1
|
Pianezza R, Haider A, Kofler R. GenomeDelta: detecting recent transposable element invasions without repeat library. Genome Biol 2024; 25:315. [PMID: 39696539 PMCID: PMC11656972 DOI: 10.1186/s13059-024-03459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
We present GenomeDelta, a novel tool for identifying sample-specific sequences, such as recent transposable element (TE) invasions, without requiring a repeat library. GenomeDelta compares high-quality assemblies with short-read data to detect sequences absent from the short reads. It is applicable to both model and non-model organisms and can identify recent TE invasions, spatially heterogeneous sequences, viral insertions, and hotizontal gene transfers. GenomeDelta was validated with simulated and real data and used to discover three recent TE invasions in Drosophila melanogaster and a novel TE with geographic variation in Zymoseptoria tritici.
Collapse
Affiliation(s)
- Riccardo Pianezza
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Anna Haider
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
2
|
Scarpa A, Pianezza R, Wierzbicki F, Kofler R. Genomes of historical specimens reveal multiple invasions of LTR retrotransposons in Drosophila melanogaster during the 19th century. Proc Natl Acad Sci U S A 2024; 121:e2313866121. [PMID: 38564639 PMCID: PMC11009621 DOI: 10.1073/pnas.2313866121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/05/2024] [Indexed: 04/04/2024] Open
Abstract
Transposable element invasions have a profound impact on the evolution of genomes and phenotypes. It is thus an important open question how often such TE invasions occur. To address this question, we utilize the genomes of historical specimens, sampled about 200 y ago. We found that the LTR retrotransposons Blood, Opus, and 412 spread in Drosophila melanogaster in the 19th century. These invasions constitute second waves, as degraded fragments were found for all three TEs. The composition of Opus and 412, but not of Blood, shows a pronounced geographic heterogeneity, likely due to founder effects during the invasions. Finally, we identified species from the Drosophila simulans complex as the likely origin of the TEs. We show that in total, seven TE families invaded D. melanogaster during the last 200y, thereby increasing the genome size by up to 1.2Mbp. We suggest that this high rate of TE invasions was likely triggered by human activity. Based on the analysis of strains and specimens sampled at different times, we provide a detailed timeline of TE invasions, making D. melanogaster the first organism where the invasion history of TEs during the last two centuries could be inferred.
Collapse
Affiliation(s)
- Almorò Scarpa
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien1210, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna1210, Austria
| | - Riccardo Pianezza
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien1210, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna1210, Austria
| | - Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien1210, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna1210, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien1210, Austria
| |
Collapse
|
3
|
Rech GE, Radío S, Guirao-Rico S, Aguilera L, Horvath V, Green L, Lindstadt H, Jamilloux V, Quesneville H, González J. Population-scale long-read sequencing uncovers transposable elements associated with gene expression variation and adaptive signatures in Drosophila. Nat Commun 2022; 13:1948. [PMID: 35413957 PMCID: PMC9005704 DOI: 10.1038/s41467-022-29518-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
High quality reference genomes are crucial to understanding genome function, structure and evolution. The availability of reference genomes has allowed us to start inferring the role of genetic variation in biology, disease, and biodiversity conservation. However, analyses across organisms demonstrate that a single reference genome is not enough to capture the global genetic diversity present in populations. In this work, we generate 32 high-quality reference genomes for the well-known model species D. melanogaster and focus on the identification and analysis of transposable element variation as they are the most common type of structural variant. We show that integrating the genetic variation across natural populations from five climatic regions increases the number of detected insertions by 58%. Moreover, 26% to 57% of the insertions identified using long-reads were missed by short-reads methods. We also identify hundreds of transposable elements associated with gene expression variation and new TE variants likely to contribute to adaptive evolution in this species. Our results highlight the importance of incorporating the genetic variation present in natural populations to genomic studies, which is essential if we are to understand how genomes function and evolve.
Collapse
Affiliation(s)
- Gabriel E Rech
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Santiago Radío
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Sara Guirao-Rico
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Laura Aguilera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Vivien Horvath
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Llewellyn Green
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Hannah Lindstadt
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | | | | | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain.
| |
Collapse
|
4
|
Schwarz F, Wierzbicki F, Senti KA, Kofler R. Tirant Stealthily Invaded Natural Drosophila melanogaster Populations during the Last Century. Mol Biol Evol 2021; 38:1482-1497. [PMID: 33247725 PMCID: PMC8042734 DOI: 10.1093/molbev/msaa308] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It was long thought that solely three different transposable elements (TEs)-the I-element, the P-element, and hobo-invaded natural Drosophila melanogaster populations within the last century. By sequencing the "living fossils" of Drosophila research, that is, D. melanogaster strains sampled from natural populations at different time points, we show that a fourth TE, Tirant, invaded D. melanogaster populations during the past century. Tirant likely spread in D. melanogaster populations around 1938, followed by the I-element, hobo, and, lastly, the P-element. In addition to the recent insertions of the canonical Tirant, D. melanogaster strains harbor degraded Tirant sequences in the heterochromatin which are likely due to an ancient invasion, likely predating the split of D. melanogaster and D. simulans. These degraded insertions produce distinct piRNAs that were unable to prevent the novel Tirant invasion. In contrast to the I-element, P-element, and hobo, we did not find that Tirant induces any hybrid dysgenesis symptoms. This absence of apparent phenotypic effects may explain the late discovery of the Tirant invasion. Recent Tirant insertions were found in all investigated natural populations. Populations from Tasmania carry distinct Tirant sequences, likely due to a founder effect. By investigating the TE composition of natural populations and strains sampled at different time points, insertion site polymorphisms, piRNAs, and phenotypic effects, we provide a comprehensive study of a natural TE invasion.
Collapse
Affiliation(s)
- Florian Schwarz
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | | | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| |
Collapse
|
5
|
McGurk MP, Dion-Côté AM, Barbash DA. Rapid evolution at the Drosophila telomere: transposable element dynamics at an intrinsically unstable locus. Genetics 2021; 217:iyaa027. [PMID: 33724410 PMCID: PMC8045721 DOI: 10.1093/genetics/iyaa027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022] Open
Abstract
Drosophila telomeres have been maintained by three families of active transposable elements (TEs), HeT-A, TAHRE, and TART, collectively referred to as HTTs, for tens of millions of years, which contrasts with an unusually high degree of HTT interspecific variation. While the impacts of conflict and domestication are often invoked to explain HTT variation, the telomeres are unstable structures such that neutral mutational processes and evolutionary tradeoffs may also drive HTT evolution. We leveraged population genomic data to analyze nearly 10,000 HTT insertions in 85 Drosophila melanogaster genomes and compared their variation to other more typical TE families. We observe that occasional large-scale copy number expansions of both HTTs and other TE families occur, highlighting that the HTTs are, like their feral cousins, typically repressed but primed to take over given the opportunity. However, large expansions of HTTs are not caused by the runaway activity of any particular HTT subfamilies or even associated with telomere-specific TE activity, as might be expected if HTTs are in strong genetic conflict with their hosts. Rather than conflict, we instead suggest that distinctive aspects of HTT copy number variation and sequence diversity largely reflect telomere instability, with HTT insertions being lost at much higher rates than other TEs elsewhere in the genome. We extend previous observations that telomere deletions occur at a high rate, and surprisingly discover that more than one-third do not appear to have been healed with an HTT insertion. We also report that some HTT families may be preferentially activated by the erosion of whole telomeres, implying the existence of HTT-specific host control mechanisms. We further suggest that the persistent telomere localization of HTTs may reflect a highly successful evolutionary strategy that trades away a stable insertion site in order to have reduced impact on the host genome. We propose that HTT evolution is driven by multiple processes, with niche specialization and telomere instability being previously underappreciated and likely predominant.
Collapse
Affiliation(s)
- Michael P McGurk
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Anne-Marie Dion-Côté
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
A New Portrait of Constitutive Heterochromatin: Lessons from Drosophila melanogaster. Trends Genet 2019; 35:615-631. [PMID: 31320181 DOI: 10.1016/j.tig.2019.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Constitutive heterochromatin represents a significant portion of eukaryotic genomes, but its functions still need to be elucidated. Even in the most updated genetics and molecular biology textbooks, constitutive heterochromatin is portrayed mainly as the 'silent' component of eukaryotic genomes. However, there may be more complexity to the relationship between heterochromatin and gene expression. In the fruit fly Drosophila melanogaster, a model for heterochromatin studies, about one-third of the genome is heterochromatic and is concentrated in the centric, pericentric, and telomeric regions of the chromosomes. Recent findings indicate that hundreds of D. melanogaster genes can 'live and work' properly within constitutive heterochromatin. The genomic size of these genes is generally larger than that of euchromatic genes and together they account for a significant fraction of the entire constitutive heterochromatin. Thus, this peculiar genome component in spite its ability to induce silencing, has in fact the means for being quite dynamic. A major scope of this review is to revisit the 'dogma of silent heterochromatin'.
Collapse
|
7
|
Théron E, Maupetit-Mehouas S, Pouchin P, Baudet L, Brasset E, Vaury C. The interplay between the Argonaute proteins Piwi and Aub within Drosophila germarium is critical for oogenesis, piRNA biogenesis and TE silencing. Nucleic Acids Res 2019; 46:10052-10065. [PMID: 30113668 PMCID: PMC6212714 DOI: 10.1093/nar/gky695] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/20/2018] [Indexed: 11/28/2022] Open
Abstract
Transposable elements (TEs) have invaded most genomes and constitute up to 50% of the human genome. Machinery based on small non-coding piRNAs has evolved to inhibit their expression at the transcriptional and post-transcriptional levels. Surprisingly, this machinery is weakened during specific windows of time in mice, flies or plants, allowing the expression of TEs in germline cells. The function of this de-repression remains unknown. In Drosophila, we have previously shown that this developmental window is characterized by a reduction of Piwi expression in dividing germ cells. Here, we show that the unique knock-down of Aub in these cells leads to female sterility. It correlates with defects in piRNA amplification, an increased Piwi expression and an increased silencing of transcriptionally silenced TEs. These defects are similar to those observed when Aub is depleted in the whole germline which underlies the crucial role of this developmental window for both oogenesis and TE silencing. We further show that, with age, some fertility is recovered which is concomitant to a decrease of Piwi and TE silencing. These data pinpoint the Pilp as a tremendously important step for female fertility and genome stability. They further show that such a restricted developmental niche of germ cells may sense environmental changes, such as aging, to protect the germline all along the life.
Collapse
Affiliation(s)
- Emmanuelle Théron
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| | - Stéphanie Maupetit-Mehouas
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| | - Pierre Pouchin
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| | - Laura Baudet
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| | - Emilie Brasset
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| | - Chantal Vaury
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
Blumenstiel JP. Birth, School, Work, Death, and Resurrection: The Life Stages and Dynamics of Transposable Element Proliferation. Genes (Basel) 2019; 10:genes10050336. [PMID: 31058854 PMCID: PMC6562965 DOI: 10.3390/genes10050336] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Transposable elements (TEs) can be maintained in sexually reproducing species even if they are harmful. However, the evolutionary strategies that TEs employ during proliferation can modulate their impact. In this review, I outline the different life stages of a TE lineage, from birth to proliferation to extinction. Through their interactions with the host, TEs can exploit diverse strategies that range from long-term coexistence to recurrent movement across species boundaries by horizontal transfer. TEs can also engage in a poorly understood phenomenon of TE resurrection, where TE lineages can apparently go extinct, only to proliferate again. By determining how this is possible, we may obtain new insights into the evolutionary dynamics of TEs and how they shape the genomes of their hosts.
Collapse
Affiliation(s)
- Justin P Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66049, USA.
| |
Collapse
|
9
|
Abstract
Transposable elements (TEs) are low-complexity elements (e.g., LINEs, SINEs, SVAs, and HERVs) that make up to two-thirds of the human genome. There is mounting evidence that TEs play an essential role in molecular functions that influence genomic plasticity and gene expression regulation. With the advent of next-generation sequencing approaches, our understanding of the relationship between TEs and psychiatric disorders will greatly improve. In this chapter, the Authors comprehensively summarize the state-of the-art of TE research in animal models and humans supporting a framework in which TEs play a functional role in mechanisms affecting a variety of behaviors, including neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Finally, the Authors discuss recent therapeutic applications raised from the increasing experimental evidence on TE functional mechanisms.
Collapse
Affiliation(s)
- G Guffanti
- McLean Hospital - Harvard Medical School, Belmont, MA, USA.
| | - A Bartlett
- Department of Psychology, University of Massachusetts, Boston, Boston, MA, USA
| | - P DeCrescenzo
- McLean Hospital - Harvard Medical School, Belmont, MA, USA
| | - F Macciardi
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - R Hunter
- Department of Psychology, University of Massachusetts, Boston, Boston, MA, USA
| |
Collapse
|
10
|
Serrato-Capuchina A, Matute DR. The Role of Transposable Elements in Speciation. Genes (Basel) 2018; 9:E254. [PMID: 29762547 PMCID: PMC5977194 DOI: 10.3390/genes9050254] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 01/20/2023] Open
Abstract
Understanding the phenotypic and molecular mechanisms that contribute to genetic diversity between and within species is fundamental in studying the evolution of species. In particular, identifying the interspecific differences that lead to the reduction or even cessation of gene flow between nascent species is one of the main goals of speciation genetic research. Transposable elements (TEs) are DNA sequences with the ability to move within genomes. TEs are ubiquitous throughout eukaryotic genomes and have been shown to alter regulatory networks, gene expression, and to rearrange genomes as a result of their transposition. However, no systematic effort has evaluated the role of TEs in speciation. We compiled the evidence for TEs as potential causes of reproductive isolation across a diversity of taxa. We find that TEs are often associated with hybrid defects that might preclude the fusion between species, but that the involvement of TEs in other barriers to gene flow different from postzygotic isolation is still relatively unknown. Finally, we list a series of guides and research avenues to disentangle the effects of TEs on the origin of new species.
Collapse
Affiliation(s)
- Antonio Serrato-Capuchina
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| | - Daniel R Matute
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| |
Collapse
|
11
|
Clémot M, Molla-Herman A, Mathieu J, Huynh JR, Dostatni N. The replicative histone chaperone CAF-1 is essential for the maintenance of identity and genome integrity in adult stem cells. Development 2018; 145:dev.161190. [DOI: 10.1242/dev.161190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/20/2018] [Indexed: 12/14/2022]
Abstract
Chromatin packaging and modifications are important to define the identity of stem cells. How chromatin properties are retained over multiple cycles of stem cell replication, while generating differentiating progeny at the same time, remains a challenging question. The chromatin assembly factor CAF-1 is a conserved histone chaperone, which assembles histones H3 and H4 onto newly synthesized DNA during replication and repair. Here, we investigated the role of CAF-1 in the maintenance of germline stem cells (GSCs) in Drosophila ovaries. We depleted P180, the large subunit of CAF-1, in germ cells and found that it was required in GSCs to maintain their identity. In the absence of P180, GSCs still harbor stem cell properties but concomitantly express markers of differentiation. In addition, P180-depleted germ cells exhibit elevated levels of DNA damage and de-repression of the transposable I-element. These DNA damages activate p53- and Chk2-dependent checkpoints pathways, leading to cell death and female sterility. Altogether, our work demonstrates that chromatin dynamics mediated by CAF-1 play an important role in both the regulation of stem cell identity and genome integrity.
Collapse
Affiliation(s)
- Marie Clémot
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France
| | - Anahi Molla-Herman
- Institut Curie, PSL Research University, CNRS, Inserm, Sorbonne Université, Genetics and Developmental Biology, Paris, France
| | - Juliette Mathieu
- Institut Curie, PSL Research University, CNRS, Inserm, Sorbonne Université, Genetics and Developmental Biology, Paris, France
| | - Jean-René Huynh
- Institut Curie, PSL Research University, CNRS, Inserm, Sorbonne Université, Genetics and Developmental Biology, Paris, France
| | - Nathalie Dostatni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France
| |
Collapse
|
12
|
Kofler R, Nolte V, Schlötterer C. Tempo and Mode of Transposable Element Activity in Drosophila. PLoS Genet 2015; 11:e1005406. [PMID: 26186437 PMCID: PMC4505896 DOI: 10.1371/journal.pgen.1005406] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/30/2015] [Indexed: 11/18/2022] Open
Abstract
The evolutionary dynamics of transposable element (TE) insertions have been of continued interest since TE activity has important implications for genome evolution and adaptation. Here, we infer the transposition dynamics of TEs by comparing their abundance in natural D. melanogaster and D. simulans populations. Sequencing pools of more than 550 South African flies to at least 320-fold coverage, we determined the genome wide TE insertion frequencies in both species. We suggest that the predominance of low frequency insertions in the two species (>80% of the insertions have a frequency <0.2) is probably due to a high activity of more than 58 families in both species. We provide evidence for 50% of the TE families having temporally heterogenous transposition rates with different TE families being affected in the two species. While in D. melanogaster retrotransposons were more active, DNA transposons showed higher activity levels in D. simulans. Moreover, we suggest that LTR insertions are mostly of recent origin in both species, while DNA and non-LTR insertions are older and more frequently vertically transmitted since the split of D. melanogaster and D. simulans. We propose that the high TE activity is of recent origin in both species and a consequence of the demographic history, with habitat expansion triggering a period of rapid evolution.
Collapse
Affiliation(s)
- Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
| | | |
Collapse
|
13
|
Divergence of Drosophila melanogaster repeatomes in response to a sharp microclimate contrast in Evolution Canyon, Israel. Proc Natl Acad Sci U S A 2014; 111:10630-5. [PMID: 25006263 DOI: 10.1073/pnas.1410372111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Repeat sequences, especially mobile elements, make up large portions of most eukaryotic genomes and provide enormous, albeit commonly underappreciated, evolutionary potential. We analyzed repeatomes of Drosophila melanogaster that have been diverging in response to a microclimate contrast in Evolution Canyon (Mount Carmel, Israel), a natural evolutionary laboratory with two abutting slopes at an average distance of only 200 m, which pose a constant ecological challenge to their local biotas. Flies inhabiting the colder and more humid north-facing slope carried about 6% more transposable elements than those from the hot and dry south-facing slope, in parallel to a suite of other genetic and phenotypic differences between the two populations. Nearly 50% of all mobile element insertions were slope unique, with many of them disrupting coding sequences of genes critical for cognition, olfaction, and thermotolerance, consistent with the observed patterns of thermotolerance differences and assortative mating.
Collapse
|
14
|
Carnelossi EAG, Lerat E, Henri H, Martinez S, Carareto CMA, Vieira C. Specific activation of an I-like element in Drosophila interspecific hybrids. Genome Biol Evol 2014; 6:1806-17. [PMID: 24966182 PMCID: PMC4122939 DOI: 10.1093/gbe/evu141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2014] [Indexed: 12/29/2022] Open
Abstract
The non-long terminal repeat (LTR) retrotransposon I, which belongs to the I superfamily of non-LTR retrotransposons, is well known in Drosophila because it transposes at a high frequency in the female germline cells in I-R hybrid dysgenic crosses of Drosophila melanogaster. Here, we report the occurrence and the upregulation of an I-like element in the hybrids of two sister species belonging to the repleta group of the genus Drosophila, D. mojavensis, and D. arizonae. These two species display variable degrees of pre- and postzygotic isolation, depending on the geographic origin of the strains. We took advantage of these features to explore the transposable element (TE) dynamics in interspecific crosses. We fully characterized the copies of this TE family in the D. mojavensis genome and identified at least one complete copy. We showed that this element is transcriptionally active in the ovaries and testes of both species and in their hybrids. Moreover, we showed that this element is upregulated in hybrid males, which could be associated with the male-sterile phenotype.
Collapse
Affiliation(s)
- Elias A G Carnelossi
- UNESP-Universidade Estadual Paulista, Laboratório de Evolução Molecular, Departamento de Biologia, São José do Rio Preto, São Paulo, BrazilUniversité de Lyon, Université Lyon 1, CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne
| | - Emmanuelle Lerat
- Université de Lyon, Université Lyon 1, CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne
| | - Hélène Henri
- Université de Lyon, Université Lyon 1, CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne
| | - Sonia Martinez
- Université de Lyon, Université Lyon 1, CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne
| | - Claudia M A Carareto
- UNESP-Universidade Estadual Paulista, Laboratório de Evolução Molecular, Departamento de Biologia, São José do Rio Preto, São Paulo, Brazil
| | - Cristina Vieira
- Université de Lyon, Université Lyon 1, CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, VilleurbanneInstitut Universitaire de France, Paris, France
| |
Collapse
|
15
|
Grentzinger T, Armenise C, Brun C, Mugat B, Serrano V, Pelisson A, Chambeyron S. piRNA-mediated transgenerational inheritance of an acquired trait. Genome Res 2012; 22:1877-88. [PMID: 22555593 PMCID: PMC3460183 DOI: 10.1101/gr.136614.111] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The maintenance of genome integrity is an essential trait to the successful transmission of genetic information. In animal germ cells, piRNAs guide PIWI proteins to silence transposable elements (TEs) in order to maintain genome integrity. In insects, most TE silencing in the germline is achieved by secondary piRNAs that are produced by a feed-forward loop (the ping-pong cycle), which requires the piRNA-directed cleavage of two types of RNAs: mRNAs of functional euchromatic TEs and heterochromatic transcripts that contain defective TE sequences. The first cleavage that initiates such an amplification loop remains poorly understood. Taking advantage of the existence of strains that are devoid of functional copies of the LINE-like I-element, we report here that in such Drosophila ovaries, the initiation of a ping-pong cycle is exclusively achieved by secondary I-element piRNAs that are produced in the ovary and deposited in the embryonic germline. This unusual secondary piRNA biogenesis, detected in the absence of functional I-element copies, results from the processing of sense and antisense transcripts of several different defective I-element. Once acquired, for instance after ancestor aging, this capacity to produce heterochromatic-only secondary piRNAs is partially transmitted through generations via maternal piRNAs. Furthermore, such piRNAs acting as ping-pong initiators in a chromatin-independent manner confer to the progeny a high capacity to repress the I-element mobility. Our study explains, at the molecular level, the basis for epigenetic memory of maternal immunity that protects females from hybrid dysgenesis caused by transposition of paternally inherited functional I-element.
Collapse
|
16
|
Granzotto A, Lopes FR, Vieira C, Carareto CMA. Vertical inheritance and bursts of transposition have shaped the evolution of the BS non-LTR retrotransposon in Drosophila. Mol Genet Genomics 2011; 286:57-66. [DOI: 10.1007/s00438-011-0629-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 05/10/2011] [Indexed: 01/13/2023]
|
17
|
Moschetti R, Dimitri P, Caizzi R, Junakovic N. Genomic instability of I elements of Drosophila melanogaster in absence of dysgenic crosses. PLoS One 2010; 5. [PMID: 20957225 PMCID: PMC2949383 DOI: 10.1371/journal.pone.0013142] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 08/10/2010] [Indexed: 11/18/2022] Open
Abstract
Retrotranspostion of I factors in the female germline of Drosophila melanogaster is responsible for the so called I-R hybrid dysgenesis, a phenomenon that produces a broad spectrum of genetic abnormalities including reduced fertility, increased frequency of mutations and chromosome loss. Transposition of I factor depends on cellular conditions that are established in the oocytes of the reactive females and transmitted to their daughters. The so-called reactivity is a cellular state that may exhibit variable levels of expression and represents a permissive condition for I transposition at high levels. Defective I elements have been proposed to be the genetic determinants of reactivity and, through their differential expression, to modulate transposition of active copies in somatic and/or germ line cells. Recently, control of transposable element activity in the germ line has been found to depend on pi-RNAs, small repressive RNAs interacting with Piwi-family proteins and derived from larger transposable elements (TE)-derived primary transcripts. In particular, maternally transmitted I-element piRNAs originating from the 42AB region of polytene chromosomes were found to be involved in control of I element mobility. In the present work, we use a combination of cytological and molecular approaches to study the activity of I elements in three sublines of the inducer y; cn bw; sp isogenic strain and in dysgenic and non-dysgenic genetic backgrounds. Overall, the results of FISH and Southern blotting experiments clearly show that I elements are highly unstable in the Montpellier subline in the absence of classical dysgenic conditions. Such instability appears to be correlated to the amount of 5' and 3' I element transcripts detected by quantitative and real-time RT-PCR. The results of this study indicate that I elements can be highly active in the absence of a dysgenic crosses. Moreover, in the light of our results caution should be taken to assimilate the genomic annotation data on transposable elements to all y; cn bw sp sublines.
Collapse
Affiliation(s)
- Roberta Moschetti
- Dipartimento di Genetica e Microbiologia, Università di Bari “Aldo Moro”, Bari, Italy
| | - Patrizio Dimitri
- Dipartimento di Genetica e Biologia Molecolare, Charles Darwin, Roma, Italy
- * E-mail:
| | - Ruggiero Caizzi
- Dipartimento di Genetica e Microbiologia, Università di Bari “Aldo Moro”, Bari, Italy
| | | |
Collapse
|
18
|
Díaz-González J, Domínguez A, Albornoz J. Genomic distribution of retrotransposons 297, 1731, copia, mdg1 and roo in the Drosophila melanogaster species subgroup. Genetica 2009; 138:579-86. [PMID: 20012466 DOI: 10.1007/s10709-009-9430-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
Abstract
The intragenomic distribution of five retrotransposon families (297, 1731, copia, mdg1 and roo) in the species of the melanogaster complex was studied by comparing results of the Southern blotting technique in males and females with those of in situ hybridization. The degree of structural polymorphism of each family in the different species was also investigated by restriction enzyme analysis. It was found that genomic distribution is a trait that depends on the family and species. The distribution of roo is mainly euchromatic in the four species and 1731 is heterochromatic, but the distribution of families 297, copia and mdg1 is markedly different in the melanogaster and simulans clades. These families were mainly euchromatic in D. melanogaster but heterochromatic in its sibling species. In the simulans clade most copia and mdg1 elements are located on chromosome Y. Differences in genomic distribution are unrelated with structural conservation. The relation of intragenomic distribution to phylogeny, transpositional activity and the role of the host genome are discussed.
Collapse
Affiliation(s)
- Julia Díaz-González
- Area de Genética, Departamento de Biología Funcional, Universidad de Oviedo, 33071, Oviedo, Spain
| | | | | |
Collapse
|
19
|
Rebollo R, Lerat E, Kleine LL, Biémont C, Vieira C. Losing helena: the extinction of a drosophila line-like element. BMC Genomics 2008; 9:149. [PMID: 18377637 PMCID: PMC2330053 DOI: 10.1186/1471-2164-9-149] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 03/31/2008] [Indexed: 11/25/2022] Open
Abstract
Background Transposable elements (TEs) are major players in evolution. We know that they play an essential role in genome size determination, but we still have an incomplete understanding of the processes involved in their amplification and elimination from genomes and populations. Taking advantage of differences in the amount and distribution of the Long Interspersed Nuclear Element (LINE), helena in Drosophila melanogaster and D. simulans, we analyzed the DNA sequences of copies of this element in samples of various natural populations of these two species. Results In situ hybridization experiments revealed that helena is absent from the chromosome arms of D. melanogaster, while it is present in the chromosome arms of D. simulans, which is an unusual feature for a TE in these species. Molecular analyses showed that the helena sequences detected in D. melanogaster were all deleted copies, which diverged from the canonical element. Natural populations of D. simulans have several copies, a few of them full-length, but most of them internally deleted. Conclusion Overall, our data suggest that a mechanism that induces internal deletions in the helena sequences is active in the D. simulans genome.
Collapse
Affiliation(s)
- Rita Rebollo
- Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne F-69622, France.
| | | | | | | | | |
Collapse
|
20
|
Subramanian RA, Arensburger P, Atkinson PW, O'Brochta DA. Transposable element dynamics of the hAT element Herves in the human malaria vector Anopheles gambiae s.s. Genetics 2007; 176:2477-87. [PMID: 17603116 PMCID: PMC1950647 DOI: 10.1534/genetics.107.071811] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposable elements are being considered as genetic drive agents for introducing phenotype-altering genes into populations of vectors of human disease. The dynamics of endogenous elements will assist in predicting the behavior of introduced elements. Transposable element display was used to estimate the site-occupancy frequency distribution of Herves in six populations of Anopheles gambiae s.s. The site-occupancy distribution data suggest that the element has been recently active within the sampled populations. All 218 individuals sampled contained at least one copy of Herves with a mean of 3.6 elements per diploid genome. No significant differences in copy number were observed among populations. Nucleotide polymorphism within the element was high (pi = 0.0079 in noncoding sequences and 0.0046 in coding sequences) relative to that observed in some of the more well-studied elements in Drosophila melanogaster. In total, 33 distinct forms of Herves were found on the basis of the sequence of the first 528 bp of the transposase open reading frame. Only two forms were found in all six study populations. Although Herves elements in An. gambiae are quite diverse, 85% of the individuals examined had evidence of complete forms of the element. Evidence was found for the lateral transfer of Herves from an unknown source into the An. gambiae lineage prior to the diversification of the An. gambiae species complex. The characteristics of Herves in An. gambiae are somewhat unlike those of P elements in D. melanogaster.
Collapse
Affiliation(s)
- Ramanand A Subramanian
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | | | | | |
Collapse
|
21
|
O'Brochta DA, Subramanian RA, Orsetti J, Peckham E, Nolan N, Arensburger P, Atkinson PW, Charlwood DJ. hAT element population genetics in Anopheles gambiae s.l. in Mozambique. Genetica 2006; 127:185-98. [PMID: 16850223 DOI: 10.1007/s10709-005-3535-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 09/26/2005] [Indexed: 10/24/2022]
Abstract
Herves is a functional Class II transposable element in Anopheles gambiae belonging to the hAT superfamily of elements. Class II transposable elements are used as gene vectors in this species and are also being considered as genetic drive agents for spreading desirable genes through natural populations as part of an effort to control malaria transmission. In this study, Herves was investigated in populations of Anopheles gambiae s.s., Anopheles arabiensis and Anopheles merus in Mozambique over a period of 2 years. The copy number of Herves within these three species was approximately 5 copies per diploid genome and did not differ among species or between years. Based on the insertion-site occupancy-frequency distribution and existing models of transposable element dynamics, Herves appears to be transpositionally active currently or, at least recently, in all species tested. Ninety-five percent of the individuals within the populations of the three species tested contained intact elements with complete Herves transposase genes and this is consistent with the idea that these elements are currently active.
Collapse
Affiliation(s)
- David A O'Brochta
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Building 036/Room 5115, College Park, MD 20742, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Fablet M, McDonald JF, Biémont C, Vieira C. Ongoing loss of the tirant transposable element in natural populations of Drosophila simulans. Gene 2006; 375:54-62. [PMID: 16626897 DOI: 10.1016/j.gene.2006.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 01/16/2006] [Accepted: 02/08/2006] [Indexed: 10/24/2022]
Abstract
Tirant is a long terminal repeat (LTR) retrotransposon with an average of 11 insertion sites on the chromosome arms of Drosophila melanogaster flies collected from natural populations worldwide. In the sibling species Drosophila simulans, tirant is found only in African populations, which harbor a few insertion sites (1 to 5) on the chromosome arms, although some tirant sequences are present in the heterochromatin of most populations. This distribution in D. simulans reflects either the recent genomic invasion of African populations by a new variant of tirant, or a loss of tirant from the entire species apart from some sequence relics still present in Africa. In an attempt to clarify the situation, we focused on the LTR-UTR region of tirant copies from various populations of both D. melanogaster and D. simulans. We found two distinct types of regulatory region: one type was present in both D. melanogaster and D. simulans, and the other was present only in D. simulans. Copies of this latter type of tirant were transcriptionally inactive in gonads. Here we propose that the present day distribution of tirant in D. simulans populations reflects an ancient invasion of D. simulans by tirant copies followed by the loss of active copies from most populations, apart from the African ones, suggesting that this loss is still ongoing in this species.
Collapse
Affiliation(s)
- Marie Fablet
- UMR CNRS 5558, Biométrie et Biologie Evolutive, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France
| | | | | | | |
Collapse
|
23
|
Junakovic N, Fortunati D, Soriano S. Fixed and unstable I-related transposable elements in heterochromatin of Drosophila melanogaster. Cytogenet Genome Res 2005; 110:173-80. [PMID: 16093670 DOI: 10.1159/000084950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 01/02/2004] [Indexed: 11/19/2022] Open
Abstract
Transposable elements are disproportionately abundant in the heterochromatin of Drosophila melanogaster. Among the forces contributing to this bias in genomic distribution, fixation due to positive selection has been put forward. We have studied I-related elements which are located in pericentromeric heterochromatin and are believed to have a role in the control of active I elements. Flies straight from the wild have been studied where fixed elements are expected to emerge clearly over the highly polymorphic background in the genomic distribution of transposable elements. The results show that some restriction fragments due to I-related elements are conserved in size and are present in all individuals tested, consistent with a selective pressure for a role. Other fragments are polymorphic in presence/absence and intensity in individuals from the wild but appear homogeneous in laboratory stocks. Although the significance of this type of instability is unclear, the finding that these polymorphic bands are recurrent in populations from distant geographical locations is also suggestive of a selective pressure for a role.
Collapse
Affiliation(s)
- N Junakovic
- Istituto di Biologia e Patologia Molecolari CNR, Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, Rome, Italy.
| | | | | |
Collapse
|
24
|
Chambeyron S, Bucheton A. I elements in Drosophila: in vivo retrotransposition and regulation. Cytogenet Genome Res 2005; 110:215-22. [PMID: 16093675 DOI: 10.1159/000084955] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 07/19/2004] [Indexed: 11/19/2022] Open
Affiliation(s)
- S Chambeyron
- Institut de Génétique Humaine, CNRS, Montpellier, France
| | | |
Collapse
|
25
|
Abstract
Teleost fish, which roughly make up half of the extant vertebrate species, exhibit an amazing level of biodiversity affecting their morphology, ecology and behaviour as well as many other aspects of their biology. This huge variability makes fish extremely attractive for the study of many biological questions, particularly of those related to evolution. New insights gained from different teleost species and sequencing projects have recently revealed several peculiar features of fish genomes that might have played a role in fish evolution and speciation. There is now substantial evidence that a round of tetraploidization/rediploidization has taken place during the early evolution of the ray-finned fish lineage, and that hundreds of duplicate pairs generated by this event have been maintained over hundreds of millions of years of evolution. Differential loss or subfunction partitioning of such gene duplicates might have been involved in the generation of fish variability. In contrast to mammalian genomes, teleost genomes also contain multiple families of active transposable elements, which might have played a role in speciation by affecting hybrid sterility and viability. Finally, the amazing diversity of sex determination systems and the plasticity of sex chromosomes observed in teleost might have been involved in both pre- and postmating reproductive isolation. Comparison of data generated by current and future genome projects as well as complementary studies in other species will allow one to approach the molecular and evolutionary mechanisms underlying genome diversity in fish, and will certainly significantly contribute to our understanding of gene evolution and function in humans and other vertebrates.
Collapse
Affiliation(s)
- J-N Volff
- BioFuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
26
|
Robin S, Chambeyron S, Bucheton A, Busseau I. Gene silencing triggered by non-LTR retrotransposons in the female germline of Drosophila melanogaster. Genetics 2003; 164:521-31. [PMID: 12807773 PMCID: PMC1462600 DOI: 10.1093/genetics/164.2.521] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Several studies have recently shown that the activity of some eukaryotic transposable elements is sensitive to the presence of homologous transgenes, suggesting the involvement of homology-dependent gene-silencing mechanisms in their regulation. Here we provide data indicating that two non-LTR retrotransposons of Drosophila melanogaster are themselves natural triggers of homology-dependent gene silencing. We show that, in the female germline of D. melanogaster, fragments from the R1 or from the I retrotransposons can mediate silencing of chimeric transcription units into which they are inserted. This silencing is probably mediated by sequence identity with endogenous copies of the retrotransposons because it does not occur with a fragment from the divergent R1 elements of Bombyx mori, and, when a fragment of I is used, it occurs only in females containing functional copies of the I element. This silencing is not accompanied by cosuppression of the endogenous gene homologous to the chimeric transcription unit, which contrasts to some other silencing mechanisms in Drosophila. These observations suggest that in the female germline of D. melanogaster the R1 and I retrotransposons may self-regulate their own activity and their copy number by triggering homology-dependent gene silencing.
Collapse
Affiliation(s)
- Stéphanie Robin
- Institut de Génétique Humaine, CNRS, 34396 Montpellier, Cedex 5, France
| | | | | | | |
Collapse
|
27
|
Biémont C, Nardon C, Deceliere G, Lepetit D, Lœvenbruck C, Vieira C. WORLDWIDE DISTRIBUTION OF TRANSPOSABLE ELEMENT COPY NUMBER IN NATURAL POPULATIONS OF DROSOPHILA SIMULANS. Evolution 2003. [DOI: 10.1554/0014-3820(2003)057[0159:wdotec]2.0.co;2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Biémont C, Nardon C, Deceliere G, Lepetit D, Loevenbruck C, Vieira C. Worldwide distribution of transposable element copy number in natural populations of Drosophila simulans. Evolution 2003; 57:159-67. [PMID: 12643577 DOI: 10.1111/j.0014-3820.2003.tb00225.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transposable elements (TEs), which promote various kinds of mutations, constitute a large fraction of the genome. How they invade natural populations and species is therefore of fundamental importance for understanding the dynamics of genetic diversity and genome composition. On the basis of 85 samples of natural populations of Drosophila simulans, we report the distributions of the genome insertion site numbers of nine TEs that were chosen because they have a low average number of sites. Most populations were found to have 0-3 insertion sites, but some of them had a significantly higher number of sites for a given TE. The populations located in regions outside Africa had the highest number of sites for all elements except HMS Beagle and Coral, suggesting a recent increase in the activity of some TEs associated with the colonization patterns of Drosophila simulans. The element Tirant had a very distinctive pattern of distribution: it was identified mainly in populations from East Africa and some islands in the Indian Ocean, and its insertion site number was low in all these populations. The data suggest that the genome of the entire species of Drosophila simulans may be being invaded by TEs from populations in which they are present in high copy number.
Collapse
Affiliation(s)
- Christian Biémont
- Laboratoire de Biométrie et Biologie Evolutive, UMR Centre National de la Recherche Scientifique 5558, Université Lyon 1, 69622 Villeurbanne Cedex, France.
| | | | | | | | | | | |
Collapse
|
29
|
Biémont C, Vieira C, Borie N. Éléments transposables et évolution du génome d’une espèce invasive: le cas de Drosophila simulans. Genet Sel Evol 2001. [DOI: 10.1186/bf03500876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
30
|
Galindo MI, Bigot Y, Sánchez MD, Periquet G, Pascual L. Sequences homologous to the hobo transposable element in E strains of Drosophila melanogaster. Mol Biol Evol 2001; 18:1532-9. [PMID: 11470844 DOI: 10.1093/oxfordjournals.molbev.a003939] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hobo is one of the three Drosophila melanogaster transposable elements, together with the P and I elements, that seem to have recently invaded the genome of this species. Surveys of the presence of hobo in strains from different geographical and temporal origins have shown that recently collected strains contain complete and deleted elements with high sequence similarity (H strains), but old strains lack hobo elements (E strains). Besides the canonical hobo sequences, both H and E strains show other poorly known hobo-related sequences. In the present work, we analyze the presence, cytogenetic location, and structure of some of these sequences in E strains of D. melanogaster. By in situ hybridization, we found that euchromatic hobo-related sequences were in fixed positions in all six E strains analyzed: 38C in the 2L arm; 42B and 55A in the 2R arm; 79E and 80B in the 3L arm; and 82C, 84C, and 84D in the 3R arm. Sequence comparison shows that some of the hobo-related sequences from Oregon-R and iso-1 strains are similar to the canonical hobo element, but their analysis reveals that they are substantially diverged and rearranged and cannot code for a functional transposase. Our results suggest that these ubiquitous hobo-homologous sequences are immobile and are distantly related to the modern hobo elements from D. melanogaster.
Collapse
Affiliation(s)
- M I Galindo
- Departament de Genètica, Universitat de València, Valencia, Spain
| | | | | | | | | |
Collapse
|
31
|
Busseau I, Berezikov E, Bucheton A. Identification of Waldo-A and Waldo-B, two closely related non-LTR retrotransposons in Drosophila. Mol Biol Evol 2001; 18:196-205. [PMID: 11158378 DOI: 10.1093/oxfordjournals.molbev.a003793] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have identified two novel, closely related subfamilies of non-long-terminal-repeat (non-LTR) retrotransposons in Drosophila melanogaster, the Waldo-A and Waldo-B subfamilies, that are in the same lineage as site-specific LTR retrotransposons of the R1 clade. Both contain potentially active copies with two large open reading frames, having coding capacities for a nucleoprotein as well as endonuclease and reverse transcriptase activities. Many copies are truncated at the 5' end, and most are surrounded by target site duplications of variable lengths. Elements of both subfamilies have a nonrandom distribution in the genome, often being inserted within or very close to (CA)(n) arrays. At the DNA level, the longest elements of Waldo-A and Waldo-B are 69% identical on their entire length, except for the 5' untranslated regions, which have a mosaic organization, suggesting that one arose from the other following new promoter acquisition. This event occurred before the speciation of the D. melanogaster subgroup of species, since both Waldo-A and Waldo-B coexist in other species of this subgroup.
Collapse
Affiliation(s)
- I Busseau
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, 141 rue de la Cardonille, 34396 Montpellier cedex 05, France.
| | | | | |
Collapse
|
32
|
Gauthier E, Tatout C, Pinon H. Artificial and epigenetic regulation of the I factor, a nonviral retrotransposon of Drosophila melanogaster. Genetics 2000; 156:1867-78. [PMID: 11102380 PMCID: PMC1461392 DOI: 10.1093/genetics/156.4.1867] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The I factor (IF) is a LINE-like transposable element from Drosophila melanogaster. IF is silenced in most strains, but under special circumstances its transposition can be induced and correlates with the appearance of a syndrome of female sterility called hybrid dysgenesis. To elucidate the relationship between IF expression and female sterility, different transgenic antisense and/or sense RNAs homologous to the IF ORF1 have been expressed. Increasing the transgene copy number decreases both the expression of an IF-lacZ fusion and the intensity of the female sterile phenotype, demonstrating that IF expression is correlated with sterility. Some transgenes, however, exert their repressive abilities not only through a copy number-dependent zygotic effect, but also through additional maternal and paternal effects that may be induced at the DNA and/or RNA level. Properties of the maternal effect have been detailed: (1) it represses hybrid dysgenesis more efficiently than does the paternal effect; (2) its efficacy increases with both the transgene copy number and the aging of sterile females; (3) it accumulates slowly over generations after the transgene has been established; and (4) it is maintained for at least two generations after transgene removal. Conversely, the paternal effect increases only with female aging. The last two properties of the maternal effect and the genuine existence of a paternal effect argue for the occurrence, in the IF regulation pathway, of a cellular memory transmitted through mitosis, as well as through male and female meiosis, and akin to epigenetic phenomena.
Collapse
Affiliation(s)
- E Gauthier
- Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard, F-69622 Villeurbanne Cedex, France
| | | | | |
Collapse
|
33
|
Berezikov E, Bucheton A, Busseau I. A search for reverse transcriptase-coding sequences reveals new non-LTR retrotransposons in the genome of Drosophila melanogaster. Genome Biol 2000; 1:RESEARCH0012. [PMID: 11178266 PMCID: PMC16141 DOI: 10.1186/gb-2000-1-6-research0012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2000] [Revised: 10/13/2000] [Accepted: 10/26/2000] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Non-long terminal repeat (non-LTR) retrotransposons are eukaryotic mobile genetic elements that transpose by reverse transcription of an RNA intermediate. We have performed a systematic search for sequences matching the characteristic reverse transcriptase domain of non-LTR retrotransposons in the sequenced regions of the Drosophila melanogaster genome. RESULTS In addition to previously characterized BS, Doc, F, G, I and Jockey elements, we have identified new non-LTR retrotransposons: Waldo, You and JuanDm. Waldo elements are related to mosquito RTI elements. You to the Drosophila I factor, and JuanDm to mosquito Juan-A and Juan-C. Interestingly, all JuanDm elements are highly homogeneous in sequence, suggesting that they are recent components of the Drosophila genome. CONCLUSIONS The genome of D. melanogaster contains at least ten families of non-site-specific non-LTR retrotransposons representing three distinct clades. Many of these families contain potentially active members. Fine evolutionary analyses must await the more accurate sequences that are expected in the next future.
Collapse
Affiliation(s)
- Eugene Berezikov
- Institute of Cytology and Genetics, Prospect Lavrentjeva 10, Novosibirsk 630090, Russia
| | - Alain Bucheton
- Institut de Génétique Humaine, CNRS, rue de la Cardonille, Montpellier cedex 5, France
| | - Isabelle Busseau
- Institut de Génétique Humaine, CNRS, rue de la Cardonille, Montpellier cedex 5, France
| |
Collapse
|
34
|
Cizeron G, Biémont C. Polymorphism in structure of the retrotransposable element 412 in Drosophila simulans and D. melanogaster populations. Gene 1999; 232:183-90. [PMID: 10352229 DOI: 10.1016/s0378-1119(99)00126-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The structure of the 412 retrotransposable element was investigated in various natural populations of D. melanogaster and D. simulans by a restriction enzyme analysis. We show that although the canonical structure of the 412 element was the same in both species, a high structural polymorphism existed with various rearranged elements. A 412 family was thus composed of heterogeneous copies of different sizes, with a large proportion of full-size copies. D. simulans had more rearranged copies than D. melanogaster, with some specific copies, such as a 5.6-kb BsrBI fragment, present in all populations of D. simulans. Full-size and rearranged copies were detected in both the euchromatin and the heterochromatin, with many rearranged copies in D. simulans, suggesting a recent mobilization of the 412 element in this species.
Collapse
Affiliation(s)
- G Cizeron
- Laboratoire de Biométrie, Génétique, Biologie des populations, UMR C.N.R.S. 5558, Université Lyon 1, 69622, Villeurbanne, France
| | | |
Collapse
|
35
|
Kanamori Y, Hayashi H, Yamamoto MT. Molecular identification of the active ninja retrotransposon and the inactive aurora element in Drosophila simulans and D. melanogaster. Genes Genet Syst 1998; 73:385-96. [PMID: 10333568 DOI: 10.1266/ggs.73.385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
How transposable elements evolve is a key facet in understanding of spontaneous mutation and genomic rearrangements in various organisms. One of the best ways to approach this question is to study a newly evolved transposable element whose presence is restricted to a specific population or strain. The retrotransposons ninja and aurora may provide insights into the process of their evolution, because of their contrasting characteristics, even though they show high sequence identity. The ninja retrotransposon was found in a Drosophila simulans strain in high copy number and is potent in transposition. On the other hand, aurora elements are distributed widely among the species belonging to the Drosophila melanogaster species complex, but are immobile at least in D. melanogaster. In order to distinguish the two closely resembled retrotransposons by molecular means, we determined and compared DNA sequence of the elements, and identified characteristic internal deletions and nucleotide substitutions in 5'-long terminal repeats (LTR). Analyses of the structure of ninja homologs and LTR sequences amplified from both genomic and cloned DNA revealed that the actively transposable ninja elements were present only in D. simulans strains, but inactive aurora elements exist in both D. melanogaster and D. simulans.
Collapse
Affiliation(s)
- Y Kanamori
- Department of Applied Biology, Kyoto Institute of Technology, Japan
| | | | | |
Collapse
|
36
|
Nuzhdin SV, Pasyukova EG, Morozova EA, Flavell AJ. Quantitative genetic analysis of copia retrotransposon activity in inbred Drosophila melanogaster lines. Genetics 1998; 150:755-66. [PMID: 9755206 PMCID: PMC1460341 DOI: 10.1093/genetics/150.2.755] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The rates of transcription and transposition of retrotransposons vary between lines of Drosophila melanogaster. We have studied the genetics of differences in copia retrotransposon activity by quantitative trait loci (QTL) mapping. Ninety-eight recombinant inbred lines were constructed from two parental lines exhibiting a 10-fold difference in copia transcript level and a 100-fold difference in transposition rate. The lines were scored for 126 molecular markers, copia transcript level, and rate of copia transposition. Transcript level correlated with copia copy number, and the difference in copia copy number between parental lines accounted for 45.1% of copia transcript-level difference. Most of the remaining difference was accounted for by two transcript-level QTL mapping to cytological positions 27B-30D and 50F-57C on the second chromosome, which accounted for 11.5 and 30.4%, respectively. copia transposition rate was controlled by interacting QTL mapping to the region 27B-48D on the second and 61A-65A and 97D-100A on the third chromosome. The genes controlling copia transcript level are thus not necessarily those involved in controlling copia transposition rate. Segregation of modifying genes, rather than mutations, might explain the variability in copia retrotransposon activity between lines.
Collapse
Affiliation(s)
- S V Nuzhdin
- Section of Evolution and Ecology, University of California, Davis, California 95616-5755, USA.
| | | | | | | |
Collapse
|
37
|
Busseau I, Malinsky S, Balakireva M, Chaboissier MC, Teninges D, Bucheton A. A genetically marked I element in Drosophila melanogaster can be mobilized when ORF2 is provided in trans. Genetics 1998; 148:267-75. [PMID: 9475738 PMCID: PMC1459780 DOI: 10.1093/genetics/148.1.267] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
I factors in Drosophila melanogaster are non-LTR retrotransposons similar to mammalian LINEs. They transpose at very high frequencies in the germ line of SF females resulting from crosses between reactive females, devoid of active I factors, and inducer males, containing active I factors. The vermilion marked IviP2 element was designed to allow easy phenotypical screening for retrotransposition events. It is deleted in ORF2 and therefore cannot produce reverse transcriptase. IviP2 can be mobilized at very low frequencies by actively transposing I factors in the germ line of SF females. This paper shows that IviP2 can be mobilized more efficiently in the germ line of strongly reactive females in the absence of active I factors, when it is trans-complemented by the product of ORF2 synthesized from the hsp70 heat-shock promoter. This represents a promising step toward the use of marked I elements to study retrotransposition and as tools for mutagenesis.
Collapse
Affiliation(s)
- I Busseau
- Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette, France.
| | | | | | | | | | | |
Collapse
|
38
|
Zhimulev IF. Polytene chromosomes, heterochromatin, and position effect variegation. ADVANCES IN GENETICS 1997; 37:1-566. [PMID: 9352629 DOI: 10.1016/s0065-2660(08)60341-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
39
|
|
40
|
Alberola TM, de Frutos R. Molecular structure of a gypsy element of Drosophila subobscura (gypsyDs) constituting a degenerate form of insect retroviruses. Nucleic Acids Res 1996; 24:914-23. [PMID: 8600460 PMCID: PMC145713 DOI: 10.1093/nar/24.5.914] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have determined the nucleotide sequence of a 7.5 kb full-size gypsy element from Drosophila subobscura strain H-271. Comparative analyses were carried out on the sequence and molecular structure of gypsy elements of D.subobscura (gypsyDs), D.melanogaster (gypsyDm) and D.virilis (gypsyDv). The three elements show a structure that maintains a common mechanism of expression. ORF1 and ORF2 show typical motifs of gag and pol genes respectively in the three gypsy elements and could encode functional proteins necessary for intracellular expansion. In the three ORF1 proteins an arginine-rich region was found which could constitute a RNA binding motif. The main differences among the gypsy elements are found in ORF3 (env-like gene); gypsyDm encodes functional env proteins, whereas gypsyDs and gypsyDv ORF3s lack some motifs essential for functionality of this protein. On the basis of these results, while gypsyDm is the first insect retrovirus described, gypsyDs and gypsyDv could constitute degenerate forms of these retroviruses. In this context, we have found some evidence that gypsyDm could have recently infected some D.subobscura strains. Comparative analyses of divergence and phylogenetic relationships of gypsy elements indicate that the gypsy elements belonging to species of different subgenera (gypsyDs and gypsyDv) are closer than gypsy elements of species belonging to the same subgenus (gypsyDs and gypsyDm). These data are congruent with horizontal transfer of gypsy elements among different Drosophila spp.
Collapse
Affiliation(s)
- T M Alberola
- Departament de Genètica, Universitat de València, Spain
| | | |
Collapse
|
41
|
Sezutsu H, Nitasaka E, Yamazaki T. Evolution of the LINE-like I element in the Drosophila melanogaster species subgroup. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:168-78. [PMID: 7500938 DOI: 10.1007/bf00290363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
LINE-like retrotransposons, the so-called I elements, control the system of I-R (inducer-reactive) hybrid dysgenesis in Drosophila melanogaster. I elements are present in many Drosophila species. It has been suggested that active, complete I elements, located at different sites on the chromosomes, invaded natural populations of D. melanogaster recently (1920-1970). But old strains lacking active I elements have only defective I elements located in the chromocenter. We have cloned I elements from D. melanogaster and the melanogaster subgroup. In D. melanogaster, the nucleotide sequences of chromocentral I elements differed from those on chromosome arms by as much as 7%. All the I elements of D. mauritiana and D. sechellia are more closely related to the chromosomal I elements of D. melanogaster than to the chromocentral I elements in any species. No sequence difference was observed in the surveyed region between two chromosomal I elements isolated from D. melanogaster and one from D. simulans. These findings strongly support the idea that the defective chromocentral I elements of D. melanogaster originated before the species diverged and the chromosomal I elements were eliminated. The chromosomal I elements reinvaded natural populations of D. melanogaster recently, and were possibly introduced from D. simulans by horizontal transmission.
Collapse
Affiliation(s)
- H Sezutsu
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
42
|
Pimpinelli S, Berloco M, Fanti L, Dimitri P, Bonaccorsi S, Marchetti E, Caizzi R, Caggese C, Gatti M. Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci U S A 1995; 92:3804-8. [PMID: 7731987 PMCID: PMC42050 DOI: 10.1073/pnas.92.9.3804] [Citation(s) in RCA: 203] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We determined the distribution of 11 different transposable elements on Drosophila melanogaster mitotic chromosomes by using high-resolution fluorescent in situ hybridization (FISH) coupled with charge-coupled device camera analysis. Nine of these transposable elements (copia, gypsy, mdg-1, blood, Doc, I, F, G, and Bari-1) are preferentially clustered into one or more discrete heterochromatic regions in chromosomes of the Oregon-R laboratory stock. Moreover, FISH analysis of geographically distant strains revealed that the locations of these heterochromatic transposable element clusters are highly conserved. The P and hobo elements, which are likely to have invaded the D. melanogaster genome at the beginning of this century, are absent from Oregon-R heterochromatin but clearly exhibit heterochromatic clusters in certain natural populations. Together these data indicate that transposable elements are major structural components of Drosophila heterochromatin, and they change the current views on the role of transposable elements in host genome evolution.
Collapse
Affiliation(s)
- S Pimpinelli
- Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma La Sapienza, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kim A, Terzian C, Santamaria P, Pélisson A, Purd'homme N, Bucheton A. Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc Natl Acad Sci U S A 1994; 91:1285-9. [PMID: 8108403 PMCID: PMC43142 DOI: 10.1073/pnas.91.4.1285] [Citation(s) in RCA: 237] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Retroviruses are commonly considered to be restricted to vertebrates. However, the genome of many eukaryotes contains mobile sequences known as retrotransposons with long terminal repeats (LTR retrotransposons) or viral retrotransposons, showing similarities with integrated proviruses of retroviruses, such as Ty elements in Saccharomyces cerevisiae, copia-like elements in Drosophila, and endogenous proviruses in vertebrates. The gypsy element of Drosophila melanogaster has LTRs and contains three open reading frames, one of which encodes potential products similar to gag-specific protease, reverse transcriptase, and endonuclease. It is more similar to typical retroviruses than to LTR retrotransposons. We report here experiments showing that gypsy can be transmitted by microinjecting egg plasma from embryos of a strain containing actively transposing gypsy elements into embryos of a strain originally devoid of transposing elements. Horizontal transfer is also observed when individuals of the "empty" stock are raised on medium containing ground pupae of the stock possessing transposing elements. These results suggest that gypsy is an infectious retrovirus and provide evidence that retroviruses also occur in invertebrates.
Collapse
Affiliation(s)
- A Kim
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
44
|
Vaury C, Chaboissier MC, Drake ME, Lajoinie O, Dastugue B, Pélisson A. The Doc transposable element in Drosophila melanogaster and Drosophila simulans: genomic distribution and transcription. Genetica 1994; 93:117-24. [PMID: 7813908 DOI: 10.1007/bf01435244] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mobile element Doc is similar in structure and coding potential to the LINE families found in various organisms. In this paper, we analyze the insertional and structural polymorphism of this element and show that it appears to have a long evolutionary history in the genome of D. melanogaster. Like the family of I elements, the Doc family seems to display three types of elements: full length elements, defective members that have recently transposed and long since immobilized members common to each D. melanogaster strain. These three classes of Doc elements seem to be present in D. simulans, a closely related species to D. melanogaster. Furthermore, we show that Doc is transcribed as a polyadenylated RNA of about 5 kb in length, presumed to be a full length RNA. This transcript is present in different tissues and at different stages of Drosophila development. These results are compared with previous records on the chromosomal distribution of LINEs or other transposable element families. Doc transcription is analyzed in an attempt to understand the link between Doc transcription and transposition.
Collapse
Affiliation(s)
- C Vaury
- INSERM unité 384, Faculté de Médecine, Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
45
|
Busseau I, Chaboissier MC, Pélisson A, Bucheton A. I factors in Drosophila melanogaster: transposition under control. Genetica 1994; 93:101-16. [PMID: 7813907 DOI: 10.1007/bf01435243] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
I factors are responsible for the I-R system of hybrid dysgenesis in Drosophila melanogaster. They belong to the LINE class of mobile elements, which transpose via reverse transcription of a full-length RNA intermediate. I factors are active members of the I element family, which also contains defective I elements that are immobilized within peri-centromeric heterochromatin and represent very old components of the genome. Active I factors have recently invaded natural populations of Drosophila melanogaster, giving rise to inducer strains. Reactive strains, devoid of active I factors, derive from old laboratory stocks established before the invasion. Transposition of I factors is activated at very high frequencies in the germline of hybrid females issued from crosses between females from reactive strains and males from inducer strains. It results in the production of high rates of mutations and chromosomal rearrangements as well as in a particular syndrome of sterility. The frequency of transposition of I factors is dependent on the amount of full-length RNA that is synthesized from an internal promoter. This full-length RNA serves both as an intermediate of transposition and presumably as a messenger for protein synthesis. Regulators of transposition apparently affect transcription initiation from the internal promoter. The data presented here lead to the proposal of a tentative model for transposition.
Collapse
Affiliation(s)
- I Busseau
- Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
46
|
Paricio N, Martínez-Sebastián MJ, de Frutos R. A heterochromatic P sequence in the D. subobscura genome. Genetica 1994; 92:177-86. [PMID: 7958941 DOI: 10.1007/bf00132536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The study of a heterochromatic P sequence of D. subobscura reveals that it is a degraded element, located at the centromeric region of the A chromosome (X chromosome in this species), and that it is strongly diverged from the euchromatic P sequences previously described in this species. This heterochromatic sequence is composed of some P element fragments embedded in undefined beta-heterochromatic sequences. These mosaic P sequences do not show any transcriptional activity and seem to be ancient parasites of the D. subobscura genome. Phylogenetic analyses indicate that both the euchromatic and heterochromatic P sequences of D. subobscura could come from an ancestral element which was present before the divergence of the subobscura species cluster.
Collapse
Affiliation(s)
- N Paricio
- Departament de Genètica, Facultat de Ciències Biològiques, Universitat de València, Spain
| | | | | |
Collapse
|
47
|
Affiliation(s)
- R H Plasterk
- The Netherlands Cancer Institute, Division of Molecular Biology, Amsterdam
| |
Collapse
|