indexed: 11/13/2022] Open
Abstract
RNA editing in higher plant chloroplasts involves C-->U conversion at approximately 30 specific sites. An in vitro system supporting accurate editing has been developed from tobacco chloroplasts. Mutational analysis of substrate mRNAs derived from tobacco chloroplast psbL and ndhB mRNAs confirmed the participation of cis-acting elements that had previously been identified in vivo. Competition analysis revealed the existence of site-specific trans-acting factors interacting with the corresponding upstream cis-elements. A chloroplast protein of 25 kDa was found to be specifically associated with the cis-element involved in psbL mRNA editing. Immunological analyses revealed that an additional factor, the chloroplast RNA-binding protein cp31, is also required for RNA editing at multiple sites. This combination of site-specific and common RNA-binding proteins recognizes editing sites in chloroplasts.
Collapse
Affiliation(s)
- T Hirose
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | | |
Collapse
|
6
|
Hippler M, Redding K, Rochaix JD. Chlamydomonas genetics, a tool for the study of bioenergetic pathways. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1367:1-62. [PMID: 9784589 DOI: 10.1016/s0005-2728(98)00136-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M Hippler
- Departments of Molecular Biology and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva-4, Switzerland
| | | | | |
Collapse
|
7
|
Hirose T, Kusumegi T, Sugiura M. Translation of tobacco chloroplast rps14 mRNA depends on a Shine-Dalgarno-like sequence in the 5'-untranslated region but not on internal RNA editing in the coding region. FEBS Lett 1998; 430:257-60. [PMID: 9688550 DOI: 10.1016/s0014-5793(98)00673-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of Shine-Dalgarno-like sequences in mRNAs from higher plant chloroplasts has not been analyzed experimentally so far. In vitro translation analysis has revealed that the Shine-Dalgarno-like sequence is essential for translation of tobacco chloroplast rps14 mRNA. Two RNA editing sites have been identified in the protein-coding region of the rps14 mRNA. Editing of the second site was found to be partial and hence the partially edited transcripts are accumulated in tobacco green leaves. In vitro translation assays using the fully edited, partially edited and unedited rps14 mRNAs indicated that editing does not directly influence translational efficiency.
Collapse
Affiliation(s)
- T Hirose
- Center for Gene Research, Nagoya University, Japan
| | | | | |
Collapse
|
8
|
Karcher D, Bock R. Site-selective inhibition of plastid RNA editing by heat shock and antibiotics: a role for plastid translation in RNA editing. Nucleic Acids Res 1998; 26:1185-90. [PMID: 9469825 PMCID: PMC147378 DOI: 10.1093/nar/26.5.1185] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RNA editing in higher plant plastids changes single cytidine residues to uridine through an unknown mechanism. In order to investigate the relation of editing to physiological processes and to other steps in plastid gene expression, we have tested the sensitivity of chloroplast RNA editing to heat shock and antibiotics. We show that heat shock conditions as well as treatment of plants with prokaryotic translational inhibitors can inhibit plastid RNA editing. Surprisingly, this inhibitory effect is confined to a limited number of plastid editing sites suggesting that some site-specific factor(s) but none of the general components of the plastid RNA editing machinery are compromised. Contrary to previous expectations, our results provide evidence for a role of plastid translation in RNA editing.
Collapse
Affiliation(s)
- D Karcher
- Institut für Biologie III, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | |
Collapse
|
9
|
Hirose T, Sugiura M. Both RNA editing and RNA cleavage are required for translation of tobacco chloroplast ndhD mRNA: a possible regulatory mechanism for the expression of a chloroplast operon consisting of functionally unrelated genes. EMBO J 1997; 16:6804-11. [PMID: 9362494 PMCID: PMC1170284 DOI: 10.1093/emboj/16.22.6804] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tobacco chloroplast genes encoding a photosystem I component (psaC) and a NADH dehydrogenase subunit (ndhD) are transcribed as a dicistronic pre-mRNA which is then cleaved into short mRNAs. An RNA protection assay revealed that the cleavage occurs at multiple sites in the intercistronic region. There are two possible initiation codons in the tobacco ndhD mRNA: the upstream AUG and the AUG created by RNA editing from the in-frame ACG located 25 nt downstream. Using the chloroplast in vitro translation system, we found that translation begins only from the edited AUG. The extent of ACG to AUG editing is partial and depends on developmental and environmental conditions. In addition, the in vitro assay showed that the psaC/ndhD dicistronic mRNA is not functional and that the intercistronic cleavage is a prerequisite for both ndhD and psaC translation. Using a series of mutant mRNAs, we showed that an intramolecular interaction between an 8 nt sequence in the psaC coding region and its complementary 8 nt sequence in the 5' ndhD UTR is the negative element for translation of the dicistronic mRNA. A possible mechanism in which the differential expression of the chloroplast operon consists of functionally unrelated genes is discussed.
Collapse
Affiliation(s)
- T Hirose
- Center for Gene Research, Nagoya University, Nagoya 464-01, Japan
| | | |
Collapse
|
10
|
Freyer R, Kiefer-Meyer MC, Kössel H. Occurrence of plastid RNA editing in all major lineages of land plants. Proc Natl Acad Sci U S A 1997; 94:6285-6290. [PMID: 9177209 PMCID: PMC21041 DOI: 10.1073/pnas.94.12.6285] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/1996] [Accepted: 03/26/1997] [Indexed: 02/04/2023] Open
Abstract
RNA editing changes posttranscriptionally single nucleotides in chloroplast-encoded transcripts. Although much work has been done on mechanistic and functional aspects of plastid editing, little is known about evolutionary aspects of this RNA processing step. To gain a better understanding of the evolution of RNA editing in plastids, we have investigated the editing patterns in ndhB and rbcL transcripts from various species comprising all major groups of land plants. Our results indicate that RNA editing occurs in plastids of bryophytes, fern allies, true ferns, gymnosperms, and angiosperms. Both editing frequencies and editing patterns show a remarkable degree of interspecies variation. Furthermore, we have found that neither plastid editing frequencies nor the editing pattern of a specific transcript correlate with the phylogenetic tree of the plant kingdom. The poor evolutionary conservation of editing sites among closely related species as well as the occurrence of single species-specific editing sites suggest that the differences in the editing patterns and editing frequencies are probably due both to independent loss and to gain of editing sites. In addition, our results indicate that RNA editing is a relatively ancient process that probably predates the evolution of land plants. This supposition is in good agreement with the phylogenetic data obtained for plant mitochondrial RNA editing, thus providing additional evidence for common evolutionary roots of the two plant organellar editing systems.
Collapse
Affiliation(s)
- R Freyer
- Institut für Biologie III, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
11
|
Wakasugi T, Hirose T, Horihata M, Tsudzuki T, Kössel H, Sugiura M. Creation of a novel protein-coding region at the RNA level in black pine chloroplasts: the pattern of RNA editing in the gymnosperm chloroplast is different from that in angiosperms. Proc Natl Acad Sci U S A 1996; 93:8766-70. [PMID: 8710946 PMCID: PMC38748 DOI: 10.1073/pnas.93.16.8766] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The phenomenon of RNA editing has been found to occur in chloroplasts of several angiosperm plants. Comparative analysis of the entire nucleotide sequence of a gymnosperm [Pinus thunbergii (black pine)] chloroplast genome allowed us to predict several potential editing sites in its transcripts. Forty-nine such sites from 14 genes/ORFs were analyzed by sequencing both cDNAs from the transcripts and the corresponding chloroplast DNA regions, and 26 RNA editing sites were identified in the transcripts from 12 genes/ORFs, indicating that chloroplast RNA editing is not restricted to angiosperms but occurs in the gymnosperm, too. All the RNA editing events are C-to-U conversions; however, many new codon substitutions and creation of stop codons that have not so far been reported in angiosperm chloroplasts were observed. The most striking is that two editing events result in the creation of an initiation and a stop codon within a single transcript, leading to the formation of a new reading frame of 33 codons. The predicted product is highly homologous to that deduced from the ycf7 gene (ORF31), which is conserved in the chloroplast genomes of many other plant species.
Collapse
Affiliation(s)
- T Wakasugi
- Center for Gene Research, Nagoya University, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Yoshinaga K, Iinuma H, Masuzawa T, Uedal K. Extensive RNA editing of U to C in addition to C to U substitution in the rbcL transcripts of hornwort chloroplasts and the origin of RNA editing in green plants. Nucleic Acids Res 1996; 24:1008-14. [PMID: 8604330 PMCID: PMC145765 DOI: 10.1093/nar/24.6.1008] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We cloned and sequenced a portion of chloroplast DNA from the hornwort Anthoceros formosae. A nucleotide sequence of 7556 bp contained structures similar to those of ndhK, ndhC, trnV, trnM, atpE, atpB, rbcL, trnR and accD. The arrangement of these was the same as that of other chloroplast DNA. However, two nonsense codons were located within the putative coding region of rbcL, although they were used as putative termination codons of the genes. RNA was extensively edited in the transcripts of rbcL when cDNA sequences were analyzed. The unusual nonsense codons of TGA and TAA became CGA and CAA respectively. These are examples of U to C type RNA editing, which was never been found before in chloroplast mRNA. In general, 13 Cs of genomic DNA were found as Ts in the cDNA sequence and seven Ts were found as Cs. This is the first finding of RNA editing on the transcripts of rbcL and also in bryophytes. This event had been thought to arise in land plants after the split of bryophytes. The origin of RNA editing is discussed in relation to the landing of green plants.
Collapse
Affiliation(s)
- K Yoshinaga
- Faculty of Science, Shizuoka University, Japan
| | | | | | | |
Collapse
|
13
|
Hirose T, Fan H, Suzuki JY, Wakasugi T, Tsudzuki T, Kössel H, Sugiura M. Occurrence of silent RNA editing in chloroplasts: its species specificity and the influence of environmental and developmental conditions. PLANT MOLECULAR BIOLOGY 1996; 30:667-72. [PMID: 8605316 DOI: 10.1007/bf00049342] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have identified three new C-to-U RNA editing sites, one in atpF and two in atpA transcripts from tobacco chloroplasts. Two of them lead to amino acid substitutions to restore the conserved amino acid found in the corresponding genes of other plants. However, one editing site in the atpA transcript was found to take place partially at the third base of a serine codon (CUC_ to CUU_), thus not leading to an amino acid substitution. This is the first report of silent editing in chloroplasts. The extent of silent editing depends on plastid stage and light conditions, while editing as another site (found 4 nt upstream from the silent editing site) takes place constitutively even in non-photosynthetic cultured cells and bleached white seedlings grown in the presence of spectinomycin and streptomycin. In pea and spinach, despite a conservation in sequence, no editing at the site corresponding to the silent site in tobacco was found. This observation suggests that the silent editing detected in this study is species-specific.
Collapse
Affiliation(s)
- T Hirose
- Center for Gene Research, Nagoya University, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Freyer R, López C, Maier RM, Martín M, Sabater B, Kössel H. Editing of the chloroplast ndhB encoded transcript shows divergence between closely related members of the grass family (Poaceae). PLANT MOLECULAR BIOLOGY 1995; 29:679-684. [PMID: 8541494 DOI: 10.1007/bf00041158] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The ndhB-encoded transcript from barley chloroplasts deviates from the genomic ndhB sequence by nine C-to-U transitions, which is the maximum number of editing events for a chloroplast mRNA reported so far. Comparison with ndhB transcripts from other chloroplast species shows that six of the nine editing sites observed in barley are structurally and functionally conserved in maize, rice and tobacco. The remaining three sites, however, show divergent patterns of conservation even within the three members of the grass family. The conservation of two of these sites in tobacco but not in the closely related graminean species suggests that divergence of the ndhB editing sites is caused by the loss of preexisting editing sites rather than by gain of new sites.
Collapse
Affiliation(s)
- R Freyer
- Institut für Biologie III, Universität Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
In the mitochondria and chloroplasts of flowering plants (angiosperms), transcripts of protein-coding genes are altered after synthesis so that their final primary nucleotide sequence differs from that of the corresponding DNA sequence. This posttranscriptional mRNA editing consists almost exclusively of C-to-U substitutions. Editing occurs predominantly within coding regions, mostly at isolated C residues, and usually at first or second positions of codons, thereby almost always changing the amino acid from that specified by the unedited codon. Editing may also create initiation and termination codons. The net effect of C-to-U RNA editing in plants is to make proteins encoded by plant organelles more similar in sequence to their nonplant homologs. In a few cases, a strong argument can be made that specific C-to-U editing events are essential for the production of functional plant mitochondrial proteins. Although the phenomenon of RNA editing in plants is now well documented, fundamental questions remain to be answered: What determines the specificity of editing? What is the biochemical mechanism (deamination, base exchange, or nucleotide replacement)? How did the system evolve? RNA editing in plants, as in other organisms, challenges our traditional notions of genetic information transfer.
Collapse
Affiliation(s)
- M W Gray
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|