1
|
Zhang P, Sharwood RE, Carroll A, Estavillo GM, von Caemmerer S, Furbank RT. Systems analysis of long-term heat stress responses in the C4 grass Setaria viridis. THE PLANT CELL 2025; 37:koaf005. [PMID: 39778116 PMCID: PMC11964294 DOI: 10.1093/plcell/koaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 09/30/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Many C4 plants are used as food and fodder crops and often display improved resource use efficiency compared to C3 plants. However, the response of C4 plants to future extreme conditions such as heatwaves is less understood. Here, Setaria viridis, an emerging C4 model grass, was grown under long-term high-temperature stress for 2 wk (42 °C, compared to 28 °C). This resulted in stunted growth, but surprisingly had little impact on leaf thickness, leaf area-based photosynthetic rates, and bundle sheath leakiness. Dark respiration rates increased, and there were major alterations in carbon and nitrogen metabolism in the heat-stressed plants. Abscisic acid and indole-3-acetic acid-amino acid conjugates accumulated in the heat-stressed plants, consistent with transcriptional changes. Leaf transcriptomics, proteomics, and metabolomics analyses were carried out and mapped onto the metabolic pathways of photosynthesis, respiration, carbon/nitrogen metabolism, and phytohormone biosynthesis and signaling. An in-depth analysis of correlations between transcripts and their corresponding proteins revealed strong differences between groups in the strengths and signs of correlations. Overall, many stress signaling pathways were upregulated, consistent with multiple signals leading to reduced plant growth. A systems-based model of the plant response to long-term heat stress is presented based on the oxidative stress, phytohormone, and sugar signaling pathways.
Collapse
Affiliation(s)
- Peng Zhang
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, ACT 2601, Australia
| | - Robert E Sharwood
- ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, ACT 2601, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | - Adam Carroll
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Gonzalo M Estavillo
- Commonwealth Scientific and Research Organisation, Agriculture and Food, Black Mountain Canberra, ACT 2601, Australia
| | - Susanne von Caemmerer
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, ACT 2601, Australia
| | - Robert T Furbank
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Khan P, Abdelbacki AMM, Albaqami M, Jan R, Kim KM. Proline Promotes Drought Tolerance in Maize. BIOLOGY 2025; 14:41. [PMID: 39857272 PMCID: PMC11762158 DOI: 10.3390/biology14010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
Drought stress significantly affects maize (Zea mays L.) growth by disrupting vital physiological and biochemical processes. This study investigates the potential of proline supplementation to alleviate drought-induced stress in maize plants. The results show that proline supplementation enhanced shoot and root growth under normal conditions and alleviated drought-induced reductions in growth parameters. Under drought stress, proline increased shoot length by 40%, root length by 36%, shoot fresh weight by 97%, root fresh weight by 247%, shoot dry weight by 77%, and root dry weight by 154% compared to the untreated plants. While drought stress induced electrolyte leakage and reduced the relative water content (RWC) and leaf area, proline treatment mitigated these effects by improving membrane stability, water retention, and chlorophyll content. Moreover, proline supplementation reduced hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels by 38% and 67%, respectively, in the drought-stressed plants compared to the untreated controls. It also enhanced catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activities by 14%, 69%, and 144%, respectively, under drought stress, indicating a strengthened antioxidative defense. Proline also increased the protein content and improved N, P, and K retention by 30%, 40%, and 28%, respectively, in the drought-stressed plants, supporting metabolic and osmotic balance. Additionally, proline improved endogenous proline and sugar levels, facilitating osmotic adjustment and providing energy reserves. These findings suggest that proline supplementation effectively enhances maize resilience under drought stress, improving growth, reducing oxidative stress, and enhancing osmoprotection.
Collapse
Affiliation(s)
- Pirzada Khan
- Biotechnology Research Institute, Chinese Academy of Agriculture Sciences, Beijing 100081, China;
| | - Ashraf M. M. Abdelbacki
- Deanship of Skill Development, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mohammed Albaqami
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Rahmatullah Jan
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Grettenberger CL, Abou‐Shanab R, Hamilton TL. Limiting factors in the operation of photosystems I and II in cyanobacteria. Microb Biotechnol 2024; 17:e14519. [PMID: 39101352 PMCID: PMC11298993 DOI: 10.1111/1751-7915.14519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/16/2024] [Indexed: 08/06/2024] Open
Abstract
Cyanobacteria are important targets for biotechnological applications due to their ability to grow in a wide variety of environments, rapid growth rates, and tractable genetic systems. They and their bioproducts can be used as bioplastics, biofertilizers, and in carbon capture and produce important secondary metabolites that can be used as pharmaceuticals. However, the photosynthetic process in cyanobacteria can be limited by a wide variety of environmental factors such as light intensity and wavelength, exposure to UV light, nutrient limitation, temperature, and salinity. Carefully considering these limitations, modifying the environment, and/or selecting cyanobacterial species will allow cyanobacteria to be used in biotechnological applications.
Collapse
Affiliation(s)
- Christen L. Grettenberger
- Department of Earth and Planetary SciencesUniversity of California DavisDavisCaliforniaUSA
- Department of Environmental ToxicologyUniversity of California DavisDavisCaliforniaUSA
| | - Reda Abou‐Shanab
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Trinity L. Hamilton
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
- The Biotechnology Institute, University of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
4
|
Wang X, Chen Z, Sui N. Sensitivity and responses of chloroplasts to salt stress in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1374086. [PMID: 38693929 PMCID: PMC11061501 DOI: 10.3389/fpls.2024.1374086] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Chloroplast, the site for photosynthesis and various biochemical reactions, is subject to many environmental stresses including salt stress, which affects chloroplast structure, photosynthetic processes, osmotic balance, ROS homeostasis, and so on. The maintenance of normal chloroplast function is essential for the survival of plants. Plants have developed different mechanisms to cope with salt-induced toxicity on chloroplasts to ensure the normal function of chloroplasts. The salt tolerance mechanism is complex and varies with plant species, so many aspects of these mechanisms are not entirely clear yet. In this review, we explore the effect of salinity on chloroplast structure and function, and discuss the adaptive mechanisms by which chloroplasts respond to salt stress. Understanding the sensitivity and responses of chloroplasts to salt stress will help us understand the important role of chloroplasts in plant salt stress adaptation and lay the foundation for enhancing plant salt tolerance.
Collapse
Affiliation(s)
| | | | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
5
|
Pandey V, Singh S. Plant Adaptation and Tolerance to Heat Stress: Advance Approaches and Future Aspects. Comb Chem High Throughput Screen 2024; 27:1701-1715. [PMID: 38441014 DOI: 10.2174/0113862073300371240229100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Heat stress impacts plant growth at all phases of development, although the particular threshold for heat tolerance varies significantly across different developmental stages. During seed germination, elevated temperatures can either impede or completely halt the process, contingent upon the plant type and the severity of the stress. During advanced stages, high temperatures can have a negative impact on photosynthesis, respiration, water balance, and membrane integrity. Additionally, they can also influence the levels of hormones and primary and secondary metabolites. In addition, during the growth and development of plants, there is an increased expression of various heat shock proteins, as well as other proteins related to stress, and the generation of reactive oxygen species (ROS). These are significant plant responses to heat stress. Plants employ several strategies to deal with heat stress, such as maintaining the stability of their cell membranes, removing harmful reactive oxygen species (ROS), producing antioxidants, accumulating and adjusting compatible solutes, activating mitogen-activated protein kinase (MAPK) and calcium-dependent protein kinase (CDPK) cascades, and, crucially, signaling through chaperones and activating transcription. These molecular-level systems boost the ability of plants to flourish in heat stress. Potential genetic methods to enhance plant heat stress resistance encompass old and modern molecular breeding techniques and transgenic approaches, all of which rely on a comprehensive comprehension of these systems. Although several plants exhibit enhanced heat tolerance through traditional breeding methods, the effectiveness of genetic transformation techniques has been somewhat restricted. The latter results from the current constraints in our understanding and access to genes that have known impacts on plant heat stress tolerance. However, these challenges may be overcome in the future. Besides genetic methods, crops' heat tolerance can be improved through the pre-treatment of plants with various environmental challenges or the external application of osmoprotectants such as glycine betaine and proline. Thermotolerance is achieved through an active process in which plants allocate significant energy to maintain their structure and function to avoid damage induced by heat stress. The practice of nanoparticles has been shown to upgrade both the standard and the quantity of produce when crops are under heat stress. This review provides information on the effects of heat stress on plants and explores the importance of nanoparticles, transgenics, and genomic techniques in reducing the negative consequences of heat stress. Furthermore, it explores how plants might adapt to heat stress by modifying their biochemical, physiological, and molecular reactions.
Collapse
Affiliation(s)
- Vineeta Pandey
- Faculty of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University, 17 km Stone, NH-2, Mathura, Delhi Road Mathura, Chaumuhan, Uttar Pradesh, 281406, India
| | - Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17 km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh, 281406, India
| |
Collapse
|
6
|
El-Esawi MA, Alayafi AA. Enhancing the Biological Control of Mite Species Infesting Olive Trees through Application of Predatory Mite Agistemus exsertus Gonzalez (Acari: Stigmaeidae) and Eco-Friendly Natural Compounds. PHYSIOLOGIA PLANTARUM 2023; 175:e14097. [PMID: 38148192 DOI: 10.1111/ppl.14097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/27/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Olive (Olea europaea L.) is a subtropical tree cultivated in arid, dry and temperate regions. Olive orchards in Al-Jouf of Saudi Arabia are the largest worldwide and currently face harmful pest infestation. The present study aimed at evaluating the efficiency of the predatory mite Agistemus exsertus Gonzalez (Acari: Stigmaeidae) and the exogenously applied melatonin (MT), glycine betaine (GB) and 5-aminolevulinic acid (ALA) as eco-friendly approaches for enhancing the biological control of four mite species (Tegolophus hassani, Oxycenus niloticus, Aceria olivi and Tetranychus urticae) infesting olive trees in Al-Jouf under laboratory and field conditions. Field experiment was conducted on 6-year-old Manzanillo olive trees grown in a private orchard farm in Al-Jouf during two seasons, 2020 and 2021. Results revealed that A. exsertus developed successfully from egg to adult. The females of T. hassani, O. niloticus, A. olivi, and T. urticae required 7.36, 8.89, 9.98 and 8.38 days, respectively, to develop from egg to adult at 28°C and 65 ± 5% relative humidity. O. niloticus was the most preferred prey of A. exsertus. The net reproductive rate (R0 ) was 42.1, 38.7, 34.6 and 36.8 females/female/generation, the intrinsic rate of increase (rm ) was 0.27, 0.26, 0.23 and 0.20 females/female/day, and the mean generation time (T) was 16.2, 17.1, 18.6 and 17.2 days when a predator consumed T. hassani, O. niloticus, A. olivi and T. urticae, respectively. The adult female consumed daily about 114 O. niloticus, 105 A. olivi, 95 T. hassani and 15.2 T. urticae individuals, respectively. A. exsertus proved to be an effective biocontrol agent against mites infesting olive trees. In addition, the exogenous application of 1 mM MT, 15 mM GB and 25 mg/L ALA, alone or in combination, caused significant mortality for the four mites. Application of these natural compounds, alone or in combination, also significantly enhanced the growth, relative water content, relative chlorophyll, content of flavonoid and nutrients, antioxidant enzymes activities, stress-related genes expression and fruit yield and quality of the infested olive trees compared to non-treated infested trees. This study is the first that demonstrates the efficiency of these eco-friendly approaches for controlling mites infesting olive trees, and could be used as a replacement for the harmful chemical acaricides.
Collapse
Affiliation(s)
- Mohamed A El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
- Department of Biological Sciences, Faculty of Science, New Mansoura University, Egypt
| | - Aisha A Alayafi
- Biological Sciences Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Raldugina GN, Bogoutdinova LR, Shelepova OV, Kondrateva VV, Platonova EV, Nechaeva TL, Kazantseva VV, Lapshin PV, Rostovtseva HI, Aniskina TS, Kharchenko PN, Zagoskina NV, Gulevich AA, Baranova EN. Heterologous codA Gene Expression Leads to Mitigation of Salt Stress Effects and Modulates Developmental Processes. Int J Mol Sci 2023; 24:13998. [PMID: 37762301 PMCID: PMC10531037 DOI: 10.3390/ijms241813998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Transgenic tobacco plants overexpressing the choline oxidase gene from A. globiformis showed an increase in resistance at the level of primary and secondary biosynthesis of metabolites, removing the damage characteristic of salinity and stabilizing the condition of plants. We used 200 mM NaCl, which inhibits the growth of tobacco plants at all stages of development. Leaves of transgenic and wild-type (WT) plants Nicotiána tabácum were used for biochemical, cytological and molecular biological analysis. However, for transgenic lines cultivated under normal conditions (without salinity), we noted juvenile characteristics, delay in flowering, and slowing down of development, including the photosynthetic apparatus. This caused changes in the amount of chlorophyll, a delay in the plastid grana development with the preservation of prolamellar bodies. It also caused changes in the amount of sugars and indirectly downstream processes. A significant change in the activity of antioxidant enzymes and a change in metabolism is probably compensated by the regulation of a number of genes, the expression level of which was also changed. Thus, the tolerance of transgenic tobacco plants to salinity, which manifested itself as a result of the constitutive expression of codA, demonstrates an advantage over WT plants, but in the absence of salinity, transgenic plants did not have such advantages due to juvenilization.
Collapse
Affiliation(s)
- Galina N. Raldugina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (V.V.K.); (P.V.L.); (H.I.R.); (N.V.Z.)
| | - Lilia R. Bogoutdinova
- All Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia (P.N.K.); (A.A.G.)
| | - Olga V. Shelepova
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia (V.V.K.); (T.S.A.)
| | - Vera V. Kondrateva
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia (V.V.K.); (T.S.A.)
| | | | - Tatiana L. Nechaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (V.V.K.); (P.V.L.); (H.I.R.); (N.V.Z.)
| | - Varvara V. Kazantseva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (V.V.K.); (P.V.L.); (H.I.R.); (N.V.Z.)
| | - Pyotr V. Lapshin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (V.V.K.); (P.V.L.); (H.I.R.); (N.V.Z.)
| | - Helen I. Rostovtseva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (V.V.K.); (P.V.L.); (H.I.R.); (N.V.Z.)
| | - Tatiana S. Aniskina
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia (V.V.K.); (T.S.A.)
| | - Pyotr N. Kharchenko
- All Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia (P.N.K.); (A.A.G.)
| | - Natalia V. Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (V.V.K.); (P.V.L.); (H.I.R.); (N.V.Z.)
| | - Alexander A. Gulevich
- All Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia (P.N.K.); (A.A.G.)
| | - Ekaterina N. Baranova
- All Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia (P.N.K.); (A.A.G.)
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia (V.V.K.); (T.S.A.)
| |
Collapse
|
8
|
Yu Z, Niu L, Cai Q, Wei J, Shang L, Yang X, Ma R. Improved salt-tolerance of transgenic soybean by stable over-expression of AhBADH gene from Atriplex hortensis. PLANT CELL REPORTS 2023:10.1007/s00299-023-03031-8. [PMID: 37195504 DOI: 10.1007/s00299-023-03031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE The salt-tolerance of transgenic soybean cleared for environmental release was improved by stable over-expression of AhBADH gene from Atriplex hortensis, which was demonstrated through molecular analysis and field experiments. An effective strategy for increasing the productivity of major crops under salt stress conditions is the development of transgenics that harbor genes responsible for salinity tolerance. Betaine aldehyde dehydrogenase (BADH) is a key enzyme involved in the biosynthesis of the osmoprotectant, glycine betaine (GB), and osmotic balance in plants, and several plants transformed with BADH gene have shown significant improvements in salt tolerance. However, very few field-tested transgenic cultivars have been reported, as most of the transgenic studies are limited to laboratory or green house experiments. In this study, we demonstrated through field experiments that AhBADH from Atriplex hortensis confers salt tolerance when transformed into soybean (Glycine max L.). AhBADH was successfully introduced into soybean by Agrobacterium mediated transformation. A total of 256 transgenic plants were obtained, out of which 47 lines showed significant enhancement of salt tolerance compared to non-transgenic control plants. Molecular analyses of the transgenic line TL2 and TL7 with the highest salt tolerance exhibited stable inheritance and expression of AhBADH in progenies with a single copy insertion. TL1, TL2 and TL7 exhibited stable enhanced salt tolerance and improved agronomic traits when subjected to 300mM NaCl treatment. Currently, the transgenic line TL2 and TL7 with stable enhanced salt tolerance, which have been cleared for environmental release, are under biosafety assessment. TL 2 and TL7 stably expressing AhBADH could then be applied in commercial breeding experiments to genetically improve salt tolerance in soybean.
Collapse
Affiliation(s)
- Zhijing Yu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qinan Cai
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lixia Shang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Rui Ma
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
9
|
Gisriel CJ, Shen G, Flesher DA, Kurashov V, Golbeck JH, Brudvig GW, Amin M, Bryant DA. Structure of a dimeric photosystem II complex from a cyanobacterium acclimated to far-red light. J Biol Chem 2023; 299:102815. [PMID: 36549647 PMCID: PMC9843442 DOI: 10.1016/j.jbc.2022.102815] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Photosystem II (PSII) is the water-splitting enzyme central to oxygenic photosynthesis. To drive water oxidation, light is harvested by accessory pigments, mostly chlorophyll (Chl) a molecules, which absorb visible light (400-700 nm). Some cyanobacteria facultatively acclimate to shaded environments by altering their photosynthetic machinery to additionally absorb far-red light (FRL, 700-800 nm), a process termed far-red light photoacclimation or FaRLiP. During far-red light photoacclimation, FRL-PSII is assembled with FRL-specific isoforms of the subunits PsbA, PsbB, PsbC, PsbD, and PsbH, and some Chl-binding sites contain Chls d or f instead of the usual Chl a. The structure of an apo-FRL-PSII monomer lacking the FRL-specific PsbH subunit has previously been determined, but visualization of the dimeric complex has remained elusive. Here, we report the cryo-EM structure of a dimeric FRL-PSII complex. The site assignments for Chls d and f are consistent with those assigned in the previous apo-FRL-PSII monomeric structure. All sites that bind Chl d or Chl f at high occupancy exhibit a FRL-specific interaction of the formyl moiety of the Chl d or Chl f with the protein environment, which in some cases involves a phenylalanine sidechain. The structure retains the FRL-specific PsbH2 subunit, which appears to alter the energetic landscape of FRL-PSII, redirecting energy transfer from the phycobiliprotein complex to a Chl f molecule bound by PsbB2 that acts as a bridge for energy transfer to the electron transfer chain. Collectively, these observations extend our previous understanding of the structure-function relationship that allows PSII to function using lower energy FRL.
Collapse
Affiliation(s)
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Muhamed Amin
- Department of Sciences, University College Groningen, University of Groningen, Groningen, the Netherlands; Rijksuniversiteit Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
10
|
Kebert M, Kostić S, Čapelja E, Vuksanović V, Stojnić S, Markić AG, Zlatković M, Milović M, Galović V, Orlović S. Ectomycorrhizal Fungi Modulate Pedunculate Oak's Heat Stress Responses through the Alternation of Polyamines, Phenolics, and Osmotica Content. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233360. [PMID: 36501399 PMCID: PMC9736408 DOI: 10.3390/plants11233360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 05/13/2023]
Abstract
The physiological and biochemical responses of pedunculate oaks (Quercus robur L.) to heat stress (HS) and mycorrhization (individually as well in combination) were estimated. One-year-old Q. robur seedlings were grown under controlled conditions in a pot experiment, inoculated with a commercial inoculum of ectomycorrhizal (ECM) fungi, and subjected to 72 h of heat stress (40 °C/30 °C day/night temperature, relative humidity 80%, photoperiod 16/8 h) in a climate chamber, and they were compared with seedlings that were grown at room temperature (RT). An in-depth analysis of certain well-known stress-related metrics such as proline, total phenolics, FRAP, ABTS, non-protein thiols, and lipid peroxidation revealed that mycorrhized oak seedlings were more resistant to heat stress (HS) than non-mycorrhized oaks. Additionally, levels of specific polyamines, total phenolics, flavonoids, and condensed tannins as well as osmotica (proline and glycine betaine) content were measured and compared between four treatments: plants inoculated with ectomycorrhizal fungi exposed to heat stress (ECM-HS) and those grown only at RT (ECM-RT) versus non-mycorrhized controls exposed to heat stress (NM-HS) and those grown only at room temperature (NM-RT). In ectomycorrhiza inoculated oak seedlings, heat stress led to not only a rise in proline, total phenols, FRAP, ABTS, non-protein thiols, and lipid peroxidation but a notable decrease in glycine betaine and flavonoids. Amounts of three main polyamines (putrescine, spermine, and spermidine) were quantified by using high-performance liquid chromatography coupled with fluorescent detection (HPLC/FLD) after derivatization with dansyl-chloride. Heat stress significantly increased putrescine levels in non-mycorrhized oak seedlings but had no effect on spermidine or spermine levels, whereas heat stress significantly increased all inspected polyamine levels in oak seedlings inoculated with ectomycorrhizal inoculum. Spermidine (SPD) and spermine (SPM) contents were significantly higher in ECM-inoculated plants during heat stress (approximately 940 and 630 nmol g-1 DW, respectively), whereas these compounds were present in smaller amounts in non-mycorrhized oak seedlings (between 510 and 550 nmol g-1 DW for Spd and between 350 and 450 nmol g-1 DW for Spm). These findings supported the priming and biofertilizer roles of ectomycorrhizal fungi in the mitigation of heat stress in pedunculate oaks by modification of polyamines, phenolics, and osmotica content.
Collapse
Affiliation(s)
- Marko Kebert
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
- Correspondence: ; Tel.: +381-616-142-706
| | - Saša Kostić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| | - Eleonora Čapelja
- Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vanja Vuksanović
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Srđan Stojnić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| | - Anđelina Gavranović Markić
- Division for Genetics, Forest Tree Breeding and Seed Science, Croatian Forest Research Institute, Cvjetno naselje 41, 10450 Jastrebarsko, Croatia
| | - Milica Zlatković
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| | - Marina Milović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| | - Vladislava Galović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| | - Saša Orlović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, 21000 Novi Sad, Serbia
| |
Collapse
|
11
|
Ford BA, Ranjit P, Mabbutt BC, Paulsen IT, Shah BS. ProX from marine Synechococcus spp. show a sole preference for glycine-betaine with differential affinity between ecotypes. Environ Microbiol 2022; 24:6071-6085. [PMID: 36054310 PMCID: PMC10087775 DOI: 10.1111/1462-2920.16168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/09/2022] [Indexed: 01/12/2023]
Abstract
Osmotic stress, caused by high or fluctuating salt concentrations, is a crucial abiotic factor affecting microbial growth in aquatic habitats. Many organisms utilize common responses to osmotic stress, generally requiring active extrusion of toxic inorganic ions and accumulation of compatible solutes to protect cellular machinery. We heterologously expressed and purified predicted osmoprotectant, proline/glycine betaine-binding proteins (ProX) from two phylogenetically distinct Synechococcus spp. MITS9220 and WH8102. Homologues of this protein are conserved only among Prochlorococcus LLIV and Synechococcus clade I, III and CRD1 strains. Our biophysical characterization show Synechococcus ProX exists as a dimer, with specificity solely for glycine betaine but not to other osmoprotectants tested. We discovered that MITS9220_ProX has a 10-fold higher affinity to glycine betaine than WH8102_ProX, which is further elevated (24-fold) in high salt conditions. The stronger affinity and effect of ionic strength on MITS9220_ProX glycine betaine binding but not on WH8102_ProX alludes to a novel regulatory mechanism, providing critical functional insights into the phylogenetic divergence of picocyanobacterial ProX proteins that may be necessary for their ecological success.
Collapse
Affiliation(s)
- Benjamin A Ford
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Pramita Ranjit
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | | | - Ian T Paulsen
- School of Natural Sciences, Macquarie University, Sydney, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Bhumika S Shah
- School of Natural Sciences, Macquarie University, Sydney, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
12
|
Kour D, Yadav AN. Bacterial Mitigation of Drought Stress in Plants: Current Perspectives and Future Challenges. Curr Microbiol 2022; 79:248. [PMID: 35834053 DOI: 10.1007/s00284-022-02939-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
Climate change is emerging as a crucial issue with global attention and leading to abiotic stress conditions. There are different abiotic stress which affects the crop production among which drought is known to be most destructive stress affecting crop productivity and world's food security. Different approaches are under consideration to increase adaptability of the plants under drought stress with plant-microbe interactions being a greater area of focus. Stress-adaptive microbes either from the rhizosphere, internal tissue, or aerial parts of plants have been reported which through different mechanisms help the plants to cope up with drought and also promote their growth. These mechanisms include the accumulation of osmolytes, decrease in the inhibitory levels of ethylene by aminocyclopropane-1-carboxylate (ACC) deaminase enzyme, and furnishing the unavailable nutrients to plants. Microbial genera including Azotobacter, Bacillus, Ochrobactrum, Pseudomonas, and Serratia are known to be self-adaptive and growth promoters under drought stressed conditions. Stress-adaptive plant growth promoting (PGP) microbes thus are excellent candidates for stress alleviation in drought environment to provide maximum benefits to the plants. The present review deals with the effect of the drought stress on plants, biodiversity of the drought-adaptive microbes, mechanisms of the drought stress alleviation through enhancement of stress alleviators, reduction of the stress aggravators, and modification of the molecular pathways as well as the multiple PGP attributes of the drought-adaptive microbes.
Collapse
Affiliation(s)
- Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, India.
| |
Collapse
|
13
|
Zulfiqar F, Ashraf M. Antioxidants as modulators of arsenic-induced oxidative stress tolerance in plants: An overview. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127891. [PMID: 34848065 DOI: 10.1016/j.jhazmat.2021.127891] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 05/24/2023]
Abstract
Arsenic (As) is a highly toxic contaminant in the environment. Although both inorganic and organic types of arsenic exist in the environment, the most common inorganic forms of As that adversely affect plants are arsenite (As III) and arsenate (As V). Despite no evidence for As being essential for plant growth, exposure of roots to this element can cause its uptake primarily via transporters responsible for the transport of essential mineral nutrients. Arsenic exposure even at low concentrations disturbs the plant normal functioning via excessive generation of reactive oxygen species, a condition known as oxidative stress leading to an imbalance in the redox system of the plant. This is associated with considerable damage to the cell components thereby impairing normal cellular functions and activation of several cell survival and cell death pathways. To counteract this oxidative disorder, plants possess natural defense mechanisms such as chemical species and enzymatic antioxidants. This review considers how different types of antioxidants participate in the oxidative defense mechanism to alleviate As stress in plants. Since the underlying phenomena of oxidative stress tolerance are not yet fully elucidated, the potential for "Omics" technologies to uncover molecular mechanisms are discussed. Various strategies to improve As-induced oxidative tolerance in plants such as exogenous supplementation of effective growth regulators, protectant chemicals, transgenic approaches, and genome editing are also discussed thoroughly in this review.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
14
|
Mortazavi SE, Mirlohi A, Arzani A. Overexpression of Choline Oxidase Gene in Three Filial Generations of Rice Transgenic Lines. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e2850. [PMID: 36337062 PMCID: PMC9583819 DOI: 10.30498/ijb.2022.245350.2850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Glycinebetaine (GB) accumulation in many halophytic plants, animals, and microorganisms confers abiotic stress tolerance to salinity, drought, and extreme temperatures. Although there are a few genetic and biochemical pathways to synthesize GB, but isolation of a single gene Choline Oxidase (codA) from Arthrobacter spp. have opened a new hatch to engineer the susceptible plants. OBJECTIVES The effects of overexpressed codA gene, through multiple copy insertion and GB accumulation on salinity tolerance in rice were studied. MATERIALS AND METHODS Seed-derived embryogenic calli of 'Tarom Molaie' cultivar were targeted with two plasmids pChlCOD and pCytCOD both harboring the codA gene using the biolistic mediated transformation. The regenerated T0 plants were screened by PCR analysis. A line containing three copies of codA gene and harboring pChlCOD and pCytCOD was identified by Southern blot analysis. The expression of codA gene in this transgenic line was then confirmed by RT-PCR. The Mendelian segregation pattern of the inserted sequences was accomplished by the progeny test using PCR. The effects of overexpression of codA on salinity tolerance were evaluated at germination and seedling stage using T2-pChl transgenic line and control seeds in the presence of 0, 100, 200, and 300 mM NaCl. Finally, leaf growth dynamics of T2-pChlCOD transgenic line and control line under hydroponic conditions in the presence of 0, 40, 80, and 120 mM NaCl were assessed. RESULTS The seed germination experiment results showed that the transformed seeds had a higher germination rate than the controls under all salinity treatments. But also, the leaf growth dynamics showed that the control plants had a more favorable leaf growth dynamic in all of the treatments. Although, the transgenic lines (T0, T1 and T2) exhibited lower performance than the wild type, the transgenic line varied for GB and choline contents and increasing codA gene copy number led to increased GB content. CONCLUSION In a salinity sensitive crop such as rice, GB may not significantly contribute to the plant protection against salt stress. Also, insufficiency of choline resources as GB precursor might have affected the overall growth ability of the transgenic line and resulted in decreased leaf growth dynamics.
Collapse
Affiliation(s)
- Sayyed Elyass Mortazavi
- Department of Tissue Culture and Gene Transformation, Agricultural Research, Education, and Extension Organization (AREEO) Karaj, Iran
| | - Aghafakhr Mirlohi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Ahmad Arzani
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
15
|
Amelioration Effect of Salicylic Acid Under Salt Stress in Sorghum bicolor L. Appl Biochem Biotechnol 2022; 194:4400-4423. [PMID: 35320507 DOI: 10.1007/s12010-022-03853-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
Abstract
Salinity is a major abiotic stress, limiting plant growth and agriculture productivity worldwide. Salicylic acid is known to alleviate the negative effects of salinity. The present study demonstrated the impact of SA on sorghum, a moderately salt-tolerant crop, grown for food, fodder, fiber, and fuel. A screen house experiment was conducted using sorghum genotypes Haryana Jowar HJ 513 and HJ 541 under 4 salt levels (0, 5.0, 7.5, and 10.0 dS m-1 NaCl) and 3 SA (0, 25, and 50 mg dm-3) levels with 12 combinations. The leaves were assayed for electrolyte leakage percentage (ELP), i.e., 88.7 % in HJ 541 and 87.2 % in HJ 513, and osmolyte content. Proline content, total soluble carbohydrate content, and glycine betaine content increased considerably. Photosynthetic rate, transpiration rate, and stomatal conductance declined at higher salt levels. The specific enzymatic activities of SOD, CAT, and POX increased 41.1 %, 122.0 %, and 72.8 %, respectively, in HJ 513 under salt stress. Combinations of salt treatment and SA decreased ELP and enhanced osmolyte concentration, rates of gaseous exchange attributes, and also the antioxidant enzymatic activity in salt-stressed leaves. The study established that the specific activity of antioxidative enzymes is enhanced further by addition of SA which may protect the cells from oxidative damage under salt stress, thus mitigating salt stress and enhancing the yield of sorghum. SA can ameliorate the salt stress in plants by affecting the metabolic or physiological frameworks. SA application is an effective management strategy towards mitigating salt stress in order to meet agricultural production and sustainability.
Collapse
|
16
|
Zhu M, Li Q, Zhang Y, Zhang M, Li Z. Glycine betaine increases salt tolerance in maize ( Zea mays L.) by regulating Na + homeostasis. FRONTIERS IN PLANT SCIENCE 2022; 13:978304. [PMID: 36247603 PMCID: PMC9562920 DOI: 10.3389/fpls.2022.978304] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/08/2022] [Indexed: 05/14/2023]
Abstract
Improving crop salt tolerance is an adaptive measure to climate change for meeting future food demands. Previous studies have reported that glycine betaine (GB) plays critical roles as an osmolyte in enhancing plant salt resistance. However, the mechanism underlying the GB regulating plant Na+ homeostasis during response to salinity is poorly understood. In this study, hydroponically cultured maize with 125 mM NaCl for inducing salinity stress was treated with 100 μM GB. We found that treatment with GB improved the growth of maize plants under non-stressed (NS) and salinity-stressed (SS) conditions. Treatment with GB significantly maintained the properties of chlorophyll fluorescence, including Fv/Fm, ΦPSII, and ΦNPQ, and increased the activity of the antioxidant enzymes for mitigating salt-induced growth inhibition. Moreover, GB decreased the Na+/K+ ratio primarily by reducing the accumulation of Na+ in plants. The results of NMT tests further confirmed that GB increased Na+ efflux from roots under SS condition, and fluorescence imaging of cellular Na+ suggested that GB reduced the cellular allocation of Na+. GB additionally increased Na+ efflux in leaf protoplasts under SS condition, and treatment with sodium orthovanadate, a plasma membrane (PM) H+-ATPase inhibitor, significantly alleviated the positive effects of GB on Na+ efflux under salt stress. GB significantly improved the vacuolar activity of NHX but had no significant effects on the activity of V type H+-ATPases. In addition, GB significantly upregulated the expression of the PM H+-ATPase genes, ZmMHA2 and ZmMHA4, and the Na+/H+ antiporter gene, ZmNHX1. While, the V type H+-ATPases gene, ZmVP1, was not significantly regulated by GB. Altogether these results indicate that GB regulates cellular Na+ homeostasis by enhancing PM H+-ATPases gene transcription and protein activities to improve maize salt tolerance. This study provided an extended understanding of the functions of GB in plant responses to salinity, which can help the development of supportive measures using GB for obtaining high maize yield in saline conditions.
Collapse
|
17
|
Min K, Cho Y, Kim E, Lee M, Lee SR. Exogenous Glycine Betaine Application Improves Freezing Tolerance of Cabbage ( Brassica oleracea L.) Leaves. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122821. [PMID: 34961292 PMCID: PMC8703899 DOI: 10.3390/plants10122821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 05/11/2023]
Abstract
Exogenous glycine betaine (GB) application has been reported to improve plant tolerance to various abiotic stresses, but its effect on freezing tolerance has not been well studied. We investigated the effect of exogenous GB on freezing tolerance of cabbage (Brassica oleracea L.) leaves. Seedlings fed with 30 mM GB via sub-irrigation showed effectively assimilated GB as evident by higher GB concentration. Exogenous GB did not retard leaf-growth (fresh weight, dry weight, and leaf area) rather slightly promoted it. Temperature controlled freeze-thaw tests proved GB-fed plants were more freeze-tolerant as indicated by lower electrolyte leakage (i.e., indication of less membrane damage) and alleviating oxidative stress (less accumulation of O2•- and H2O2, as well as of malondialdehyde (MDA)) following a relatively moderate or severe freeze-thaw stress, i.e., -2.5 and -3.5 °C. Improved freezing tolerance induced by exogenous GB application may be associated with accumulation of compatible solute (proline) and antioxidant (glutathione). GB-fed leaves also had higher activity of antioxidant enzymes, catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD). These changes, together, may improve freezing tolerance through membrane protection from freeze-desiccation and alleviation of freeze-induced oxidative stress.
Collapse
Affiliation(s)
- Kyungwon Min
- Department of Biological and Environmental Science, Dongguk University, Seoul 04620, Korea; (K.M.); (Y.C.); (E.K.)
| | - Yunseo Cho
- Department of Biological and Environmental Science, Dongguk University, Seoul 04620, Korea; (K.M.); (Y.C.); (E.K.)
| | - Eunjeong Kim
- Department of Biological and Environmental Science, Dongguk University, Seoul 04620, Korea; (K.M.); (Y.C.); (E.K.)
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea
- Correspondence: (M.L.); (S.-R.L.)
| | - Sang-Ryong Lee
- Department of Biological and Environmental Science, Dongguk University, Seoul 04620, Korea; (K.M.); (Y.C.); (E.K.)
- Correspondence: (M.L.); (S.-R.L.)
| |
Collapse
|
18
|
Zhang H, Sun Y, Zeng Q, Crowe SA, Luo H. Snowball Earth, population bottleneck and Prochlorococcus evolution. Proc Biol Sci 2021; 288:20211956. [PMID: 34784770 PMCID: PMC8596011 DOI: 10.1098/rspb.2021.1956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/26/2021] [Indexed: 11/12/2022] Open
Abstract
Prochlorococcus are the most abundant photosynthetic organisms in the modern ocean. A massive DNA loss event occurred in their early evolutionary history, leading to highly reduced genomes in nearly all lineages, as well as enhanced efficiency in both nutrient uptake and light absorption. The environmental landscape that shaped this ancient genome reduction, however, remained unknown. Through careful molecular clock analyses, we established that this Prochlorococcus genome reduction occurred during the Neoproterozoic Snowball Earth climate catastrophe. The lethally low temperature and exceedingly dim light during the Snowball Earth event would have inhibited Prochlorococcus growth and proliferation, and caused severe population bottlenecks. These bottlenecks are recorded as an excess of deleterious mutations accumulated across genomic regions and inherited by descendant lineages. Prochlorococcus adaptation to extreme environmental conditions during Snowball Earth intervals can be inferred by tracing the evolutionary paths of genes that encode key metabolic potential. Key metabolic innovation includes modified lipopolysaccharide structure, strengthened peptidoglycan biosynthesis, the replacement of a sophisticated circadian clock with an hourglass-like mechanism that resets daily for dim light adaption and the adoption of ammonia diffusion as an efficient membrane transporter-independent mode of nitrogen acquisition. In this way, the Neoproterozoic Snowball Earth event may have altered the physiological characters of Prochlorococcus, shaping their ecologically vital role as the most abundant primary producers in the modern oceans.
Collapse
Affiliation(s)
- Hao Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, People's Republic of China
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Ying Sun
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR
| | - Sean A. Crowe
- Department of Earth Sciences, School of Biological Sciences, and Swire Institute for Marine Science (SWIMS), University of Hong Kong, Pokfulam Road, Hong Kong SAR
| | - Haiwei Luo
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, People's Republic of China
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| |
Collapse
|
19
|
Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M. Osmoregulation and its actions during the drought stress in plants. PHYSIOLOGIA PLANTARUM 2021; 172:1321-1335. [PMID: 33280137 DOI: 10.1111/ppl.13297] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/07/2020] [Accepted: 12/01/2020] [Indexed: 05/27/2023]
Abstract
Drought stress, which causes a decline in quality and quantity of crop yields, has become more accentuated these days due to climatic change. Serious measures need to be taken to increase the tolerance of crop plants to acute drought conditions likely to occur due to global warming. Drought stress causes many physiological and biochemical changes in plants, rendering the maintenance of osmotic adjustment highly crucial. The degree of plant resistance to drought varies with plant species and cultivars, phenological stages of the plant, and the duration of plant exposure to the stress. Osmoregulation in plants under low water potential relies on synthesis and accumulation of osmoprotectants or osmolytes such as soluble proteins, sugars, and sugar alcohols, quaternary ammonium compounds, and amino acids, like proline. This review highlights the role of osmolytes in water-stressed plants and of enzymes entailed in their metabolism. It will be useful, especially for researchers working on the development of drought-resistant crops by using the metabolic-engineering techniques.
Collapse
Affiliation(s)
- Munir Ozturk
- Botany Department, Centre for Environmental Studies, Ege University, Izmir, Turkey
| | - Bengu Turkyilmaz Unal
- Department of Biotechnology, Faculty of Science and Arts, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Agrifood Campus of International Excellence, Almería, Spain
| | - Anum Khursheed
- Department of Biochemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
20
|
Morpho-Physiological Testing of NaCl Sensitivity of Tobacco Plants Overexpressing Choline Oxidase Gene. PLANTS 2021; 10:plants10061102. [PMID: 34070894 PMCID: PMC8227115 DOI: 10.3390/plants10061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
In this study the transgenic lines (TLs) of tobacco (Nicotianatabacum L.), which overexpress the heterologous gene encoding the bacterial enzyme choline oxidase were evaluated. The goal of our work is to study the effect of choline oxidase gene expression on the sensitivity of plant tissues to the action of NaCl. The regenerative capacity, rhizogenesis, the amount of photosynthetic pigments and osmotically active compounds (proline and glycine betaine) were assessed by in vitro cell culture methods using biochemical and morphological parameters. Transgenic lines with confirmed expression were characterized by high regeneration capacity from callus in the presence of 200 mmol NaCl, partial retention of viability at 400 mmol NaCl. These data correlated with the implicit response of regenerants and whole plants to the harmful effects of salinity. They turned out to be less sensitive to the presence of 200 mmol NaCl in the cultivation medium, in contrast to the WT plants.
Collapse
|
21
|
Goyal V, Jhanghel D, Mehrotra S. Emerging warriors against salinity in plants: Nitric oxide and hydrogen sulphide. PHYSIOLOGIA PLANTARUM 2021; 171:896-908. [PMID: 33665834 DOI: 10.1111/ppl.13380] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The agriculture sector is vulnerable to various environmental stresses, which significantly affect plant growth, performance, and development. Abiotic stresses, such as salinity and drought, cause severe losses in crop productivity worldwide. Soil salinity is a major stress suppressing plant development through osmotic stress accompanied by ion toxicity, nutritional imbalance, and oxidative stress. Various defense mechanisms like osmolytes accumulations, activation of stress-induced genes, and transcription factors, production of plant growth hormones, accumulation of antioxidants, and redox defense system in plants are responsible for combating salt stress. Nitric oxide (NO) and hydrogen sulphide (H2 S) have emerged as novel bioactive gaseous signaling molecules that positively impact seed germination, homeostasis, plant metabolism, growth, and development, and are involved in several plant acclimation responses to impart stress tolerance in plants. NO and H2 S trigger cell signaling by activating a cascade of biochemical events that result in plant tolerance to environmental stresses. NO- and H2 S-mediated signaling networks, interactions, and crosstalks facilitate stress tolerance in plants. Research on the roles and mechanisms of NO and H2 S as challengers of salinity is entering an exponential exploration era. The present review focuses on the current knowledge of the mechanisms of stress tolerance in plants and the role of NO and H2 S in adaptive plant responses to salt stress and provides an overview of the signaling mechanisms and interplay of NO and H2 S in the regulation of growth and development as well as modulation of defense responses in plants and their long term priming effects for imparting salinity tolerance in plants.
Collapse
Affiliation(s)
- Vinod Goyal
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Dharmendra Jhanghel
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Shweta Mehrotra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
22
|
Omari Alzahrani F. Metabolic engineering of osmoprotectants to elucidate the mechanism(s) of salt stress tolerance in crop plants. PLANTA 2021; 253:24. [PMID: 33403449 DOI: 10.1007/s00425-020-03550-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/22/2020] [Indexed: 05/08/2023]
Abstract
Previous studies on engineering osmoprotectant metabolic pathway genes focused on the performance of transgenic plants under salt stress conditions rather than elucidating the underlying mechanism(s), and hence, the mechanism(s) remain(s) unclear. Salt stress negatively impacts agricultural crop yields. Hence, to meet future food demands, it is essential to generate salt stress-resistant varieties. Although traditional breeding has improved salt tolerance in several crops, this approach remains inadequate due to the low genetic diversity of certain important crop cultivars. Genetic engineering is used to introduce preferred gene(s) from any genetic reserve or to modify the expression of the existing gene(s) responsible for salt stress response or tolerance, thereby leading to improved salt tolerance in plants. Although plants naturally produce osmoprotectants as an adaptive mechanism for salt stress tolerance, they offer only partial protection. Recently, progress has been made in the identification and characterization of genes involved in the biosynthetic pathways of osmoprotectants. Exogenous application of these osmoprotectants, and genetic engineering of enzymes in their biosynthetic pathways, have been reported to enhance salt tolerance in different plants. However, no clear mechanistic model exists to explain how osmoprotectant accumulation in transgenic plants confers salt tolerance. This review critically examines the results obtained thus far for elucidating the underlying mechanisms of osmoprotectants for improved salt tolerance, and thus, crop yield stability under salt stress conditions, through the genetic engineering of trehalose, glycinebetaine, and proline metabolic pathway genes.
Collapse
Affiliation(s)
- Fatima Omari Alzahrani
- Department of Biology, Faculty of Science, Albaha Province, Albaha University, Albaha, 65527, Saudi Arabia.
| |
Collapse
|
23
|
Antonucci G, Croci M, Miras-Moreno B, Fracasso A, Amaducci S. Integration of Gas Exchange With Metabolomics: High-Throughput Phenotyping Methods for Screening Biostimulant-Elicited Beneficial Responses to Short-Term Water Deficit. FRONTIERS IN PLANT SCIENCE 2021; 12:678925. [PMID: 34140966 PMCID: PMC8204046 DOI: 10.3389/fpls.2021.678925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/04/2021] [Indexed: 05/12/2023]
Abstract
Biostimulants are emerging as a feasible tool for counteracting reduction in climate change-related yield and quality under water scarcity. As they are gaining attention, the necessity for accurately assessing phenotypic variables in their evaluation is emerging as a critical issue. In light of this, high-throughput phenotyping techniques have been more widely adopted. The main bottleneck of these techniques is represented by data management, which needs to be tailored to the complex, often multifactorial, data. This calls for the adoption of non-linear regression models capable of capturing dynamic data and also the interaction and effects between multiple factors. In this framework, a commercial glycinebetaine- (GB-) based biostimulant (Vegetal B60, ED&F Man) was tested and distributed at a rate of 6 kg/ha. Exogenous application of GB, a widely accumulated and documented stress adaptor molecule in plants, has been demonstrated to enhance the plant abiotic stress tolerance, including drought. Trials were conducted on tomato plants during the flowering stage in a greenhouse. The experiment was designed as a factorial combination of irrigation (water-stressed and well-watered) and biostimulant treatment (treated and control) and adopted a mixed phenotyping-omics approach. The efficacy of a continuous whole-canopy multichamber system coupled with generalized additive mixed modeling (GAMM) was evaluated to discriminate between water-stressed plants under the biostimulant treatment. Photosynthetic performance was evaluated by using GAMM, and was then correlated to metabolic profile. The results confirmed a higher photosynthetic efficiency of the treated plants, which is correlated to biostimulant-mediated drought tolerance. Furthermore, metabolomic analyses demonstrated the priming effect of the biostimulant for stress tolerance and detoxification and stabilization of photosynthetic machinery. In support of this, the overaccumulation of carotenoids was particularly relevant, given their photoprotective role in preventing the overexcitation of photosystem II. Metabolic profile and photosynthetic performance findings suggest an increased effective use of water (EUW) through the overaccumulation of lipids and leaf thickening. The positive effect of GB on water stress resistance could be attributed to both the delayed onset of stress and the elicitation of stress priming through the induction of H2O2-mediated antioxidant mechanisms. Overall, the mixed approach supported by a GAMM analysis could prove a valuable contribution to high-throughput biostimulant testing.
Collapse
Affiliation(s)
- Giulia Antonucci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore (UCSC), Piacenza, Italy
- *Correspondence: Giulia Antonucci
| | - Michele Croci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore (UCSC), Piacenza, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Fracasso
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore (UCSC), Piacenza, Italy
| | - Stefano Amaducci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore (UCSC), Piacenza, Italy
| |
Collapse
|
24
|
Gupta R. The oxygen-evolving complex: a super catalyst for life on earth, in response to abiotic stresses. PLANT SIGNALING & BEHAVIOR 2020; 15:1824721. [PMID: 32970515 PMCID: PMC7671056 DOI: 10.1080/15592324.2020.1824721] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The oxygen-evolving complex is integrated into photosystem (PSII). An essential part of oxygenic photosynthetic apparatus, embedded in the thylakoid membrane of chloroplasts. The OEC is a super catalyst to split water into molecular oxygen in the presence of light. The OEC consist of four Mn atoms, one Ca atom and five oxygen atoms (CaMn4O5) and this cluster is maintained by its surrounding proteins viz., PsbQ, PsbP, PsbO, PsbR. The function of this super catalyst with a high turnover frequency of 500 s-1 in standard condition. Chlorophyll a fluorescence (OJIP transients) are used to understand structural and functional cohesion of photosynthetic apparatus. A further K-peak in OJIP curve reflects damage at the OEC donor site in response to salinity, drought, and high temperature. The decline in performance indices (PI, SFI) also revealed structural damage of photosynthetic apparatus that leads to disruption of electron transport rate under abiotic conditions. This review discusses the structural and function cohesion of the OEC in plant against variable abiotic conditions.
Collapse
Affiliation(s)
- Ramwant Gupta
- Department of Biology, School of Pure Sciences, College of Engineering Science and Technology, Fiji National University, Natabua, Fiji Islands
- CONTACT Ramwant Gupta
| |
Collapse
|
25
|
Parihar M, Rakshit A, Rana K, Tiwari G, Jatav SS. Arbuscular mycorrhizal fungi mediated salt tolerance by regulating antioxidant enzyme system, photosynthetic pathways and ionic equilibrium in pea (Pisum sativum L.). Biol Futur 2020; 71:289-300. [PMID: 34554514 DOI: 10.1007/s42977-020-00037-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/10/2020] [Indexed: 11/28/2022]
Abstract
Arbuscular mycorrhizal (AM) fungi play an important role in improving the plant tolerance to salt stress. In the present study, we investigated the influence of AM fungi inoculation on various physiological, biochemical and nutritional aspects of pea grown under salt stress. The AM fungi inoculation successfully reduced the negative effects of salinity by improving the antioxidant enzyme system, a greater accumulation of compatible organic solutes, a higher content of photosynthetic pigment and a balanced uptake of nutrients, which resulted in higher growth and yield. Seed yield was found to be significantly higher by ~ 24, 40 and 54% in T2 (Rhizoglomus intraradices), T3 (Funneliformis mosseae and R. intraradices) and T4 (Rhizoglomus fasciculatum and Gigaspora sp.), respectively, as compared to nonmycorrhizal plants. Overall, a mixed application of R fasciculatum and Gigaspora sp. was superior to other mycorrhizal treatments, which can be attributed to specific compatibility relationships or functional complementarity that exists between symbionts.
Collapse
Affiliation(s)
- Manoj Parihar
- Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Science, Banaras Hindu University, Varanasi, UP, 221005, India.
- Crop Production Division, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, India.
| | - Amitava Rakshit
- Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Kiran Rana
- Department of Agronomy, Institute of Agricultural Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | | | - Surendra Singh Jatav
- Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Science, Banaras Hindu University, Varanasi, UP, 221005, India
| |
Collapse
|
26
|
El-Chami C, Foster AR, Johnson C, Clausen RP, Cornwell P, Haslam IS, Steward MC, Watson REB, Young HS, O'Neill CA. Organic osmolytes increase expression of specific tight junction proteins in skin and alter barrier function in keratinocytes. Br J Dermatol 2020; 184:482-494. [PMID: 32348549 DOI: 10.1111/bjd.19162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The epidermal barrier is important for water conservation, failure of which is evident in dry-skin conditions. Barrier function is fulfilled by the stratum corneum, tight junctions (TJs, which control extracellular water) and keratinocyte mechanisms, such as organic osmolyte transport, which regulate intracellular water homeostasis. Organic osmolyte transport by keratinocytes is largely unexplored and nothing is known regarding how cellular and extracellular mechanisms of water conservation may interact. OBJECTIVES We aimed to characterize osmolyte transporters in skin and keratinocytes, and, using transporter inhibitors, to investigate whether osmolytes can modify TJs. Such modification would suggest a possible link between intracellular and extracellular mechanisms of water regulation in skin. METHODS Immunostaining and quantitative polymerase chain reaction of organic osmolyte-treated organ-cultured skin were used to identify changes to organic osmolyte transporters, and TJ protein and gene expression. TJ functional assays were performed on organic osmolyte-treated primary human keratinocytes in culture. RESULTS Immunostaining demonstrated the expression of transporters for betaine, taurine and myo-inositol in transporter-specific patterns. Treatment of human skin with either betaine or taurine increased the expression of claudin-1, claudin-4 and occludin. Osmolyte transporter inhibition abolished this response. Betaine and taurine increased TJ function in primary human keratinocytes in vitro. CONCLUSIONS Treatment of skin with organic osmolytes modulates TJ structure and function, which could contribute to the epidermal barrier. This emphasizes a role for organic osmolytes beyond the maintenance of intracellular osmolarity. This could be harnessed to enhance topical therapies for diseases characterized by skin barrier dysfunction.
Collapse
Affiliation(s)
- C El-Chami
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - A R Foster
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - C Johnson
- School of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - R P Clausen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P Cornwell
- TRI Princeton, 601 Prospect Avenue, Princeton, NJ, 08540, USA
| | - I S Haslam
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - M C Steward
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - R E B Watson
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - H S Young
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Department of Dermatology, Salford Royal NHS Foundation Trust, Manchester, UK
| | - C A O'Neill
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
27
|
Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10070938] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Climate change is causing soil salinization, resulting in crop losses throughout the world. The ability of plants to tolerate salt stress is determined by multiple biochemical and molecular pathways. Here we discuss physiological, biochemical, and cellular modulations in plants in response to salt stress. Knowledge of these modulations can assist in assessing salt tolerance potential and the mechanisms underlying salinity tolerance in plants. Salinity-induced cellular damage is highly correlated with generation of reactive oxygen species, ionic imbalance, osmotic damage, and reduced relative water content. Accelerated antioxidant activities and osmotic adjustment by the formation of organic and inorganic osmolytes are significant and effective salinity tolerance mechanisms for crop plants. In addition, polyamines improve salt tolerance by regulating various physiological mechanisms, including rhizogenesis, somatic embryogenesis, maintenance of cell pH, and ionic homeostasis. This research project focuses on three strategies to augment salinity tolerance capacity in agricultural crops: salinity-induced alterations in signaling pathways; signaling of phytohormones, ion channels, and biosensors; and expression of ion transporter genes in crop plants (especially in comparison to halophytes).
Collapse
|
28
|
Naeem M, Nabi A, Aftab T, Khan MMA. Oligomers of carrageenan regulate functional activities and artemisinin production in Artemisia annua L. exposed to arsenic stress. PROTOPLASMA 2020; 257:871-887. [PMID: 31873815 DOI: 10.1007/s00709-019-01475-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Recently, a promising technique has come forward in field of radiation-agriculture in which the natural polysaccharides are modified into useful oligomers after depolymerization. Ionizing radiation technology is a simple, pioneering, eco-friendly, and single step degradation process which is used in exploiting the efficiency of the natural polysaccharides as plant growth promoters. Arsenic (As) is a noxious and toxic to growth and development of medicinal plants. Artemisinin is obtained from the leaves of Artemisia annua L., which is effective in the treatment of malaria. The present study was undertaken to find out possible role of oligomers of irradiated carrageenan (IC) on two varieties viz. 'CIM-Arogya' (As-tolerant) and 'Jeevan Raksha' (As-sensitive) of A. annua exposed to As. The treatments applied were 0 (control), 40 IC (40 mg L-1 IC), 80 IC (80 mg L-1 IC), 45 As (45 mg kg-1 soil As), 40 IC + 45 As (40 mg L-1 IC + 45 mg kg-1 soil As), and 80 IC + 45 As (80 mg L-1 IC + 45 mg kg-1 soil As). The present study was based on various parameters namely plant fresh weight (FW), dry weight (DW), leaf area index (LAI), leaf yield (LY), chlorophyll and carotenoid content, net photosynthetic rate (PN), stomatal conductance (Gs), carbonic anhydrase activity (CA), proline content (PRO), lipid peroxidation (TBARS), endogenous ROS production (H2O2 content), catalase activity (CAT), peroxidase activity (POX), superoxide dismutase activity (SOD), ascorbate peroxidase activity (APX), As content, and artemisinin content in leaves. Plant growth and other physiological and biochemical parameters including enzymatic activities, photosynthetic activity, and its related pigments were negatively affected under As stress. Leaf-applied IC overcame oxidative stress generated due to As in plants by activating antioxidant machinery. Interestingly, leaf-applied IC enhanced the production (content and yield) of artemisinin under high As stress regardless of varieties. The oligomers of IC and As were found to be responsible for the production of endogenous H2O2 which has a pivotal role in the biosynthesis of artemisinin in A. annua.
Collapse
Affiliation(s)
- M Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Aarifa Nabi
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Masroor A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
29
|
Huang S, Zuo T, Ni W. Important roles of glycinebetaine in stabilizing the structure and function of the photosystem II complex under abiotic stresses. PLANTA 2020; 251:36. [PMID: 31903497 DOI: 10.1007/s00425-019-03330-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/14/2019] [Indexed: 05/08/2023]
Abstract
The molecular and physiological mechanisms of glycinebetaine stabilizing photosystem II complex under abiotic stresses are discussed, helping to address food shortage problems threatening the survival of growing population. In the backdrop of climate change, the frequency, dimensions and duration of extreme events have increased sharply, which may have unintended consequences for agricultural. The acclimation of plants to a constantly changing environment involves the accumulation of compatible solutes. Various compatible solutes enable plants to tolerate abiotic stresses, and glycinebetaine (GB) is one of the most-studied. The biosynthesis and accumulation of GB appear in numerous plant species, especially under environmental stresses. The exogenous application of GB and GB-accumulating transgenic plants have been proven to further promote plant development under stresses. Early research on GB focused on the maintenance of osmotic potential in plants. Subsequent experimental evidence demonstrated that it also protects proteins including the photosystem II complex (PSII) from denaturation and deactivation. As reviewed here, multiple experimental evidences have indicated considerable progress in the roles of GB in stabilizing PSII under abiotic stresses. Based on these advances, we've concluded two effects of GB on PSII: (1) it stabilizes the structure of PSII by protecting extrinsic proteins from dissociation or by promoting protein synthesize; (2) it enhances the oxygen-evolving activity of PSII or promotes the repair of the photosynthetic damage of PSII.
Collapse
Affiliation(s)
- Shan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Hangzhou, 310058, China
| | - Ting Zuo
- College of Environmental and Resource Sciences, Zhejiang University, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Hangzhou, 310058, China
| | - Wuzhong Ni
- College of Environmental and Resource Sciences, Zhejiang University, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
30
|
Chandra P, Enespa, Singh R. Soil Salinity and Its Alleviation Using Plant Growth–Promoting Fungi. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Abd El-Maboud MM. Seasonal variations effect on antioxidant compounds and their role in the adaptation of some halophytes at Wadi Gharandal, Southwest Sinai. ANNALS OF AGRICULTURAL SCIENCES 2019; 64:161-166. [DOI: 10.1016/j.aoas.2019.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
32
|
Maleckova E, Brilhaus D, Wrobel TJ, Weber APM. Transcript and metabolite changes during the early phase of abscisic acid-mediated induction of crassulacean acid metabolism in Talinum triangulare. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6581-6596. [PMID: 31111894 PMCID: PMC6883267 DOI: 10.1093/jxb/erz189] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/04/2019] [Indexed: 05/31/2023]
Abstract
Crassulacean acid metabolism (CAM) has evolved as a water-saving strategy, and its engineering into crops offers an opportunity to improve their water use efficiency. This requires a comprehensive understanding of the regulation of the CAM pathway. Here, we use the facultative CAM species Talinum triangulare as a model in which CAM can be induced rapidly by exogenous abscisic acid. RNA sequencing and metabolite measurements were employed to analyse the changes underlying CAM induction and identify potential CAM regulators. Non-negative matrix factorization followed by k-means clustering identified an early CAM-specific cluster and a late one, which was specific for the early light phase. Enrichment analysis revealed abscisic acid metabolism, WRKY-regulated transcription, sugar and nutrient transport, and protein degradation in these clusters. Activation of the CAM pathway was supported by up-regulation of phosphoenolpyruvate carboxylase, cytosolic and chloroplastic malic enzymes, and several transport proteins, as well as by increased end-of-night titratable acidity and malate accumulation. The transcription factors HSFA2, NF-YA9, and JMJ27 were identified as candidate regulators of CAM induction. With this study we promote the model species T. triangulare, in which CAM can be induced in a controlled way, enabling further deciphering of CAM regulation.
Collapse
Affiliation(s)
- Eva Maleckova
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Düsseldorf, Germany
| | - Dominik Brilhaus
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas J Wrobel
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
33
|
Constantinescu-Aruxandei D, Vlaicu A, Marinaș IC, Vintilă ACN, Dimitriu L, Oancea F. Effect of betaine and selenium on the growth and photosynthetic pigment production in Dunaliella salina as biostimulants. FEMS Microbiol Lett 2019; 366:5695739. [PMID: 31899507 DOI: 10.1093/femsle/fnz257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/02/2020] [Indexed: 11/15/2022] Open
Abstract
The aim of our study was to establish the effect of selenium and betaine on the growth of D. salina, accumulation of photosynthetic pigments and antioxidant activity of the hydrophobic fraction. This approach was an attempt to demonstrate 'microalgae biostimulant' effects, similar to 'plant biostimulant' effects, i.e. increased tolerance to abiotic stress and enhanced accumulation of bioactive compounds. A high-throughput assay was done in 24-well microplates, at 15% NaCl and different concentrations of sodium selenite (0, 0.5, 2 and 8 µM) or betaine (0, 5, 50 and 500 µM). Both selenium and betaine induced a slight delay in algae growth during the actively growing stage but the final density reached similar values to the control. Betaine significantly enhanced (50%-100%) carotenoids and chlorophyll a accumulation, in a concentration depending manner. Antioxidant activity increased almost 3-fold in extracts of algae treated with 50 µM betaine. Selenium had a much more discrete effect than betaine on pigments biosynthesis. The antioxidant activity of the extracts increased 2-fold in the presence of Se compared to the control. Our work proves that it is possible to enhance production and activity of bioactive compounds from microalgae by using ingredients, which already proved to act as plant biostimulants.
Collapse
Affiliation(s)
- Diana Constantinescu-Aruxandei
- Department of bioresources, National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independenței nr. 202, Sector 6, Bucharest, 060021, Romania
| | - Alexandru Vlaicu
- Department of bioresources, National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independenței nr. 202, Sector 6, Bucharest, 060021, Romania
| | - Ioana Cristina Marinaș
- Department of bioresources, National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independenței nr. 202, Sector 6, Bucharest, 060021, Romania
| | - Alin Cristian Nicolae Vintilă
- Department of bioresources, National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independenței nr. 202, Sector 6, Bucharest, 060021, Romania
| | - Luminița Dimitriu
- Department of bioresources, National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independenței nr. 202, Sector 6, Bucharest, 060021, Romania
| | - Florin Oancea
- Department of bioresources, National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independenței nr. 202, Sector 6, Bucharest, 060021, Romania
| |
Collapse
|
34
|
Amoozegar MA, Safarpour A, Noghabi KA, Bakhtiary T, Ventosa A. Halophiles and Their Vast Potential in Biofuel Production. Front Microbiol 2019; 10:1895. [PMID: 31507545 PMCID: PMC6714587 DOI: 10.3389/fmicb.2019.01895] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
Global warming and the limitations of using fossil fuels are a main concern of all societies, and thus, the development of alternative fuel sources is crucial to improving the current global energy situation. Biofuels are known as the best alternatives of unrenewable fuels and justify increasing extensive research to develop new and less expensive methods for their production. The most frequent biofuels are bioethanol, biobutanol, biodiesel, and biogas. The production of these biofuels is the result of microbial activity on organic substrates like sugars, starch, oil crops, non-food biomasses, and agricultural and animal wastes. Several industrial production processes are carried out in the presence of high concentrations of NaCl and therefore, researchers have focused on halophiles for biofuel production. In this review, we focus on the role of halophilic microorganisms and their current utilization in the production of all types of biofuels. Also, the outstanding potential of them and their hydrolytic enzymes in the hydrolysis of different kind of biomasses and the production of biofuels are discussed.
Collapse
Affiliation(s)
- Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Atefeh Safarpour
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Kambiz Akbari Noghabi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Tala Bakhtiary
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
35
|
Yanykin DV, Malferrari M, Rapino S, Venturoli G, Semenov AY, Mamedov MD. Hydroxyectoine protects Mn-depleted photosystem II against photoinhibition acting as a source of electrons. PHOTOSYNTHESIS RESEARCH 2019; 141:165-179. [PMID: 30701483 DOI: 10.1007/s11120-019-00617-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
In the present study, we have investigated the effect of hydroxyectoine (Ect-OH), a heterocyclic amino acid, on oxygen evolution in photosystem II (PS II) membrane fragments and on photoinhibition of Mn-depleted PS II (apo-WOC-PS II) preparations. The degree of photoinhibition of apo-WOC-PS II preparations was estimated by the loss of the capability of exogenous electron donor (sodium ascorbate) to restore the amplitude of light-induced changes of chlorophyll fluorescence yield (∆F). It was found that Ect-OH (i) stimulates the oxygen-evolving activity of PS II, (ii) accelerates the electron transfer from exogenous electron donors (K4[Fe(CN)6], DPC, TMPD, Fe2+, and Mn2+) to the reaction center of apo-WOC-PS II, (iii) enhances the protective effect of exogenous electron donors against donor-side photoinhibition of apo-WOC-PS II preparations. It is assumed that Ect-OH can serve as an artificial electron donor for apo-WOC-PS II, which does not directly interact with either the donor or acceptor side of the reaction center. We suggest that the protein conformation in the presence of Ect-OH, which affects the extent of hydration, becomes favorable for accepting electrons from exogenous donors. To our knowledge, this is the first study dealing with redox activity of Ect-OH towards photosynthetic pigment-protein complexes.
Collapse
Affiliation(s)
- D V Yanykin
- Institute of Basic Biological Problems, FRC PSCBR RAS, Pushchino, Moscow Region, Russia, 142290.
| | - M Malferrari
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy
| | - S Rapino
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy
| | - G Venturoli
- Laboratory of Biochemistry and Molecular Biophysics, Department of Pharmacy and Biotechnology, FaBiT, University of Bologna, 40126, Bologna, Italy
| | - A Yu Semenov
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1-40, Moscow, Russia, 119992
| | - M D Mamedov
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1-40, Moscow, Russia, 119992
| |
Collapse
|
36
|
You L, Song Q, Wu Y, Li S, Jiang C, Chang L, Yang X, Zhang J. Accumulation of glycine betaine in transplastomic potato plants expressing choline oxidase confers improved drought tolerance. PLANTA 2019; 249:1963-1975. [PMID: 30900084 DOI: 10.1007/s00425-019-03132-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/07/2019] [Indexed: 05/25/2023]
Abstract
Plastid genome engineering is an effective method to generate drought-resistant potato plants accumulating glycine betaine in plastids. Glycine betaine (GB) plays an important role under abiotic stress, and its accumulation in chloroplasts is more effective on stress tolerance than that in cytosol of transgenic plants. Here, we report that the codA gene from Arthrobacter globiformis, which encoded choline oxidase to catalyze the conversion of choline to GB, was successfully introduced into potato (Solanum tuberosum) plastid genome by plastid genetic engineering. Two independent plastid-transformed lines were isolated and confirmed as homoplasmic via Southern-blot analysis, in which the mRNA level of codA was much higher in leaves than in tubers. GB accumulated in similar levels in both leaves and tubers of codA-transplastomic potato plants (referred to as PC plants). The GB content was moderately increased in PC plants, and compartmentation of GB in plastids conferred considerably higher tolerance to drought stress compared to wild-type (WT) plants. Higher levels of relative water content and chlorophyll content under drought stress were detected in the leaves of PC plants compared to WT plants. Moreover, PC plants presented a significantly higher photosynthetic performance as well as antioxidant enzyme activities during drought stress. These results suggested that biosynthesis of GB by chloroplast engineering was an effective method to increase drought tolerance.
Collapse
Affiliation(s)
- Lili You
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Qiping Song
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yuyong Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chunmei Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
37
|
Tiwari A, Singh P, Riyazat Khadim S, Singh AK, Singh U, Singh P, Asthana RK. Role of Ca 2+ as protectant under heat stress by regulation of photosynthesis and membrane saturation in Anabaena PCC 7120. PROTOPLASMA 2019; 256:681-691. [PMID: 30456698 DOI: 10.1007/s00709-018-1328-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/12/2018] [Indexed: 05/08/2023]
Abstract
The present study was aimed at understanding the effects of heat stress on selected physiological and biochemical parameters of a model cyanobacterium, Anabaena PCC 7120 in addition to amelioration strategy using exogenous Ca2+. A comparison of the cells exposed to heat stress (0-24 h) in the presence or absence of Ca2+ clearly showed reduction in colony-forming ability and increase in reactive oxygen species (ROS) leading to loss in the viability of cells of Ca2+-deficient cultures. There was higher level of saturation in membrane lipids of the cells supplemented with Ca2+ along with higher accumulation of proline. Similarly, higher quantum yield (7.8-fold) in Ca2+-supplemented cultures indicated role of Ca2+ in regulation of photosynthesis. Relative electron transport rate (rETR) decreased in both the sets with the difference in the rate of decrease (slow) in Ca2+-supplemented cultures. The Ca2+-supplemented sets also maintained high levels of open reaction centers of PS II in comparison to Ca2+-deprived cells. Increase in transcripts of both subunits ((rbcL and rbcS) of RubisCO from Ca2+-supplemented Anabaena cultures pointed out the role of Ca2+ in sustenance of photosynthesis of cells via CO2 fixation, thus, playing an important role in maintaining metabolic status of the heat-stressed cyanobacterium.
Collapse
Affiliation(s)
- Anupam Tiwari
- Lovely Professional University, Phagwara, Jalandhar, India
| | - Prabhakar Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sk Riyazat Khadim
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ankit Kumar Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Urmilesh Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ravi Kumar Asthana
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
38
|
Carrillo-Campos J, Riveros-Rosas H, Rodríguez-Sotres R, Muñoz-Clares RA. Bona fide choline monoxygenases evolved in Amaranthaceae plants from oxygenases of unknown function: Evidence from phylogenetics, homology modeling and docking studies. PLoS One 2018; 13:e0204711. [PMID: 30256846 PMCID: PMC6157903 DOI: 10.1371/journal.pone.0204711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Few land plants can synthesize and accumulate the osmoprotectant glycine betaine (GB) even though this metabolic trait has major adaptive importance given the prevalence of drought, hypersaline soils or cold. GB is synthesized from choline in two reactions catalyzed by choline monooxygenases (CMOs) and enzymes of the family 10 of aldehyde dehydrogenases (ALDH10s) that gained betaine aldehyde dehydrogenase activity (BADH). Homolog genes encoding CMO and ALDH10 enzymes are present in all known land plant genomes, but since GB-non-accumulators plants lack the BADH-type ALDH10 isozyme, they would be expected to also lack the CMO activity to avoid accumulation of the toxic betaine aldehyde. To explore CMOs substrate specificity, we performed amino acid sequence alignments, phylogenetic analysis, homology modeling and docking simulations. We found that plant CMOs form a monophyletic subfamily within the Rieske/mononuclear non-heme oxygenases family with two clades: CMO1 and CMO2, the latter diverging from CMO1 after gene duplication. CMO1 enzymes are present in all plants; CMO2s only in the Amaranthaceae high-GB-accumulators plants. CMO2s, and particularly their mononuclear non-heme iron domain where the active site is located, evolved at a faster rate than CMO1s, which suggests positive selection. The homology model and docking simulations of the spinach CMO2 enzyme showed at the active site three aromatic residues forming a box with which the trimethylammonium group of choline could interact through cation-π interactions, and a glutamate, which also may interact with the trimethylammonium group through a charge-charge interaction. The aromatic box and the carboxylate have been shown to be critical for choline binding in other proteins. Interestingly, these residues are conserved in CMO2 proteins but not in CMO1 proteins, where two of these aromatic residues are leucine and the glutamate is asparagine. These findings reinforce our proposal that the CMO1s physiological substrate is not choline but a still unknown metabolite.
Collapse
Affiliation(s)
- Javier Carrillo-Campos
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rogelio Rodríguez-Sotres
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rosario A. Muñoz-Clares
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
39
|
The genus Portulaca as a suitable model to study the mechanisms of plant tolerance to drought and salinity. THE EUROBIOTECH JOURNAL 2018. [DOI: 10.2478/ebtj-2018-0014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Drought and soil salinity are at present the major factors responsible for the global reduction of crop yields, and the problem will become more severe in the coming decades because of climate change effects. The most promising strategy to achieve the increased agricultural production that will be required to meet food demands worldwide will be based on the enhancement of crop stress tolerance, by both, traditional breeding and genetic engineering. This, in turn, requires a deep understanding of the mechanisms of tolerance which, although based on a conserved set of basic responses, vary widely among plant species. Therefore, the use of different plant models to investigate these mechanisms appears to be a sensible approach. The genus Portulaca could be a suitable model to carry out these studies, as some of its taxa have been described as tolerant to drought and/or salinity. Information on relevant mechanisms of tolerance to salt and water stress can be obtained by correlating the activation of specific defence pathways with the relative stress resistance of the investigated species. Also, species of the genus could be economically attractive as ‘new’ crops for ‘saline’ and ‘arid’, sustainable agriculture, as medicinal plants, highly nutritious vegetable crops and ornamentals.
Collapse
|
40
|
Singh M, Khan MMA, Uddin M, Naeem M, Qureshi MI. Proliferating effect of radiolytically depolymerized carrageenan on physiological attributes, plant water relation parameters, essential oil production and active constituents of Cymbopogon flexuosus Steud. under drought stress. PLoS One 2017; 12:e0180129. [PMID: 28708833 PMCID: PMC5510827 DOI: 10.1371/journal.pone.0180129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/10/2017] [Indexed: 11/18/2022] Open
Abstract
Carrageenan has been proved as potent growth promoting substance in its depolymerized form. However, relatively little is known about its role in counteracting the adverse effects of drought stress on plants. In a pot experiment, lemongrass (Cymbopogon flexuosus Steud.), grown under different water stress regimes [(100% field capacity (FC), 80% FC and 60% FC)], was sprayed with 40, 80 and 120 mg L-1 of gamma irradiated carrageenan (ICA). Foliar application of ICA mitigated the harmful effects of drought stress to various extents and improved the biochemical characteristics, quality attributes and active constituents (citral and geraniol) of lemongrass significantly. Among the applied treatments, ICA-80 mg L-1 proved the best in alleviating detrimental effects of drought. However, drought stress (80 and 60% FC), irrespective of the growth stages, had an adverse impact on most of the studied attributes. Generally, 60% FC proved more deleterious than 80% FC. At 80% FC, application of ICA-80 mg L-1 elevated the essential oil (EO) content by 18.9 and 25%, citral content by 7.33 and 8.19% and geraniol content by 9.2 and 8.9% at 90 and 120 days after planting (DAP), respectively, as compared to the deionized-water (DW) spray treatment (80% FC+ DW). Whereas, at 60% FC, foliar application of 80 mg L-1 ICA significantly augmented the EO content by 15.4 and 17.8% and active constituents viz. citral and geraniol, by 5.01 and 5.62% and by 6.06 and 5.61% at 90 and 120 DAP, respectively, as compared to the control (water-spray treatment).
Collapse
Affiliation(s)
- Minu Singh
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - M. Masroor A. Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Moin Uddin
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - M. Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - M. Irfan Qureshi
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
41
|
Hamdani F, Derridj A, Rogers HJ. Multiple mechanisms mediate growth and survival in young seedlings of two populations of the halophyte Atriplex halimus (L.) subjected to long single-step salinity treatments. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:761-773. [PMID: 32480605 DOI: 10.1071/fp17026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/04/2017] [Indexed: 06/11/2023]
Abstract
Understanding how halophytes survive high soil salinity in realistic long-term experiments is important for strategies to mitigate the effects of increasing soil salinity worldwide. Protective mechanisms in halophytes enabling survival include sequestration of salt via Na+/H+ antiporters, synthesis and accumulation of osmolytes, and activation of protective mechanisms against reactive oxygen species (ROS). Protective mechanisms elicited by a single step-up to a range of NaCl treatments (34-256mM) in two populations of the halophyte Atriplex halimus L. from contrasting environments (arid steppe and saline coastline) were compared over 6 weeks. The coastal population survived significantly better at high salinity compared with the steppe population, although in both populations, salinity inhibited growth. Increased Na+ and K+ concentration was accompanied by higher induction of Na+/H+ antiporter gene expression in coastal than in steppe population leaves. Osmolytes increased more significantly in the coastal than in the steppe population with greater induction of choline mono-oxygenase gene expression. Activation of ROS scavenging mechanisms was greater in coastal than in steppe plants. Differential responses found through time, in different salt concentrations, and between leaves and roots indicate a finely tuned response. Sharp changes in responses at 171mM NaCl indicate that different mechanisms may be invoked at different stress levels.
Collapse
Affiliation(s)
- Faiza Hamdani
- Faculté des Sciences Biologiques et des Sciences Agronomiques, Université Mouloud Mammeri de Tizi-Ouzou, 15000 Tizi-Ouzou, Algeria
| | - Arezki Derridj
- Faculté des Sciences Biologiques et des Sciences Agronomiques, Université Mouloud Mammeri de Tizi-Ouzou, 15000 Tizi-Ouzou, Algeria
| | - Hilary J Rogers
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
42
|
Salinity Response in Chloroplasts: Insights from Gene Characterization. Int J Mol Sci 2017; 18:ijms18051011. [PMID: 28481319 PMCID: PMC5454924 DOI: 10.3390/ijms18051011] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 11/17/2022] Open
Abstract
Salinity is a severe abiotic stress limiting agricultural yield and productivity. Plants have evolved various strategies to cope with salt stress. Chloroplasts are important photosynthesis organelles, which are sensitive to salinity. An understanding of molecular mechanisms in chloroplast tolerance to salinity is of great importance for genetic modification and plant breeding. Previous studies have characterized more than 53 salt-responsive genes encoding important chloroplast-localized proteins, which imply multiple vital pathways in chloroplasts in response to salt stress, such as thylakoid membrane organization, the modulation of photosystem II (PS II) activity, carbon dioxide (CO2) assimilation, photorespiration, reactive oxygen species (ROS) scavenging, osmotic and ion homeostasis, abscisic acid (ABA) biosynthesis and signaling, and gene expression regulation, as well as protein synthesis and turnover. This review presents an overview of salt response in chloroplasts revealed by gene characterization efforts.
Collapse
|
43
|
Dasgupta M, Kishore N. Selective inhibition of aggregation/fibrillation of bovine serum albumin by osmolytes: Mechanistic and energetics insights. PLoS One 2017; 12:e0172208. [PMID: 28207877 PMCID: PMC5312929 DOI: 10.1371/journal.pone.0172208] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/01/2017] [Indexed: 12/20/2022] Open
Abstract
Bovine serum albumin (BSA) is an important transport protein of the blood and its aggregation/fibrillation would adversely affect its transport ability leading to metabolic disorder. Therefore, understanding the mechanism of fibrillation/aggregation of BSA and design of suitable inhibitor molecules for stabilizing its native conformation, are of utmost importance. The qualitative and quantitative aspects of the effect of osmolytes (proline, hydroxyproline, glycine betaine, sarcosine and sorbitol) on heat induced aggregation/fibrillation of BSA at physiological pH (pH 7.4) have been studied employing a combination of fluorescence spectroscopy, Rayleigh scattering, isothermal titration calorimetry (ITC), dynamic light scattering (DLS) and transmission electron microscopy (TEM). Formation of fibrils by BSA under the given conditions was confirmed from increase in fluorescence emission intensities of Thioflavin T over a time period of 600 minutes and TEM images. Absence of change in fluorescence emission intensities of 8-Anilinonaphthalene-1-sulfonic acid (ANS) in presence of native and aggregated BSA signify the absence of any amorphous aggregates. ITC results have provided important insights on the energetics of interaction of these osmolytes with different stages of the fibrillar aggregates of BSA, thereby suggesting the possible modes/mechanism of inhibition of BSA fibrillation by these osmolytes. The heats of interaction of the osmolytes with different stages of fibrillation of BSA do not follow a trend, suggesting that the interactions of stages of BSA aggregates are osmolyte specific. Among the osmolytes used here, we found glycine betaine to be supporting and promoting the aggregation process while hydroxyproline to be maximally efficient in suppressing the fibrillation process of BSA, followed by sorbitol, sarcosine and proline in the following order of their decreasing potency: Hydroxyproline> Sorbitol> Sarcosine> Proline> Glycine betaine.
Collapse
Affiliation(s)
- Moumita Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
44
|
Yanykin DV, Khorobrykh AA, Mamedov MD, Klimov VV. Trehalose protects Mn-depleted photosystem 2 preparations against the donor-side photoinhibition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:236-243. [PMID: 27693844 DOI: 10.1016/j.jphotobiol.2016.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 11/30/2022]
Abstract
Recently, it has been shown that the addition of 1M trehalose leads to the increase of the rate of oxygen photoconsumption associated with activation of electron transport in the reaction center of photosystem 2 (PS2) in Mn-depleted PS2 membranes (apo-WOC-PS2) [37]. In the present work the effect of trehalose on photoinhibition of apo-WOC-PS2 preparations (which are characterized by a high sensitivity to the donor side photoinhibition of PS2) was investigated. The degree of photoinhibition was estimated by the loss of the capability of exogenous electron donor (sodium ascorbate) to reactivate the electron transport (measured by light-induced changes of chlorophyll fluorescence yield (∆F)) in apo-WOC-PS2. It was found that 1M trehalose enhanced the Mn2+-dependent suppression of photoinhibition of apo-WOC-PS2: in the presence of trehalose the addition of 0.2μM Mn2+ (corresponding to 2 Mn2+ per one reaction center) was sufficient for an almost complete suppression of the donor side photoinhibition of the complex. In the absence of trehalose it was necessary to add 100μM Mn2+ to achieve a similar result. The effect of trehalose was observed during photoinhibition of apo-WOC-PS2 at low (15μmolphotons-1m-2) and high (200μmolphotons-1m-2) light intensity. When Mn2+ was replaced by other PS2 electron donors (ferrocyanide, DPC) as well as by Ca2+ the protective effect of trehalose was not observed. It was also found that 1M trehalose decreased photoinhibition of apo-WOC-PS2 if the samples contained endogenous manganese (1-2 Mn ions per one RC was enough for the maximum protection effect). It is concluded that structural changes in PS2 caused by the addition of trehalose enhance the capability of photochemical reaction centers of apo-WOC-PS2 to accept electrons from manganese (both exogenous and endogenous), which in turn leads to a considerable suppression of the donor side photoinhibition of PS2.
Collapse
Affiliation(s)
- D V Yanykin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia.
| | - A A Khorobrykh
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - M D Mamedov
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Moscow 119991, Russia
| | - V V Klimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| |
Collapse
|
45
|
Crepin A, Santabarbara S, Caffarri S. Biochemical and Spectroscopic Characterization of Highly Stable Photosystem II Supercomplexes from Arabidopsis. J Biol Chem 2016; 291:19157-71. [PMID: 27432883 DOI: 10.1074/jbc.m116.738054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 11/06/2022] Open
Abstract
Photosystem II (PSII) is a large membrane supercomplex involved in the first step of oxygenic photosynthesis. It is organized as a dimer, with each monomer consisting of more than 20 subunits as well as several cofactors, including chlorophyll and carotenoid pigments, lipids, and ions. The isolation of stable and homogeneous PSII supercomplexes from plants has been a hindrance for their deep structural and functional characterization. In recent years, purification of complexes with different antenna sizes was achieved with mild detergent solubilization of photosynthetic membranes and fractionation on a sucrose gradient, but these preparations were only stable in the cold for a few hours. In this work, we present an improved protocol to obtain plant PSII supercomplexes that are stable for several hours/days at a wide range of temperatures and can be concentrated without degradation. Biochemical and spectroscopic properties of the purified PSII are presented, as well as a study of the complex solubility in the presence of salts. We also tested the impact of a large panel of detergents on PSII stability and found that very few are able to maintain the integrity of PSII. Such new PSII preparation opens the possibility of performing experiments that require room temperature conditions and/or high protein concentrations, and thus it will allow more detailed investigations into the structure and molecular mechanisms that underlie plant PSII function.
Collapse
Affiliation(s)
- Aurelie Crepin
- From the Aix Marseille Université, CEA, CNRS, BIAM, Laboratoire de Génétique et Biophysique des Plantes, Marseille 13009, France and
| | - Stefano Santabarbara
- the Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy
| | - Stefano Caffarri
- From the Aix Marseille Université, CEA, CNRS, BIAM, Laboratoire de Génétique et Biophysique des Plantes, Marseille 13009, France and
| |
Collapse
|
46
|
Wang Y, He B, Sun Z, Chen YF. Chemically enhanced lipid production from microalgae under low sub-optimal temperature. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.02.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
Allaoua S, Hafsa CS, Bilal Y. Growing varieties durum wheat (Triticum durum) in response to the effect of osmolytes and inoculation by Azotobacter chroococcum under salt stress. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajmr2015.7723] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
48
|
Pottosin I, Shabala S. Transport Across Chloroplast Membranes: Optimizing Photosynthesis for Adverse Environmental Conditions. MOLECULAR PLANT 2016; 9:356-370. [PMID: 26597501 DOI: 10.1016/j.molp.2015.10.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 05/18/2023]
Abstract
Chloroplasts are central to solar light harvesting and photosynthesis. Optimal chloroplast functioning is vitally dependent on a very intensive traffic of metabolites and ions between the cytosol and stroma, and should be attuned for adverse environmental conditions. This is achieved by an orchestrated regulation of a variety of transport systems located at chloroplast membranes such as porines, solute channels, ion-specific cation and anion channels, and various primary and secondary active transport systems. In this review we describe the molecular nature and functional properties of the inner and outer envelope and thylakoid membrane channels and transporters. We then discuss how their orchestrated regulation affects thylakoid structure, electron transport and excitation energy transfer, proton-motive force partition, ion homeostasis, stromal pH regulation, and volume regulation. We link the activity of key cation and anion transport systems with stress-specific signaling processes in chloroplasts, and discuss how these signals interact with the signals generated in other organelles to optimize the cell performance, with a special emphasis on Ca(2+) and reactive oxygen species signaling.
Collapse
Affiliation(s)
- Igor Pottosin
- Biomedical Centre, University of Colima, Colima, Colima 28045, Mexico; School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia.
| |
Collapse
|
49
|
Ke Q, Wang Z, Ji CY, Jeong JC, Lee HS, Li H, Xu B, Deng X, Kwak SS. Transgenic poplar expressing codA exhibits enhanced growth and abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 100:75-84. [PMID: 26795732 DOI: 10.1016/j.plaphy.2016.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 05/20/2023]
Abstract
Glycine betaine (GB), a compatible solute, effectively stabilizes the structure and function of macromolecules and enhances abiotic stress tolerance in plants. We generated transgenic poplar plants (Populus alba × Populus glandulosa) expressing a bacterial choline oxidase (codA) gene under the control of the oxidative stress-inducible SWPA2 promoter (referred to as SC plants). Among the 13 SC plants generated, three lines (SC4, SC14 and SC21) were established based on codA transcript levels, tolerance to methyl viologen-mediated oxidative stress and Southern blot analysis. Growth was better in SC plants than in non-transgenic (NT) plants, which was related to elevated transcript levels of auxin-response genes. SC plants accumulated higher levels of GB under oxidative stress compared to the NT plants. In addition, SC plants exhibited increased tolerance to drought and salt stress, which was associated with increased efficiency of photosystem II activity. Finally, SC plants maintained lower levels of ion leakage and reactive oxygen species under cold stress compared to the NT plants. These observations suggest that SC plants might be useful for reforestation on global marginal lands, including desertification and reclaimed areas.
Collapse
Affiliation(s)
- Qingbo Ke
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon, 305-350, South Korea
| | - Zhi Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon, 305-350, South Korea
| | - Jae Cheol Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon, 305-350, South Korea
| | - Haeng-Soon Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon, 305-350, South Korea
| | - Hongbing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Bingcheng Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon, 305-350, South Korea.
| |
Collapse
|
50
|
Effect of glycine betaine on the hydrophobic interactions in the presence of denaturant: A molecular dynamics study. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.12.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|