1
|
Saba N, Rehman S, Munir S, Noor A. Association of angiotensin I converting enzyme gene I/D polymorphism and coronary artery disease in the Pakistani population. Sci Prog 2025; 108:368504251338935. [PMID: 40289511 PMCID: PMC12035323 DOI: 10.1177/00368504251338935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
ObjectiveThe aim of this study was to investigate the association between angiotensin I converting enzyme gene polymorphism and coronary artery disease in the Pakistani population, given the early onset and aggressive nature of coronary artery disease in this region.MethodsA case-control study was conducted involving 540 Pakistani patients with established coronary artery disease and 224 healthy controls. DNA samples were amplified using polymerase chain reaction with primers targeting the insertion (I)/deletion (D) sites of intron 16 of the angiotensin I converting enzyme gene. The polymerase chain reaction products were analyzed for the presence of 490-bp (II), 190-bp (DD), or both (ID) fragments.ResultsThe frequency of the homozygous insertion (II) genotype was 9% in the control group and 25% in coronary artery disease patients, while the homozygous deletion (DD) genotype was 26% in controls and 24% in patients. A significant association was found between the angiotensin I converting enzyme II genotype and coronary artery disease (odds ratio = 7.963, p < 0.0001).ConclusionThe angiotensin I converting enzyme II genotype is significantly associated with an increased risk of coronary artery disease in the Pakistani population, suggesting a potential genetic predisposition to early and aggressive coronary artery disease in this group.
Collapse
Affiliation(s)
- Nusrat Saba
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Sadia Rehman
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Saeeda Munir
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Amna Noor
- Rawalpindi Medical University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
2
|
Denisko D, Kim J, Ku J, Zhao B, Lee EA. Inverted Alu repeats in loop-out exon skipping across hominoid evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.642063. [PMID: 40161837 PMCID: PMC11952303 DOI: 10.1101/2025.03.07.642063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Changes in RNA splicing over the course of evolution have profoundly diversified the functional landscape of the human genome. While DNA sequences proximal to intron-exon junctions are known to be critical for RNA splicing, the impact of distal intronic sequences remains underexplored. Emerging evidence suggests that inverted pairs of intronic Alu elements can promote exon skipping by forming RNA stem-loop structures. However, their prevalence and influence throughout evolution remain unknown. Results Here, we present a systematic analysis of inverted Alu pairs across the human genome to assess their impact on exon skipping through predicted RNA stem-loop formation and their relevance to hominoid evolution. We found that inverted Alu pairs, particularly pairs of AluY-AluSx1 and AluSz-AluSx, are enriched in the flanking regions of skippable exons genome-wide and are predicted to form stable stem-loop structures. Exons defined by weak 3' acceptor and strong 5' donor splice sites appear especially prone to this skipping mechanism. Through comparative genome analysis across nine primate species, we identified 67,126 hominoid-specific Alu insertions, primarily from AluY and AluS subfamilies, which form inverted pairs enriched across skippable exons in genes of ubiquitination-related pathways. Experimental validation of exon skipping among several hominoid-specific inverted Alu pairs further reinforced their potential evolutionary significance. Conclusion This work extends our current knowledge of the roles of RNA secondary structure formed by inverted Alu pairs and details a newly emerging mechanism through which transposable elements have contributed to genomic innovation across hominoid evolution at the transcriptomic level.
Collapse
Affiliation(s)
- Danielle Denisko
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jeonghyeon Kim
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Jayoung Ku
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02115, USA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Boxun Zhao
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02115, USA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02115, USA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
3
|
Law CT, Burns KH. Comparative Genomics Reveals LINE-1 Recombination with Diverse RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.635956. [PMID: 39975348 PMCID: PMC11838501 DOI: 10.1101/2025.02.02.635956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Long interspersed element-1 (LINE-1, L1) retrotransposons are the most abundant protein-coding transposable elements (TE) in mammalian genomes, and have shaped genome content over 170 million years of evolution. LINE-1 is self-propagating and mobilizes other sequences, including Alu elements. Occasionally, LINE-1 forms chimeric insertions with non-coding RNAs and mRNAs. U6 spliceosomal small nuclear RNA/LINE-1 chimeras are best known, though there are no comprehensive catalogs of LINE-1 chimeras. To address this, we developed TiMEstamp, a computational pipeline that leverages multiple sequence alignments (MSA) to estimate the age of LINE-1 insertions and identify candidate chimeric insertions where an adjacent sequence arrives contemporaneously. Candidates were refined by detecting hallmark features of L1 retrotransposition, such as target site duplication (TSD). Applying this pipeline to the human genome, we recovered all known species of LINE-1 chimeras and discovered new chimeric insertions involving small RNAs, Alu elements, and mRNA fragments. Some insertions are compatible with known mechanisms, such as RNA ligation. Other structures nominate novel mechanisms, such as trans-splicing. We also see evidence that LINE-1 loci with defunct promoters can acquire regulatory elements from nearby genes to restore retrotransposition activity. These discoveries highlight the recombinatory potential of LINE-1 RNA with implications for genome evolution and TE domestication.
Collapse
Affiliation(s)
- Cheuk-Ting Law
- Corresponding authors: Cheuk-Ting Law (), Kathleen H. Burns ()
| | | |
Collapse
|
4
|
Sun S, You E, Hong J, Hoyos D, Del Priore I, Tsanov KM, Mattagajasingh O, Di Gioacchino A, Marhon SA, Chacon-Barahona J, Li H, Jiang H, Hozeifi S, Rosas-Bringas O, Xu KH, Song Y, Lang ER, Rojas AS, Nieman LT, Patel BK, Murali R, Chanda P, Karacay A, Vabret N, De Carvalho DD, Zenklusen D, LaCava J, Lowe SW, Ting DT, Iacobuzio-Donahue CA, Solovyov A, Greenbaum BD. Cancer cells restrict immunogenicity of retrotransposon expression via distinct mechanisms. Immunity 2024; 57:2879-2894.e11. [PMID: 39577413 PMCID: PMC12022969 DOI: 10.1016/j.immuni.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/28/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024]
Abstract
To thrive, cancer cells must navigate acute inflammatory signaling accompanying oncogenic transformation, such as via overexpression of repeat elements. We examined the relationship between immunostimulatory repeat expression, tumor evolution, and the tumor-immune microenvironment. Integration of multimodal data from a cohort of pancreatic ductal adenocarcinoma (PDAC) patients revealed expression of specific Alu repeats predicted to form double-stranded RNAs (dsRNAs) and trigger retinoic-acid-inducible gene I (RIG-I)-like-receptor (RLR)-associated type-I interferon (IFN) signaling. Such Alu-derived dsRNAs also anti-correlated with pro-tumorigenic macrophage infiltration in late stage tumors. We defined two complementary pathways whereby PDAC may adapt to such anti-tumorigenic signaling. In mutant TP53 tumors, ORF1p from long interspersed nuclear element (LINE)-1 preferentially binds Alus and decreases their expression, whereas adenosine deaminases acting on RNA 1 (ADAR1) editing primarily reduces dsRNA formation in wild-type TP53 tumors. Depletion of either LINE-1 ORF1p or ADAR1 reduced tumor growth in vitro. The fact that tumors utilize multiple pathways to mitigate immunostimulatory repeats implies the stress from their expression is a fundamental phenomenon to which PDAC, and likely other tumors, adapt.
Collapse
Affiliation(s)
- Siyu Sun
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Eunae You
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Jungeui Hong
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Hoyos
- Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Isabella Del Priore
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaloyan M Tsanov
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Om Mattagajasingh
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Andrea Di Gioacchino
- Laboratoire de Physique de l'Ecole Normale Supérieure, Sorbonne Université, Université de Paris, Paris, France
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jonathan Chacon-Barahona
- Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Hao Li
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Samira Hozeifi
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Omar Rosas-Bringas
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Katherine H Xu
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Yuhui Song
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Evan R Lang
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Alexandra S Rojas
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Linda T Nieman
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Bidish K Patel
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Rajmohan Murali
- Last Wish Program and Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pharto Chanda
- Last Wish Program and Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ali Karacay
- Last Wish Program and Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicolas Vabret
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Daniel Zenklusen
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - John LaCava
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - David T Ting
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Christine A Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Last Wish Program and Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Solovyov
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin D Greenbaum
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Scheuren M, Möhner J, Müller M, Zischler H. DSB profiles in human spermatozoa highlight the role of TMEJ in the male germline. Front Genet 2024; 15:1423674. [PMID: 39040993 PMCID: PMC11260735 DOI: 10.3389/fgene.2024.1423674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
The male mammalian germline is characterized by substantial chromatin remodeling associated with the transition from histones to protamines during spermatogenesis, followed by the reversal to nucleohistones in the male pronucleus preceding the zygotic genome activation. Both transitions are associated with the extensive formation of DNA double-strand breaks (DSBs), requiring an estimated 5 to 10 million transient DSBs per spermatozoa. Additionally, the high transcription rate in early stages of spermatogenesis leads to transcription-coupled damage preceding meiotic homologous recombination, potentially further contributing to the DSB landscape in mature spermatozoa. Once meiosis is completed, spermatozoa remain haploid and therefore cannot rely on error-free homologous recombination, but instead depend on error-prone classical non-homologous end joining (cNHEJ). This DNA damage/repair-scenario is proposed to be one of the main causes of the observed paternal mutation propensity in human evolution. Recent studies have shown that DSBs in the male pronucleus are repaired by maternally provided Polθ in Caenorhabditis elegans through Polθ-mediated end joining (TMEJ). Additionally, population genetic datasets have revealed a preponderance of TMEJ signatures associated with human variation. Since these signatures are the result of the combined effect of TMEJ and DSB formation in spermatozoa and male pronuclei, we used a BLISS-based protocol to analyze recurrent DSBs in mature human sperm heads as a proxy of the male pronucleus before zygotic chromatin remodeling. The DSBs were found to be enriched in (YR)n short tandem repeats and in evolutionarily young SINEs, reminiscent to patterns observed in murine spermatids, indicating evolutionary hotspots of recurrent DSB formation in mammalian spermatozoa. Additionally, we detected a similar DSB pattern in diploid human IMR90 cells when cNHEJ was selectively inhibited, indicating the significant impact of absent cNHEJ on the sperm DSB landscape. Strikingly, regions associated with most retained histones, and therefore less condensed chromatin, were not strongly enriched with recurrent DSBs. In contrast, the fraction of retained H3K27me3 in the mature spermatozoa displayed a strong association with recurrent DSBs. DSBs in H3K27me3 are associated with a preference for TMEJ over cNHEJ during repair. We hypothesize that the retained H3K27me3 may trigger transgenerational DNA repair by priming maternal Polθ to these regions.
Collapse
Affiliation(s)
- Maurice Scheuren
- Division of Anthropology, Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jonas Möhner
- Division of Anthropology, Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Max Müller
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans Zischler
- Division of Anthropology, Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
6
|
Kojima KK. Helenus and Ajax, Two Groups of Non-Autonomous LTR Retrotransposons, Represent a New Type of Small RNA Gene-Derived Mobile Elements. BIOLOGY 2024; 13:119. [PMID: 38392337 PMCID: PMC10886601 DOI: 10.3390/biology13020119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Terminal repeat retrotransposons in miniature (TRIMs) are short non-autonomous long terminal repeat (LTR) retrotransposons found from various eukaryotes. Cassandra is a unique TRIM lineage which contains a 5S rRNA-derived sequence in its LTRs. Here, two new groups of TRIMs, designated Helenus and Ajax, are reported based on bioinformatics analysis and the usage of Repbase. Helenus is found from fungi, animals, and plants, and its LTRs contain a tRNA-like sequence. It includes two LTRs and between them, a primer-binding site (PBS) and polypurine tract (PPT) exist. Fungal and plant Helenus generate 5 bp target site duplications (TSDs) upon integration, while animal Helenus generates 4 bp TSDs. Ajax includes a 5S rRNA-derived sequence in its LTR and is found from two nemertean genomes. Ajax generates 5 bp TSDs upon integration. These results suggest that despite their unique promoters, Helenus and Ajax are TRIMs whose transposition is dependent on autonomous LTR retrotransposon. These TRIMs can originate through an insertion of SINE in an LTR of TRIM. The discovery of Helenus and Ajax suggests the presence of TRIMs with a promoter for RNA polymerase III derived from a small RNA gene, which is here collectively termed TRIMp3.
Collapse
Affiliation(s)
- Kenji K Kojima
- Genetic Information Research Institute, Cupertino, CA 95014, USA
| |
Collapse
|
7
|
Borovská I, Vořechovský I, Královičová J. Alu RNA fold links splicing with signal recognition particle proteins. Nucleic Acids Res 2023; 51:8199-8216. [PMID: 37309897 PMCID: PMC10450188 DOI: 10.1093/nar/gkad500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
Transcriptomic diversity in primates was considerably expanded by exonizations of intronic Alu elements. To better understand their cellular mechanisms we have used structure-based mutagenesis coupled with functional and proteomic assays to study the impact of successive primate mutations and their combinations on inclusion of a sense-oriented AluJ exon in the human F8 gene. We show that the splicing outcome was better predicted by consecutive RNA conformation changes than by computationally derived splicing regulatory motifs. We also demonstrate an involvement of SRP9/14 (signal recognition particle) heterodimer in splicing regulation of Alu-derived exons. Nucleotide substitutions that accumulated during primate evolution relaxed the conserved left-arm AluJ structure including helix H1 and reduced the capacity of SRP9/14 to stabilize the closed Alu conformation. RNA secondary structure-constrained mutations that promoted open Y-shaped conformations of the Alu made the Alu exon inclusion reliant on DHX9. Finally, we identified additional SRP9/14 sensitive Alu exons and predicted their functional roles in the cell. Together, these results provide unique insights into architectural elements required for sense Alu exonization, identify conserved pre-mRNA structures involved in exon selection and point to a possible chaperone activity of SRP9/14 outside the mammalian signal recognition particle.
Collapse
Affiliation(s)
- Ivana Borovská
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava 840 05, Slovak Republic
| | - Igor Vořechovský
- Faculty of Medicine, University of Southampton, HDH, MP808, Southampton SO16 6YD, United Kingdom
| | - Jana Královičová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava 840 05, Slovak Republic
- Institute of Zoology, Slovak Academy of Sciences, Bratislava 845 06, Slovak Republic
| |
Collapse
|
8
|
Sun S, Hong J, You E, Tsanov KM, Chacon-Barahona J, Gioacchino AD, Hoyos D, Li H, Jiang H, Ly H, Marhon S, Murali R, Chanda P, Karacay A, Vabret N, De Carvalho DD, LaCava J, Lowe SW, Ting DT, Iacobuzio-Donahue CA, Solovyov A, Greenbaum BD. Cancer cells co-evolve with retrotransposons to mitigate viral mimicry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541456. [PMID: 37292765 PMCID: PMC10245669 DOI: 10.1101/2023.05.19.541456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Overexpression of repetitive elements is an emerging hallmark of human cancers 1 . Diverse repeats can mimic viruses by replicating within the cancer genome through retrotransposition, or presenting pathogen-associated molecular patterns (PAMPs) to the pattern recognition receptors (PRRs) of the innate immune system 2-5 . Yet, how specific repeats affect tumor evolution and shape the tumor immune microenvironment (TME) in a pro- or anti-tumorigenic manner remains poorly defined. Here, we integrate whole genome and total transcriptome data from a unique autopsy cohort of multiregional samples collected in pancreatic ductal adenocarcinoma (PDAC) patients, into a comprehensive evolutionary analysis. We find that more recently evolved S hort I nterspersed N uclear E lements (SINE), a family of retrotransposable repeats, are more likely to form immunostimulatory double-strand RNAs (dsRNAs). Consequently, younger SINEs are strongly co-regulated with RIG-I like receptor associated type-I interferon genes but anti-correlated with pro-tumorigenic macrophage infiltration. We discover that immunostimulatory SINE expression in tumors is regulated by either L ong I nterspersed N uclear E lements 1 (LINE1/L1) mobility or ADAR1 activity in a TP53 mutation dependent manner. Moreover, L1 retrotransposition activity tracks with tumor evolution and is associated with TP53 mutation status. Altogether, our results suggest pancreatic tumors actively evolve to modulate immunogenic SINE stress and induce pro-tumorigenic inflammation. Our integrative, evolutionary analysis therefore illustrates, for the first time, how dark matter genomic repeats enable tumors to co-evolve with the TME by actively regulating viral mimicry to their selective advantage.
Collapse
|
9
|
Storer JM, Walker JA, Baker JN, Hossain S, Roos C, Wheeler TJ, Batzer MA. Framework of the Alu Subfamily Evolution in the Platyrrhine Three-Family Clade of Cebidae, Callithrichidae, and Aotidae. Genes (Basel) 2023; 14:249. [PMID: 36833175 PMCID: PMC9956951 DOI: 10.3390/genes14020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
The history of Alu retroposons has been choreographed by the systematic accumulation of inherited diagnostic nucleotide substitutions to form discrete subfamilies, each having a distinct nucleotide consensus sequence. The oldest subfamily, AluJ, gave rise to AluS after the split between Strepsirrhini and what would become Catarrhini and Platyrrhini. The AluS lineage gave rise to AluY in catarrhines and to AluTa in platyrrhines. Platyrrhine Alu subfamilies Ta7, Ta10, and Ta15 were assigned names based on a standardized nomenclature. However, with the subsequent intensification of whole genome sequencing (WGS), large scale analyses to characterize Alu subfamilies using the program COSEG identified entire lineages of subfamilies simultaneously. The first platyrrhine genome with WGS, the common marmoset (Callithrix jacchus; [caljac3]), resulted in Alu subfamily names sf0 to sf94 in an arbitrary order. Although easily resolved by alignment of the consensus sequences, this naming convention can become increasingly confusing as more genomes are independently analyzed. In this study, we reported Alu subfamily characterization for the platyrrhine three-family clade of Cebidae, Callithrichidae, and Aotidae. We investigated one species/genome from each recognized family of Callithrichidae and Aotidae and of both subfamilies (Cebinae and Saimiriinae) of the family Cebidae. Furthermore, we constructed a comprehensive network of Alu subfamily evolution within the three-family clade of platyrrhines to provide a working framework for future research. Alu expansion in the three-family clade has been dominated by AluTa15 and its derivatives.
Collapse
Affiliation(s)
- Jessica M. Storer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA; (J.M.S.); (J.A.W.)
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Jerilyn A. Walker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA; (J.M.S.); (J.A.W.)
| | - Jasmine N. Baker
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Shifat Hossain
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, AZ 85721, USA; (S.H.); (T.J.W.)
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
| | - Travis J. Wheeler
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, AZ 85721, USA; (S.H.); (T.J.W.)
| | - Mark A. Batzer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA; (J.M.S.); (J.A.W.)
| |
Collapse
|
10
|
Welden JR, Margvelani G, Arizaca Maquera KA, Gudlavalleti B, Miranda Sardón S, Campos A, Robil N, Lee D, Hernandez A, Wang WX, Di J, de la Grange P, Nelson P, Stamm S. RNA editing of microtubule-associated protein tau circular RNAs promotes their translation and tau tangle formation. Nucleic Acids Res 2022; 50:12979-12996. [PMID: 36533443 PMCID: PMC9825173 DOI: 10.1093/nar/gkac1129] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/06/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Aggregation of the microtubule-associated protein tau characterizes tauopathies, including Alzheimer's disease and frontotemporal lobar degeneration (FTLD-Tau). Gene expression regulation of tau is complex and incompletely understood. Here we report that the human tau gene (MAPT) generates two circular RNAs (circRNAs) through backsplicing of exon 12 to either exon 7 (12→7 circRNA) or exon 10 (12→10 circRNA). Both circRNAs lack stop codons. The 12→7 circRNA contains one start codon and is translated in a rolling circle, generating a protein consisting of multimers of the microtubule-binding repeats R1-R4. For the 12→10 circRNA, a start codon can be introduced by two FTLD-Tau mutations, generating a protein consisting of multimers of the microtubule-binding repeats R2-R4, suggesting that mutations causing FTLD may act in part through tau circRNAs. Adenosine to inosine RNA editing dramatically increases translation of circRNAs and, in the 12→10 circRNA, RNA editing generates a translational start codon by changing AUA to AUI. Circular tau proteins self-aggregate and promote aggregation of linear tau proteins. Our data indicate that adenosine to inosine RNA editing initiates translation of human circular tau RNAs, which may contribute to tauopathies.
Collapse
Affiliation(s)
| | - Giorgi Margvelani
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | | | - Bhavani Gudlavalleti
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Sandra C Miranda Sardón
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Alexandre Rosa Campos
- Sanford Burnham Prebys Medical Discovery Institute Proteomics Core, La Jolla, CA, USA
| | | | - Daniel C Lee
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA,Alzheimer's Disease Research Center Neuroscience, University of Kentucky, Lexington, KY, USA
| | | | - Wang-Xia Wang
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA,Alzheimer's Disease Research Center and Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - Jing Di
- Alzheimer's Disease Research Center and Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA,Alzheimer's Disease Research Center and Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
11
|
A 69 kb Deletion in chr19q13.42 including PRPF31 Gene in a Chinese Family Affected with Autosomal Dominant Retinitis Pigmentosa. J Clin Med 2022; 11:jcm11226682. [PMID: 36431159 PMCID: PMC9695658 DOI: 10.3390/jcm11226682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
We aimed to identify the genetic cause of autosomal dominant retinitis pigmentosa (adRP) and characterize the underlying molecular mechanisms of incomplete penetrance in a Chinese family affected with adRP. All enrolled family members underwent ophthalmic examinations. Whole-genome sequencing (WGS), multiplex ligation-dependent probe amplification (MLPA), linkage analysis and haplotype construction were performed in all participants. RNA-seq was performed to analyze the regulating mechanism of incomplete penetrance among affected patients, mutation carriers and healthy controls. In the studied family, 14 individuals carried a novel heterozygous large deletion of 69 kilobase (kb) in 19q13.42 encompassing exon 1 of the PRPF31 gene and five upstream genes: TFPT, OSCAR, NDUFA3, TARM1, and VSTM1. Three family members were sequenced and diagnosed as non-penetrant carriers (NPCs). RNA-seq showed significant differential expression of genes in deletion between mutation carriers and healthy control. The RP11 pedigree in this study was the largest pedigree compared to other reported RP11 pedigrees with large deletions. Early onset in all affected members in this pedigree was considered to be a special phenotype and was firstly reported in a RP11 family for the first time. Differential expression of PRPF31 between affected and unaffected subjects indicates a haploinsufficiency to cause the disease in the family. The other genes with significant differential expression might play a cooperative effect on the penetrance of RP11.
Collapse
|
12
|
Storer JM, Walker JA, Rewerts LC, Brown MA, Beckstrom TO, Herke SW, Roos C, Batzer MA. Owl Monkey Alu Insertion Polymorphisms and Aotus Phylogenetics. Genes (Basel) 2022; 13:2069. [PMID: 36360306 PMCID: PMC9691001 DOI: 10.3390/genes13112069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023] Open
Abstract
Owl monkeys (genus Aotus), or "night monkeys" are platyrrhine primates in the Aotidae family. Early taxonomy only recognized one species, Aotus trivirgatus, until 1983, when Hershkovitz proposed nine unique species designations, classified into red-necked and gray-necked species groups based predominately on pelage coloration. Recent studies questioned this conventional separation of the genus and proposed designations based on the geographical location of wild populations. Alu retrotransposons are a class of mobile element insertion (MEI) widely used to study primate phylogenetics. A scaffold-level genome assembly for one Aotus species, Aotus nancymaae [Anan_2.0], facilitated large-scale ascertainment of nearly 2000 young lineage-specific Alu insertions. This study provides candidate oligonucleotides for locus-specific PCR assays for over 1350 of these elements. For 314 Alu elements across four taxa with multiple specimens, PCR analyses identified 159 insertion polymorphisms, including 21 grouping A. nancymaae and Aotus azarae (red-necked species) as sister taxa, with Aotus vociferans and A. trivirgatus (gray-necked) being more basal. DNA sequencing identified five novel Alu elements from three different taxa. The Alu datasets reported in this study will assist in species identification and provide a valuable resource for Aotus phylogenetics, population genetics and conservation strategies when applied to wild populations.
Collapse
Affiliation(s)
- Jessica M. Storer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Jerilyn A. Walker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Lydia C. Rewerts
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Morgan A. Brown
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Thomas O. Beckstrom
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
- Department of Oral and Maxillofacial Surgery, University of Washington, 1959 NE Pacific Street, Health Sciences Building B-241, Seattle, WA 98195, USA
| | - Scott W. Herke
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Mark A. Batzer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| |
Collapse
|
13
|
Pinto A, Cunha C, Chaves R, Butchbach MER, Adega F. Comprehensive In Silico Analysis of Retrotransposon Insertions within the Survival Motor Neuron Genes Involved in Spinal Muscular Atrophy. BIOLOGY 2022; 11:824. [PMID: 35741345 PMCID: PMC9219815 DOI: 10.3390/biology11060824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are interspersed repetitive and mobile DNA sequences within the genome. Better tools for evaluating TE-derived sequences have provided insights into the contribution of TEs to human development and disease. Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease that is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene but retention of its nearly perfect orthologue SMN2. Both genes are highly enriched in TEs. To establish a link between TEs and SMA, we conducted a comprehensive, in silico analysis of TE insertions within the SMN1/2 loci of SMA, carrier and healthy genomes. We found an Alu insertion in the promoter region and one L1 element in the 3'UTR that may play an important role in alternative promoter as well as in alternative transcriptional termination. Additionally, several intronic Alu repeats may influence alternative splicing via RNA circularization and causes the presence of new alternative exons. These Alu repeats present throughout the genes are also prone to recombination events that could lead to SMN1 exons deletions and, ultimately, SMA. TE characterization of the SMA genomic region could provide for a better understanding of the implications of TEs on human disease and genomic evolution.
Collapse
Affiliation(s)
- Albano Pinto
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Catarina Cunha
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Matthew E. R. Butchbach
- Division of Neurology, Nemours Children’s Hospital Delaware, Wilmington, DE 19803, USA;
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
14
|
Fan HH, Zheng J, Huang XY, Wu KY, Cui L, Dong HJ, Wang Z, Zhang X, Zhu JH. An antisense Alu transposon insertion/deletion polymorphism of ALDH1A1 may functionally associate with Parkinson's disease. BMC Geriatr 2022; 22:427. [PMID: 35578164 PMCID: PMC9109383 DOI: 10.1186/s12877-022-03132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenase 1 (encoded by ALDH1A1) has been shown to protect against Parkinson's disease (PD) by reducing toxic metabolites of dopamine. We herein revealed an antisense Alu element insertion/deletion polymorphism in intron 4 of ALDH1A1, and hypothesized that it might play a role in PD. METHODS: A Han Chinese cohort comprising 488 PD patients and 515 controls was recruited to validate the Alu insertion/deletion polymorphism following a previous study of tag-single nucleotide polymorphisms, where rs7043217 was shown to be significantly associated with PD. Functional analyses of the Alu element insertion were performed. RESULTS The Alu element of ALDH1A1 was identified to be a variant of Yb8 subfamily and termed as Yb8c4. The antisense Yb8c4 insertion/deletion polymorphism (named asYb8c4ins and asYb8c4del, respectively) appeared to be in a complete linkage disequilibrium with rs7043217 and was validated to be significantly associated with PD susceptibility with asYb8c4ins serving as a risk allele (P = 0.030, OR = 1.224, 95% CI = 1.020-1.470). Multiple functional analyses including ALDH1A1 mRNA expression in blood cells of carriers, and reporters of EGFP and luciferase showed that the asYb8c4ins had a suppressive activity on gene transcription. Mechanistic explorations suggested that the asYb8c4ins induced no changes in CpG methylation and mRNA splicing of ALDH1A1 and appeared no binding of transcription factors. CONCLUSIONS Our results consolidate an involvement of ALDH1 in PD pathogenesis. The asYb8c4 polymorphism may be a functional output of its linkage disequilibrium-linked single nucleotide polymorphisms.
Collapse
Affiliation(s)
- Hui-Hui Fan
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jing Zheng
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiao-Ya Huang
- Department of Neurology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Ke-Yun Wu
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lei Cui
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Hao-Jia Dong
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhen Wang
- Department of Neurology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiong Zhang
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Jian-Hong Zhu
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China. .,Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
15
|
Baar T, Dümcke S, Gressel S, Schwalb B, Dilthey A, Cramer P, Tresch A. RNA transcription and degradation of Alu retrotransposons depends on sequence features and evolutionary history. G3 GENES|GENOMES|GENETICS 2022; 12:6543614. [PMID: 35253846 PMCID: PMC9073682 DOI: 10.1093/g3journal/jkac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Alu elements are one of the most successful groups of RNA retrotransposons and make up 11% of the human genome with over 1 million individual loci. They are linked to genetic defects, increases in sequence diversity, and influence transcriptional activity. Still, their RNA metabolism is poorly understood yet. It is even unclear whether Alu elements are mostly transcribed by RNA Polymerase II or III. We have conducted a transcription shutoff experiment by α-amanitin and metabolic RNA labeling by 4-thiouridine combined with RNA fragmentation (TT-seq) and RNA-seq to shed further light on the origin and life cycle of Alu transcripts. We find that Alu RNAs are more stable than previously thought and seem to originate in part from RNA Polymerase II activity, as previous reports suggest. Their expression however seems to be independent of the transcriptional activity of adjacent genes. Furthermore, we have developed a novel statistical test for detecting the expression of quantitative trait loci in Alu elements that relies on the de Bruijn graph representation of all Alu sequences. It controls for both statistical significance and biological relevance using a tuned k-mer representation, discovering influential sequence features missed by regular motif search. In addition, we discover several point mutations using a generalized linear model, and motifs of interest, which also match transcription factor-binding motifs.
Collapse
Affiliation(s)
- Till Baar
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne 50937, Germany
| | | | - Saskia Gressel
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Björn Schwalb
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Alexander Dilthey
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Achim Tresch
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne 50937, Germany
- CECAD, University of Cologne, Cologne 50931, Germany
- Center for Data and Simulation Science, University of Cologne, Cologne 50923, Germany
| |
Collapse
|
16
|
Palmada-Flores M, Orkin JD, Haase B, Mountcastle J, Bertelsen MF, Fedrigo O, Kuderna LFK, Jarvis ED, Marques-Bonet T. A high-quality, long-read genome assembly of the endangered ring-tailed lemur (Lemur catta). Gigascience 2022; 11:giac026. [PMID: 35365833 PMCID: PMC8975718 DOI: 10.1093/gigascience/giac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/14/2022] [Accepted: 02/19/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The ring-tailed lemur (Lemur catta) is a charismatic strepsirrhine primate endemic to Madagascar. These lemurs are of particular interest, given their status as a flagship species and widespread publicity in the popular media. Unfortunately, a recent population decline has resulted in the census population decreasing to <2,500 individuals in the wild, and the species's classification as an endangered species by the IUCN. As is the case for most strepsirrhine primates, only a limited amount of genomic research has been conducted on L. catta, in part owing to the lack of genomic resources. RESULTS We generated a new high-quality reference genome assembly for L. catta (mLemCat1) that conforms to the standards of the Vertebrate Genomes Project. This new long-read assembly is composed of Pacific Biosciences continuous long reads (CLR data), Optical Mapping Bionano reads, Arima HiC data, and 10X linked reads. The contiguity and completeness of the assembly are extremely high, with scaffold and contig N50 values of 90.982 and 10.570 Mb, respectively. Additionally, when compared to other high-quality primate assemblies, L. catta has the lowest reported number of Alu elements, which results predominantly from a lack of AluS and AluY elements. CONCLUSIONS mLemCat1 is an excellent genomic resource not only for the ring-tailed lemur community, but also for other members of the Lemuridae family, and is the first very long read assembly for a strepsirrhine.
Collapse
Affiliation(s)
- Marc Palmada-Flores
- Department of Medicine and Life Sciences (MELIS), Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona 08003, Spain
| | - Joseph D Orkin
- Department of Medicine and Life Sciences (MELIS), Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona 08003, Spain
- Département d'anthropologie, Université de Montréal, Montréal, QC H3T 1N8, Canada
| | - Bettina Haase
- The Vertebrate Genomes Lab, The Rockefeller University, New York, NY 10065, USA
| | | | - Mads F Bertelsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C 1870, Denmark
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksber 1870, Denmark
| | - Olivier Fedrigo
- The Vertebrate Genomes Lab, The Rockefeller University, New York, NY 10065, USA
| | - Lukas F K Kuderna
- Department of Medicine and Life Sciences (MELIS), Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona 08003, Spain
| | - Erich D Jarvis
- The Vertebrate Genomes Lab, The Rockefeller University, New York, NY 10065, USA
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksber 1870, Denmark
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, NY 10065, USA
| | - Tomas Marques-Bonet
- Department of Medicine and Life Sciences (MELIS), Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona 08003, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona 08010, Spain
- CNAG‐CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelon 08028a, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| |
Collapse
|
17
|
Emblem Å, Knutsen E, Jørgensen TE, Fure H, Johansen SD, Brekke OL, Mollnes TE, Karlsen BO. Blood Transcriptome Analysis of Septic Patients Reveals a Long Non-Coding Alu-RNA in the Complement C5a Receptor 1 Gene. Noncoding RNA 2022; 8:ncrna8020024. [PMID: 35447887 PMCID: PMC9027897 DOI: 10.3390/ncrna8020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
Many severe inflammation conditions are complement-dependent with the complement component C5a-C5aR1 axis as an important driver. At the RNA level, the blood transcriptome undergoes programmed expression of coding and long non-coding RNAs to combat invading microorganisms. Understanding the expression of long non-coding RNAs containing Alu elements in inflammation is important for reconstructing cell fate trajectories leading to severe disease. We have assembled a pipeline for computation mining of new Alu-containing long non-coding RNAs by intersecting immune genes with known Alu coordinates in the human genome. By applying the pipeline to patient bulk RNA-seq data with sepsis, we found immune genes containing 48 Alu insertion as robust candidates for further study. Interestingly, 1 of the 48 candidates was located within the complement system receptor gene C5aR1 and holds promise as a target for RNA therapeutics.
Collapse
Affiliation(s)
- Åse Emblem
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, 8005 Bodø, Norway; (Å.E.); (H.F.); (O.-L.B.); (T.E.M.)
| | - Erik Knutsen
- Department of Medical Biology, UiT The Arctic University of Norway, 9037 Tromsø, Norway;
| | - Tor Erik Jørgensen
- Genomics Division—FBA, Nord University, 8026 Bodø, Norway; (T.E.J.); (S.D.J.)
| | - Hilde Fure
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, 8005 Bodø, Norway; (Å.E.); (H.F.); (O.-L.B.); (T.E.M.)
| | | | - Ole-Lars Brekke
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, 8005 Bodø, Norway; (Å.E.); (H.F.); (O.-L.B.); (T.E.M.)
- Department of Clinical Medicine, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Tom Eirik Mollnes
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, 8005 Bodø, Norway; (Å.E.); (H.F.); (O.-L.B.); (T.E.M.)
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, University of Oslo, 0372 Oslo, Norway
| | - Bård Ove Karlsen
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, 8005 Bodø, Norway; (Å.E.); (H.F.); (O.-L.B.); (T.E.M.)
- Correspondence:
| |
Collapse
|
18
|
Recently Integrated Alu Elements in Capuchin Monkeys: A Resource for Cebus/ Sapajus Genomics. Genes (Basel) 2022; 13:genes13040572. [PMID: 35456378 PMCID: PMC9030454 DOI: 10.3390/genes13040572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Capuchins are platyrrhines (monkeys found in the Americas) within the Cebidae family. For most of their taxonomic history, the two main morphological types of capuchins, gracile (untufted) and robust (tufted), were assigned to a single genus, Cebus. Further, all tufted capuchins were assigned to a single species, Cebus apella, despite broad geographic ranges spanning Central and northern South America. In 2012, tufted capuchins were assigned to their genus, Sapajus, with eight currently recognized species and five Cebus species, although these numbers are still under debate. Alu retrotransposons are a class of mobile element insertion (MEI) widely used to study primate phylogenetics. However, Alu elements have rarely been used to study capuchins. Recent genome-level assemblies for capuchins (Cebus imitator; [Cebus_imitator_1.0] and Sapajus apella [GSC_monkey_1.0]) facilitated large scale ascertainment of young lineage-specific Alu insertions. Reported here are 1607 capuchin specific and 678 Sapajus specific Alu insertions along with candidate oligonucleotides for locus-specific PCR assays for many elements. PCR analyses identified 104 genus level and 51 species level Alu insertion polymorphisms. The Alu datasets reported in this study provide a valuable resource that will assist in the classification of archival samples lacking phenotypic data and for the study of capuchin phylogenetic relationships.
Collapse
|
19
|
Stenz L. The L1-dependant and Pol III transcribed Alu retrotransposon, from its discovery to innate immunity. Mol Biol Rep 2021; 48:2775-2789. [PMID: 33725281 PMCID: PMC7960883 DOI: 10.1007/s11033-021-06258-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The 300 bp dimeric repeats digestible by AluI were discovered in 1979. Since then, Alu were involved in the most fundamental epigenetic mechanisms, namely reprogramming, pluripotency, imprinting and mosaicism. These Alu encode a family of retrotransposons transcribed by the RNA Pol III machinery, notably when the cytosines that constitute their sequences are de-methylated. Then, Alu hijack the functions of ORF2 encoded by another transposons named L1 during reverse transcription and integration into new sites. That mechanism functions as a complex genetic parasite able to copy-paste Alu sequences. Doing that, Alu have modified even the size of the human genome, as well as of other primate genomes, during 65 million years of co-evolution. Actually, one germline retro-transposition still occurs each 20 births. Thus, Alu continue to modify our human genome nowadays and were implicated in de novo mutation causing diseases including deletions, duplications and rearrangements. Most recently, retrotransposons were found to trigger neuronal diversity by inducing mosaicism in the brain. Finally, boosted during viral infections, Alu clearly interact with the innate immune system. The purpose of that review is to give a condensed overview of all these major findings that concern the fascinating physiology of Alu from their discovery up to the current knowledge.
Collapse
Affiliation(s)
- Ludwig Stenz
- Department of Genetic Medicine and Development, Faculty of Medicine, Geneva University, Geneva, Switzerland. .,Swiss Centre for Applied Human Toxicology, University of Basel, Basel, Switzerland.
| |
Collapse
|
20
|
Fukuda S, Varshney A, Fowler BJ, Wang SB, Narendran S, Ambati K, Yasuma T, Magagnoli J, Leung H, Hirahara S, Nagasaka Y, Yasuma R, Apicella I, Pereira F, Makin RD, Magner E, Liu X, Sun J, Wang M, Baker K, Marion KM, Huang X, Baghdasaryan E, Ambati M, Ambati VL, Pandey A, Pandya L, Cummings T, Banerjee D, Huang P, Yerramothu P, Tolstonog GV, Held U, Erwin JA, Paquola ACM, Herdy JR, Ogura Y, Terasaki H, Oshika T, Darwish S, Singh RK, Mozaffari S, Bhattarai D, Kim KB, Hardin JW, Bennett CL, Hinton DR, Hanson TE, Röver C, Parang K, Kerur N, Liu J, Werner BC, Sutton SS, Sadda SR, Schumann GG, Gelfand BD, Gage FH, Ambati J. Cytoplasmic synthesis of endogenous Alu complementary DNA via reverse transcription and implications in age-related macular degeneration. Proc Natl Acad Sci U S A 2021; 118:e2022751118. [PMID: 33526699 PMCID: PMC8017980 DOI: 10.1073/pnas.2022751118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alu retroelements propagate via retrotransposition by hijacking long interspersed nuclear element-1 (L1) reverse transcriptase (RT) and endonuclease activities. Reverse transcription of Alu RNA into complementary DNA (cDNA) is presumed to occur exclusively in the nucleus at the genomic integration site. Whether Alu cDNA is synthesized independently of genomic integration is unknown. Alu RNA promotes retinal pigmented epithelium (RPE) death in geographic atrophy, an untreatable type of age-related macular degeneration. We report that Alu RNA-induced RPE degeneration is mediated via cytoplasmic L1-reverse-transcribed Alu cDNA independently of retrotransposition. Alu RNA did not induce cDNA production or RPE degeneration in L1-inhibited animals or human cells. Alu reverse transcription can be initiated in the cytoplasm via self-priming of Alu RNA. In four health insurance databases, use of nucleoside RT inhibitors was associated with reduced risk of developing atrophic macular degeneration (pooled adjusted hazard ratio, 0.616; 95% confidence interval, 0.493-0.770), thus identifying inhibitors of this Alu replication cycle shunt as potential therapies for a major cause of blindness.
Collapse
Affiliation(s)
- Shinichi Fukuda
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Akhil Varshney
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Benjamin J Fowler
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536
| | - Shao-Bin Wang
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Siddharth Narendran
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Aravind Eye Hospital System, Madurai 625020, India
| | - Kameshwari Ambati
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Tetsuhiro Yasuma
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536
- Department of Ophthalmology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Joseph Magagnoli
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, SC 29209
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Hannah Leung
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Shuichiro Hirahara
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Reo Yasuma
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Ivana Apicella
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Felipe Pereira
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Ryan D Makin
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Eamonn Magner
- Department of Computer Science, University of Kentucky, Lexington, KY 40536
| | - Xinan Liu
- Department of Computer Science, University of Kentucky, Lexington, KY 40536
| | - Jian Sun
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Mo Wang
- Doheny Eye Institute, Los Angeles, CA 90033
| | | | | | - Xiwen Huang
- Department of Computer Science, University of Kentucky, Lexington, KY 40536
| | - Elmira Baghdasaryan
- Doheny Eye Institute, Los Angeles, CA 90033
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Meenakshi Ambati
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Center for Digital Image Evaluation, Charlottesville, VA 22901
| | - Vidya L Ambati
- Center for Digital Image Evaluation, Charlottesville, VA 22901
| | - Akshat Pandey
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Lekha Pandya
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Tammy Cummings
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, SC 29209
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Daipayan Banerjee
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Peirong Huang
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Praveen Yerramothu
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Genrich V Tolstonog
- Department of Otolaryngology-Head and Neck Surgery, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Ulrike Held
- Department of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Jennifer A Erwin
- The Lieber Institute for Brain Development, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Apua C M Paquola
- The Lieber Institute for Brain Development, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Joseph R Herdy
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Yuichiro Ogura
- Department of Ophthalmology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Tetsuro Oshika
- Department of Ophthalmology, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Shaban Darwish
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Giza 12622, Egypt
| | - Ramendra K Singh
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618
| | - Deepak Bhattarai
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536
| | - James W Hardin
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, SC 29209
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Charles L Bennett
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, SC 29209
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
- Center for Medication Safety and Efficacy, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - David R Hinton
- Department of Ophthalmology, University of Southern California Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Timothy E Hanson
- Medtronic, Inc., Minneapolis, MN 55432
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455
| | - Christian Röver
- Department of Medical Statistics, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618
| | - Nagaraj Kerur
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Jinze Liu
- Department of Computer Science, University of Kentucky, Lexington, KY 40536
| | - Brian C Werner
- Department of Orthopaedic Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - S Scott Sutton
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, SC 29209
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Srinivas R Sadda
- Doheny Eye Institute, Los Angeles, CA 90033
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Gerald G Schumann
- Department of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Bradley D Gelfand
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037;
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, School of Medicine, University of Virginia, Charlottesville, VA 22908;
- Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
21
|
Warren WC, Harris RA, Haukness M, Fiddes IT, Murali SC, Fernandes J, Dishuck PC, Storer JM, Raveendran M, Hillier LW, Porubsky D, Mao Y, Gordon D, Vollger MR, Lewis AP, Munson KM, DeVogelaere E, Armstrong J, Diekhans M, Walker JA, Tomlinson C, Graves-Lindsay TA, Kremitzki M, Salama SR, Audano PA, Escalona M, Maurer NW, Antonacci F, Mercuri L, Maggiolini FAM, Catacchio CR, Underwood JG, O'Connor DH, Sanders AD, Korbel JO, Ferguson B, Kubisch HM, Picker L, Kalin NH, Rosene D, Levine J, Abbott DH, Gray SB, Sanchez MM, Kovacs-Balint ZA, Kemnitz JW, Thomasy SM, Roberts JA, Kinnally EL, Capitanio JP, Skene JHP, Platt M, Cole SA, Green RE, Ventura M, Wiseman RW, Paten B, Batzer MA, Rogers J, Eichler EE. Sequence diversity analyses of an improved rhesus macaque genome enhance its biomedical utility. Science 2021; 370:370/6523/eabc6617. [PMID: 33335035 DOI: 10.1126/science.abc6617] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
The rhesus macaque (Macaca mulatta) is the most widely studied nonhuman primate (NHP) in biomedical research. We present an updated reference genome assembly (Mmul_10, contig N50 = 46 Mbp) that increases the sequence contiguity 120-fold and annotate it using 6.5 million full-length transcripts, thus improving our understanding of gene content, isoform diversity, and repeat organization. With the improved assembly of segmental duplications, we discovered new lineage-specific genes and expanded gene families that are potentially informative in studies of evolution and disease susceptibility. Whole-genome sequencing (WGS) data from 853 rhesus macaques identified 85.7 million single-nucleotide variants (SNVs) and 10.5 million indel variants, including potentially damaging variants in genes associated with human autism and developmental delay, providing a framework for developing noninvasive NHP models of human disease.
Collapse
Affiliation(s)
- Wesley C Warren
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA. .,Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65211, USA.,Institute of Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - R Alan Harris
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marina Haukness
- Computational Genomics Laboratory, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Shwetha C Murali
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Jason Fernandes
- Department of Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Philip C Dishuck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jessica M Storer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.,Institue for Systems Biology, Seattle, WA 98109, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - LaDeana W Hillier
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Yafei Mao
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - David Gordon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Mitchell R Vollger
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Alexandra P Lewis
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth DeVogelaere
- Computational Genomics Laboratory, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Joel Armstrong
- Computational Genomics Laboratory, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mark Diekhans
- Computational Genomics Laboratory, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jerilyn A Walker
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University, St. Louis, MO 63108, USA
| | | | - Milinn Kremitzki
- McDonnell Genome Institute, Washington University, St. Louis, MO 63108, USA
| | - Sofie R Salama
- Department of Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Peter A Audano
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nicholas W Maurer
- Department of Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Ludovica Mercuri
- Department of Biology, University of Bari 'Aldo Moro', 70125 Bari, Italy
| | | | | | | | - David H O'Connor
- Department of Pathology and Laboratory Medicine, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Ashley D Sanders
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Betsy Ferguson
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | - Louis Picker
- Oregon National Primate Research Center and Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Beaverton, OR 97006, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Douglas Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jon Levine
- Department of Neuroscience, University of Wisconsin, Madison, WI 53175, USA.,Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53171, USA
| | - David H Abbott
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53171, USA.,Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Stanton B Gray
- The University of Texas MD Anderson Cancer Center, Michale E. Keeling Center for Comparative Medicine and Research, Bastrop, TX 78602, USA
| | - Mar M Sanchez
- Yerkes National Primate Research Center, Atlanta, GA 30329, USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
| | | | - Joseph W Kemnitz
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53171, USA.,Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53706, USA
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA.,Department of Ophthalmology and Vision Science, School of Medicine, University of California-Davis, Davis, CA 95817, USA
| | | | - Erin L Kinnally
- California National Primate Research Center, Davis, CA 95616, USA.,Department of Psychology, University of California, Davis, CA 95616, USA
| | - John P Capitanio
- California National Primate Research Center, Davis, CA 95616, USA.,Department of Psychology, University of California, Davis, CA 95616, USA
| | - J H Pate Skene
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute and Southwest National Primate Research Center, San Antonio, TX 78227, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mario Ventura
- Department of Biology, University of Bari 'Aldo Moro', 70125 Bari, Italy
| | - Roger W Wiseman
- Department of Pathology and Laboratory Medicine, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Benedict Paten
- Computational Genomics Laboratory, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. .,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
22
|
Evans TA, Erwin JA. Retroelement-derived RNA and its role in the brain. Semin Cell Dev Biol 2020; 114:68-80. [PMID: 33229216 DOI: 10.1016/j.semcdb.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
Comprising ~40% of the human genome, retroelements are mobile genetic elements which are transcribed into RNA, then reverse-transcribed into DNA and inserted into a new site in the genome. Retroelements are referred to as "genetic parasites", residing among host genes and relying on host machinery for transcription and evolutionary propagation. The healthy brain has the highest expression of retroelement-derived sequences compared to other somatic tissue, which leads to the question: how does retroelement-derived RNA influence human traits and cellular states? While the functional importance of upregulating retroelement expression in the brain is an active area of research, RNA species derived from retroelements influence both self- and host gene expression by contributing to chromatin remodeling, alternative splicing, somatic mosaicism and translational repression. Here, we review the emerging evidence that the functional importance of RNA derived from retroelements is multifaceted. Retroelements can influence organismal states through the seeding of epigenetic states in chromatin, the production of structured RNA and even catalytically active ribozymes, the generation of cytoplasmic ssDNA and RNA/DNA hybrids, the production of viral-like proteins, and the generation of somatic mutations. Comparative sequencing suggests that retroelements can contribute to intraspecies variation through these mechanisms to alter transcript identity and abundance. In humans, an increasing number of neurodevelopmental and neurodegenerative conditions are associated with dysregulated retroelements, including Aicardi-Goutieres syndrome (AGS), Rett syndrome (RTT), Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease (AD), multiple sclerosis (MS), schizophrenia (SZ), and aging. Taken together, these concepts suggest a larger functional role for RNA derived from retroelements. This review aims to define retroelement-derived RNA, discuss how it impacts the mammalian genome, as well as summarize data supporting phenotypic consequences of this unique RNA subset in the brain.
Collapse
Affiliation(s)
- Taylor A Evans
- Lieber Institute for Brain Development, Baltimore, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer Ann Erwin
- Lieber Institute for Brain Development, Baltimore, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Pinheiro M, Peixoto A, Santos C, Escudeiro C, Bizarro S, Pinto P, Santos R, Pinto C, Guerra J, Silva J, Teixeira MR. Pathogenicity reclassification of two BRCA1/BRCA2 exonic duplications after identification of genomic breakpoints and tandem orientation. Cancer Genet 2020; 248-249:18-24. [PMID: 32971473 DOI: 10.1016/j.cancergen.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/30/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
The genomic consequence and clinical interpretation of large duplications are difficult to infer without determining the location and orientation of the duplicated sequence. We aimed to characterize two intragenic duplications detected in two hereditary breast and ovarian cancer syndrome (HBOC) families, namely BRCA1 exon 4 to 6 and BRCA2 exon 17 to 18, previously detected by multiplex ligation probe amplification and initially classified as variants of unknown significance. Using long range PCR, with duplication-specific primers, we were able to ascertain the genomic breakpoints and observed that the two rearrangements occurred in tandem and in direct orientation. The BRCA1 c.134+440_441+870dup and BRCA2 c.7806-2083_8332-1512dup duplications here identified are predicted to cause frameshifts that create a premature stop codon and were reclassified as pathogenic. Furthermore, both families present phenotypic traits typical of HBOC syndrome. We also observed that the genomic breakpoints of these two duplications occurred within highly homologous Alu elements. Concluding, we characterized two in tandem BRCA1 and BRCA2 duplications that likely occurred by Alu-mediated homologous recombination, allowing identification of the underlying cause of the HBOC syndrome in these families.
Collapse
Affiliation(s)
- Manuela Pinheiro
- Department of Genetics, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino Almeida, Porto 4200-072, Portugal
| | - Ana Peixoto
- Department of Genetics, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino Almeida, Porto 4200-072, Portugal
| | - Catarina Santos
- Department of Genetics, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino Almeida, Porto 4200-072, Portugal
| | - Carla Escudeiro
- Department of Genetics, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino Almeida, Porto 4200-072, Portugal
| | - Susana Bizarro
- Department of Genetics, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino Almeida, Porto 4200-072, Portugal
| | - Pedro Pinto
- Department of Genetics, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino Almeida, Porto 4200-072, Portugal
| | - Rui Santos
- Department of Genetics, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino Almeida, Porto 4200-072, Portugal
| | - Carla Pinto
- Department of Genetics, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino Almeida, Porto 4200-072, Portugal
| | - Joana Guerra
- Department of Genetics, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino Almeida, Porto 4200-072, Portugal
| | - João Silva
- Department of Genetics, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino Almeida, Porto 4200-072, Portugal
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino Almeida, Porto 4200-072, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Largo Prof. Abel Salazar, Porto 4099-003, Portugal.
| |
Collapse
|
24
|
Tang W, Liang P. Alu master copies serve as the drivers of differential SINE transposition in recent primate genomes. Anal Biochem 2020; 606:113825. [PMID: 32712063 DOI: 10.1016/j.ab.2020.113825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022]
Abstract
Alu elements, averaging ~300bp in length, are a family of primate-specific short intersperse nuclear elements (SINEs) with more than one million copies and contributing to ~11% of primate genomes. Despite mostly being shared among primates, our recent study revealed highly differential recent Alu transposition among the genomes of primates from Hominidae and Cercopithecidae families. To understand the underlying mechanism, we analyzed six primate genomes and revealed species- and lineage-specific Alu profile exclusively defined by AluY composition. Among all Alus from the 6 genomes, we identified 5401 Alu master copies with 99% being from the AluY subfamily. The numbers of Alu master copies are positively correlated to the number of AluY elements in the genomes with the baboon genome having the largest number of most recent Alu master copies at high activities, while the crab-eating macaque genome having a low number of Alu master copies with low activity. Furthermore, the expression level of Alu master copies is positively correlated with their transposition activity. Our results support the concept that Alu transposition in primate genomes is driven by a small number of master copies, the number and relative activity of which contribute to the differential Alu transposition in recent primate genomes.
Collapse
Affiliation(s)
- Wanxiangfu Tang
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
25
|
Yamamoto S, Ding N, Matsumoto SI, Hirabayashi H. Highly specific, quantitative polymerase chain reaction probe for the quantification of human cells in cynomolgus monkeys. Drug Metab Pharmacokinet 2020; 36:100359. [PMID: 33348238 DOI: 10.1016/j.dmpk.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
Quantification of human cells may be performed using quantitative polymerase chain reaction (qPCR). In preclinical studies, the human Alu sequence is widely used as biomarker for human DNA. However, because the Alu gene is shared by primates, its use is limited to non-primate studies. The biodistribution of human cells in primates is also necessary for translational studies. Therefore, we aimed to design a novel, human-specific primer/probe that enables the quantification of human cells in primates and other animal models. A novel primer/probe set was successfully designed based on highly repetitive LINE1 sequences. qPCR efficiency (94.95-99.21%) and linearity of calibration curves (r2 = 0.996-0.999) were confirmed in tissue homogenates of cynomolgus monkey. The lower limit of detection was 10 cells per 15-mg tissue sample, a sensitivity that is equivalent to existing Alu primers/probes. The set was also effective in other animal models such as mice, rabbits, pigs, and common marmosets. To our knowledge, this is the first study describing the successful design of a human-specific qPCR primer/probe for human cell quantification in various animals, including non-human primates, using LINE1 sequence. The excellent selectivity, sensitivity, and versatility of the LINE1 primers/probes make it a promising quantification tool in preclinical biodistribution studies.
Collapse
Affiliation(s)
- Syunsuke Yamamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan.
| | - Ning Ding
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan.
| | - Shin-Ichi Matsumoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan.
| | - Hideki Hirabayashi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan.
| |
Collapse
|
26
|
A comprehensive analysis of chimpanzee (Pan Troglodytes)-specific AluYb8 element. Genes Genomics 2020; 42:1207-1213. [PMID: 32860627 DOI: 10.1007/s13258-020-00989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Alu elements are most abundant retrotransposons with > 1.2 million copies in the primate genome. AluYb8 subfamily was diverged from AluY lineage, and has accumulated eight diagnostic mutations and 7-bp duplication during primate evolution. A total of 1851 AluYb copies are present in the human genome, and most of them are human-specific. On the other hand, only a few AluYb8 copies were identified in the chimpanzee genome by previous studies on AluYb8. The significantly different number of species-specific AluYb8 elements between human and chimpanzee might result from the incompletion of chimpanzee reference genome sequences at the time of the previous study. OBJECTIVE AluYb8 elements could generate genomic structural variations in the chimpanzee genome. This study aimed to identify and characterize chimpanzee-specific AluYb elements using the most updated chimpanzee reference genome sequences (Jan. 2018, panTro6). METHODS To identify chimpanzee-specific AluYb8, we carried out genomic comparison with non-chimpanzee primate genome using the UCSC table browser. In addition, chimpanzee-specific AluYb8 candidates were manually inspected and experimentally verified using PCR and Sanger sequencing. RESULTS Among a total of 231 chimpanzee-specific AluYb8 candidates, 11 of the candidates are chimpanzee-specific AluYb8, and 29 elements are shared between the chimpanzee and non-chimpanzee primate genomes. Through the sequence analysis of AluYb8 and other Alu subfamilies, we were able to observe various diagnostic mutations and variable length duplications in 7-bp duplication region of AluYb8 element. In addition, we further validated two of the chimpanzee-specific AluYb8 elements (CS8 and CS20) that were not previously discovered by display PCR and Sanger sequencing. Interestingly, we identified a AluYb8 insertion-mediated deletion (CS8 locus) in the chimpanzee genome. CONCLUSION Our study found that AluYb8 elements are much more abundant in the human genome than chimpanzee genome, and that it could be due to the absence of hyperactive "master" AluYb8 elements in the chimpanzee genome.
Collapse
|
27
|
Pre-mRNA structures forming circular RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194410. [DOI: 10.1016/j.bbagrm.2019.194410] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/25/2022]
|
28
|
Storer JM, Mierl JR, Brantley SA, Threeton B, Sukharutski Y, Rewerts LC, St Romain CP, Foreman MM, Baker JN, Walker JA, Orkin JD, Melin AD, Phillips KA, Konkel MK, Batzer MA. Amplification Dynamics of Platy-1 Retrotransposons in the Cebidae Platyrrhine Lineage. Genome Biol Evol 2019; 11:1105-1116. [PMID: 30888417 PMCID: PMC6464705 DOI: 10.1093/gbe/evz062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2019] [Indexed: 12/11/2022] Open
Abstract
Platy-1 elements are Platyrrhine-specific, short interspersed elements originally discovered in the Callithrix jacchus (common marmoset) genome. To date, only the marmoset genome has been analyzed for Platy-1 repeat content. Here, we report full-length Platy-1 insertions in other New World monkey (NWM) genomes (Saimiri boliviensis, squirrel monkey; Cebus imitator, capuchin monkey; and Aotus nancymaae, owl monkey) and analyze the amplification dynamics of lineage-specific Platy-1 insertions. A relatively small number of full-length and lineage-specific Platy-1 elements were found in the squirrel, capuchin, and owl monkey genomes compared with the marmoset genome. In addition, only a few older Platy-1 subfamilies were recovered in this study, with no Platy-1 subfamilies younger than Platy-1-6. By contrast, 62 Platy-1 subfamilies were discovered in the marmoset genome. All of the lineage-specific insertions found in the squirrel and capuchin monkeys were fixed present. However, ∼15% of the lineage-specific Platy-1 loci in Aotus were polymorphic for insertion presence/absence. In addition, two new Platy-1 subfamilies were identified in the owl monkey genome with low nucleotide divergences compared with their respective consensus sequences, suggesting minimal ongoing retrotransposition in the Aotus genus and no current activity in the Saimiri, Cebus, and Sapajus genera. These comparative analyses highlight the finding that the high number of Platy-1 elements discovered in the marmoset genome is an exception among NWM analyzed thus far, rather than the rule. Future studies are needed to expand upon our knowledge of Platy-1 amplification in other NWM genomes.
Collapse
Affiliation(s)
| | - Jackson R Mierl
- Department of Biological Sciences, Louisiana State University
| | | | | | | | - Lydia C Rewerts
- Department of Biological Sciences, Louisiana State University
| | | | | | - Jasmine N Baker
- Department of Biological Sciences, Louisiana State University
| | | | - Joseph D Orkin
- Department of Anthropology and Archaeology & Department of Medical Genetics, University of Calgary, Alberta, Canada
| | - Amanda D Melin
- Department of Anthropology and Archaeology & Department of Medical Genetics, University of Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, N.W. Calgary, Alberta, Canada
| | - Kimberley A Phillips
- Department of Psychology, Trinity University.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Miriam K Konkel
- Department of Biological Sciences, Louisiana State University.,Department of Genetics & Biochemistry, Clemson University
| | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University
| |
Collapse
|
29
|
ALUminating the Path of Atherosclerosis Progression: Chaos Theory Suggests a Role for Alu Repeats in the Development of Atherosclerotic Vascular Disease. Int J Mol Sci 2018; 19:ijms19061734. [PMID: 29895733 PMCID: PMC6032270 DOI: 10.3390/ijms19061734] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/04/2018] [Accepted: 06/09/2018] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (ATH) and coronary artery disease (CAD) are chronic inflammatory diseases with an important genetic background; they derive from the cumulative effect of multiple common risk alleles, most of which are located in genomic noncoding regions. These complex diseases behave as nonlinear dynamical systems that show a high dependence on their initial conditions; thus, long-term predictions of disease progression are unreliable. One likely possibility is that the nonlinear nature of ATH could be dependent on nonlinear correlations in the structure of the human genome. In this review, we show how chaos theory analysis has highlighted genomic regions that have shared specific structural constraints, which could have a role in ATH progression. These regions were shown to be enriched with repetitive sequences of the Alu family, genomic parasites that have colonized the human genome, which show a particular secondary structure and are involved in the regulation of gene expression. Here, we show the impact of Alu elements on the mechanisms that regulate gene expression, especially highlighting the molecular mechanisms via which the Alu elements alter the inflammatory response. We devote special attention to their relationship with the long noncoding RNA (lncRNA); antisense noncoding RNA in the INK4 locus (ANRIL), a risk factor for ATH; their role as microRNA (miRNA) sponges; and their ability to interfere with the regulatory circuitry of the (nuclear factor kappa B) NF-κB response. We aim to characterize ATH as a nonlinear dynamic system, in which small initial alterations in the expression of a number of repetitive elements are somehow amplified to reach phenotypic significance.
Collapse
|
30
|
Mafra FFP, Gattai PP, Macedo MM, Mori MA, Araujo RC. The angiotensin-I-converting enzyme insertion/deletion in polymorphic element codes for an AluYa5 RNA that downregulates gene expression. THE PHARMACOGENOMICS JOURNAL 2018; 18:517-527. [PMID: 29789676 DOI: 10.1038/s41397-018-0020-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 06/14/2017] [Accepted: 09/18/2017] [Indexed: 01/06/2023]
Abstract
Angiotensin-I-converting enzyme (ACE) is involved in the synthesis and degradation of important bioactive peptides. The ACE gene has a 287-bp insertion/deletion polymorphism that controls ACE expression through a mechanism that remains elusive. In this study, we found that the 287-bp polymorphic element of the ACE gene, a member of the AluYa5 sub-family of Alu elements, codes for an RNA molecule that controls the levels of ACE mRNA. Transient transfection of a plasmid containing a CMV promoter upstream of the ACE polymorphic element resulted in significant expression of an AluYa5 RNA and reduced ACE mRNA expression as well as ACE enzymatic activity in AD 293 cells. The AluYa5 element also independently reduced the expression of other genes, regardless of whether these genes harbored Alu elements within their genomic context. Interestingly, the CMV promoter was not required for the expression of the AluYa5 element in AD 293 cells. The 287-bp sequence was sufficient to produce AluYa5 RNA and led to a significant reduction in ACE gene expression. Moreover, the removal of an 11-bp fragment of the 3' end of the ACE polymorphic sequence, which is specific to this particular AluYa5 element, did not prevent this element from being expressed but did affect its ability to target ACE expression. Thus, the expression of the AluYa5 polymorphic element within the ACE gene could explain why patients carrying the ACE insertion polymorphism have reduced risk of developing several chronic diseases.
Collapse
Affiliation(s)
| | - Pedro P Gattai
- Dept. of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Michel M Macedo
- Dept. of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Marcelo A Mori
- Dept. of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Ronaldo C Araujo
- Dept. of Biophysics, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
31
|
Brunet FG, Audit B, Drillon G, Argoul F, Volff JN, Arneodo A. Evidence for DNA Sequence Encoding of an Accessible Nucleosomal Array across Vertebrates. Biophys J 2018; 114:2308-2316. [PMID: 29580552 PMCID: PMC6028776 DOI: 10.1016/j.bpj.2018.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/07/2018] [Accepted: 02/20/2018] [Indexed: 12/15/2022] Open
Abstract
Nucleosome-depleted regions around which nucleosomes order following the "statistical" positioning scenario were recently shown to be encoded in the DNA sequence in human. This intrinsic nucleosomal ordering strongly correlates with oscillations in the local GC content as well as with the interspecies and intraspecies mutation profiles, revealing the existence of both positive and negative selection. In this letter, we show that these predicted nucleosome inhibitory energy barriers (NIEBs) with compacted neighboring nucleosomes are indeed ubiquitous to all vertebrates tested. These 1 kb-sized chromatin patterns are widely distributed along vertebrate chromosomes, overall covering more than a third of the genome. We have previously observed in human deviations from neutral evolution at these genome-wide distributed regions, which we interpreted as a possible indication of the selection of an open, accessible, and dynamic nucleosomal array to constitutively facilitate the epigenetic regulation of nuclear functions in a cell-type-specific manner. As a first, very appealing observation supporting this hypothesis, we report evidence of a strong association between NIEB borders and the poly(A) tails of Alu sequences in human. These results suggest that NIEBs provide adequate chromatin patterns favorable to the integration of Alu retrotransposons and, more generally to various transposable elements in the genomes of primates and other vertebrates.
Collapse
Affiliation(s)
- Frédéric G Brunet
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, Lyon, France
| | - Benjamin Audit
- Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS Laboratoire de Physique, Lyon, France
| | - Guénola Drillon
- Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS Laboratoire de Physique, Lyon, France
| | - Françoise Argoul
- Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS Laboratoire de Physique, Lyon, France; LOMA, Université de Bordeaux, CNRS UMR 5798, Talence, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, Lyon, France
| | - Alain Arneodo
- Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS Laboratoire de Physique, Lyon, France; LOMA, Université de Bordeaux, CNRS UMR 5798, Talence, France.
| |
Collapse
|
32
|
Steely CJ, Baker JN, Walker JA, Loupe CD, Batzer MA. Analysis of lineage-specific Alu subfamilies in the genome of the olive baboon, Papio anubis. Mob DNA 2018; 9:10. [PMID: 29560044 PMCID: PMC5858127 DOI: 10.1186/s13100-018-0115-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/13/2018] [Indexed: 02/08/2023] Open
Abstract
Background Alu elements are primate-specific retroposons that mobilize using the enzymatic machinery of L1 s. The recently completed baboon genome project found that the mobilization rate of Alu elements is higher than in the genome of any other primate studied thus far. However, the Alu subfamily structure present in and specific to baboons had not been examined yet. Results Here we report 129 Alu subfamilies that are propagating in the genome of the olive baboon, with 127 of these subfamilies being new and specific to the baboon lineage. We analyzed 233 Alu insertions in the genome of the olive baboon using locus specific polymerase chain reaction assays, covering 113 of the 129 subfamilies. The allele frequency data from these insertions show that none of the nine groups of subfamilies are nearing fixation in the lineage. Conclusions Many subfamilies of Alu elements are actively mobilizing throughout the baboon lineage, with most being specific to the baboon lineage.
Collapse
Affiliation(s)
- Cody J Steely
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| | - Jasmine N Baker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| | - Jerilyn A Walker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| | - Charles D Loupe
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| | | | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803 USA
| |
Collapse
|
33
|
Vrljicak P, Lucas ES, Lansdowne L, Lucciola R, Muter J, Dyer NP, Brosens JJ, Ott S. Analysis of chromatin accessibility in decidualizing human endometrial stromal cells. FASEB J 2018; 32:2467-2477. [PMID: 29259032 PMCID: PMC6040682 DOI: 10.1096/fj.201701098r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spontaneous decidualization of the endometrium in response to progesterone signaling is confined to menstruating species, including humans and other higher primates. During this process, endometrial stromal cells (EnSCs) differentiate into specialized decidual cells that control embryo implantation. We subjected undifferentiated and decidualizing human EnSCs to an assay for transposase accessible chromatin with sequencing (ATAC-seq) to map the underlying chromatin changes. A total of 185,084 open DNA loci were mapped accurately in EnSCs. Altered chromatin accessibility upon decidualization was strongly associated with differential gene expression. Analysis of 1533 opening and closing chromatin regions revealed over-representation of DNA binding motifs for known decidual transcription factors (TFs) and identified putative new regulators. ATAC-seq footprint analysis provided evidence of TF binding at specific motifs. One of the largest footprints involved the most enriched motif-basic leucine zipper-as part of a triple motif that also comprised the estrogen receptor and Pax domain binding sites. Without exception, triple motifs were located within Alu elements, which suggests a role for this primate-specific transposable element (TE) in the evolution of decidual genes. Although other TEs were generally under-represented in open chromatin of undifferentiated EnSCs, several classes contributed to the regulatory DNA landscape that underpins decidual gene expression.-Vrljicak, P., Lucas, E. S., Lansdowne, L., Lucciola, R., Muter, J., Dyer, N. P., Brosens, J. J., Ott, S. Analysis of chromatin accessibility in decidualizing human endometrial stromal cells.
Collapse
Affiliation(s)
- Pavle Vrljicak
- Tommy's National Centre for Miscarriage Research, Warwick Medical School, University Hospitals Coventry and Warwickshire National Health Service (NHS) Trust, United Kingdom.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Emma S Lucas
- Tommy's National Centre for Miscarriage Research, Warwick Medical School, University Hospitals Coventry and Warwickshire National Health Service (NHS) Trust, United Kingdom.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Lauren Lansdowne
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Raffaella Lucciola
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Joanne Muter
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Nigel P Dyer
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Jan J Brosens
- Tommy's National Centre for Miscarriage Research, Warwick Medical School, University Hospitals Coventry and Warwickshire National Health Service (NHS) Trust, United Kingdom.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Sascha Ott
- Tommy's National Centre for Miscarriage Research, Warwick Medical School, University Hospitals Coventry and Warwickshire National Health Service (NHS) Trust, United Kingdom.,Department of Computer Science, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
34
|
Kojima KK. Human transposable elements in Repbase: genomic footprints from fish to humans. Mob DNA 2018; 9:2. [PMID: 29308093 PMCID: PMC5753468 DOI: 10.1186/s13100-017-0107-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/20/2017] [Indexed: 01/21/2023] Open
Abstract
Repbase is a comprehensive database of eukaryotic transposable elements (TEs) and repeat sequences, containing over 1300 human repeat sequences. Recent analyses of these repeat sequences have accumulated evidences for their contribution to human evolution through becoming functional elements, such as protein-coding regions or binding sites of transcriptional regulators. However, resolving the origins of repeat sequences is a challenge, due to their age, divergence, and degradation. Ancient repeats have been continuously classified as TEs by finding similar TEs from other organisms. Here, the most comprehensive picture of human repeat sequences is presented. The human genome contains traces of 10 clades (L1, CR1, L2, Crack, RTE, RTEX, R4, Vingi, Tx1 and Penelope) of non-long terminal repeat (non-LTR) retrotransposons (long interspersed elements, LINEs), 3 types (SINE1/7SL, SINE2/tRNA, and SINE3/5S) of short interspersed elements (SINEs), 1 composite retrotransposon (SVA) family, 5 classes (ERV1, ERV2, ERV3, Gypsy and DIRS) of LTR retrotransposons, and 12 superfamilies (Crypton, Ginger1, Harbinger, hAT, Helitron, Kolobok, Mariner, Merlin, MuDR, P, piggyBac and Transib) of DNA transposons. These TE footprints demonstrate an evolutionary continuum of the human genome.
Collapse
Affiliation(s)
- Kenji K Kojima
- Genetic Information Research Institute, 465 Fairchild Drive, Suite 201, Mountain View, CA 94043 USA.,Department of Life Sciences, National Cheng Kung University, No. 1, Daxue Rd, East District, Tainan, 701 Taiwan
| |
Collapse
|
35
|
Detection of de novo single nucleotide variants in offspring of atomic-bomb survivors close to the hypocenter by whole-genome sequencing. J Hum Genet 2017; 63:357-363. [DOI: 10.1038/s10038-017-0392-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/11/2017] [Accepted: 11/07/2017] [Indexed: 12/30/2022]
Abstract
Abstract
Ionizing radiation released by the atomic bombs at Hiroshima and Nagasaki, Japan, in 1945 caused many long-term illnesses, including increased risks of malignancies such as leukemia and solid tumours. Radiation has demonstrated genetic effects in animal models, leading to concerns over the potential hereditary effects of atomic bomb-related radiation. However, no direct analyses of whole DNA have yet been reported. We therefore investigated de novo variants in offspring of atomic-bomb survivors by whole-genome sequencing (WGS). We collected peripheral blood from three trios, each comprising a father (atomic-bomb survivor with acute radiation symptoms), a non-exposed mother, and their child, none of whom had any past history of haematological disorders. One trio of non-exposed individuals was included as a control. DNA was extracted and the numbers of de novo single nucleotide variants in the children were counted by WGS with sequencing confirmation. Gross structural variants were also analysed. Written informed consent was obtained from all participants prior to the study. There were 62, 81, and 42 de novo single nucleotide variants in the children of atomic-bomb survivors, compared with 48 in the control trio. There were no gross structural variants in any trio. These findings are in accord with previously published results that also showed no significant genetic effects of atomic-bomb radiation on second-generation survivors.
Collapse
|
36
|
Gardner EJ, Lam VK, Harris DN, Chuang NT, Scott EC, Pittard WS, Mills RE, Devine SE. The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology. Genome Res 2017; 27:1916-1929. [PMID: 28855259 PMCID: PMC5668948 DOI: 10.1101/gr.218032.116] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 08/07/2017] [Indexed: 01/22/2023]
Abstract
Mobile element insertions (MEIs) represent ∼25% of all structural variants in human genomes. Moreover, when they disrupt genes, MEIs can influence human traits and diseases. Therefore, MEIs should be fully discovered along with other forms of genetic variation in whole genome sequencing (WGS) projects involving population genetics, human diseases, and clinical genomics. Here, we describe the Mobile Element Locator Tool (MELT), which was developed as part of the 1000 Genomes Project to perform MEI discovery on a population scale. Using both Illumina WGS data and simulations, we demonstrate that MELT outperforms existing MEI discovery tools in terms of speed, scalability, specificity, and sensitivity, while also detecting a broader spectrum of MEI-associated features. Several run modes were developed to perform MEI discovery on local and cloud systems. In addition to using MELT to discover MEIs in modern humans as part of the 1000 Genomes Project, we also used it to discover MEIs in chimpanzees and ancient (Neanderthal and Denisovan) hominids. We detected diverse patterns of MEI stratification across these populations that likely were caused by (1) diverse rates of MEI production from source elements, (2) diverse patterns of MEI inheritance, and (3) the introgression of ancient MEIs into modern human genomes. Overall, our study provides the most comprehensive map of MEIs to date spanning chimpanzees, ancient hominids, and modern humans and reveals new aspects of MEI biology in these lineages. We also demonstrate that MELT is a robust platform for MEI discovery and analysis in a variety of experimental settings.
Collapse
Affiliation(s)
- Eugene J Gardner
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Vincent K Lam
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Daniel N Harris
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Nelson T Chuang
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Division of Gastroenterology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Emma C Scott
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - W Stephen Pittard
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | - Scott E Devine
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
37
|
Abstract
Transposable elements have had a profound impact on the structure and function of mammalian genomes. The retrotransposon Long INterspersed Element-1 (LINE-1 or L1), by virtue of its replicative mobilization mechanism, comprises ∼17% of the human genome. Although the vast majority of human LINE-1 sequences are inactive molecular fossils, an estimated 80-100 copies per individual retain the ability to mobilize by a process termed retrotransposition. Indeed, LINE-1 is the only active, autonomous retrotransposon in humans and its retrotransposition continues to generate both intra-individual and inter-individual genetic diversity. Here, we briefly review the types of transposable elements that reside in mammalian genomes. We will focus our discussion on LINE-1 retrotransposons and the non-autonomous Short INterspersed Elements (SINEs) that rely on the proteins encoded by LINE-1 for their mobilization. We review cases where LINE-1-mediated retrotransposition events have resulted in genetic disease and discuss how the characterization of these mutagenic insertions led to the identification of retrotransposition-competent LINE-1s in the human and mouse genomes. We then discuss how the integration of molecular genetic, biochemical, and modern genomic technologies have yielded insight into the mechanism of LINE-1 retrotransposition, the impact of LINE-1-mediated retrotransposition events on mammalian genomes, and the host cellular mechanisms that protect the genome from unabated LINE-1-mediated retrotransposition events. Throughout this review, we highlight unanswered questions in LINE-1 biology that provide exciting opportunities for future research. Clearly, much has been learned about LINE-1 and SINE biology since the publication of Mobile DNA II thirteen years ago. Future studies should continue to yield exciting discoveries about how these retrotransposons contribute to genetic diversity in mammalian genomes.
Collapse
|
38
|
Jin L, McQuillan I. Computational modelling of interruptional activities between transposable elements using grammars and the linear ordering problem. Soft comput 2016. [DOI: 10.1007/s00500-015-1725-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Konkel MK, Walker JA, Hotard AB, Ranck MC, Fontenot CC, Storer J, Stewart C, Marth GT, Batzer MA. Sequence Analysis and Characterization of Active Human Alu Subfamilies Based on the 1000 Genomes Pilot Project. Genome Biol Evol 2015; 7:2608-22. [PMID: 26319576 PMCID: PMC4607524 DOI: 10.1093/gbe/evv167] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2015] [Indexed: 12/17/2022] Open
Abstract
The goal of the 1000 Genomes Consortium is to characterize human genome structural variation (SV), including forms of copy number variations such as deletions, duplications, and insertions. Mobile element insertions, particularly Alu elements, are major contributors to genomic SV among humans. During the pilot phase of the project we experimentally validated 645 (611 intergenic and 34 exon targeted) polymorphic "young" Alu insertion events, absent from the human reference genome. Here, we report high resolution sequencing of 343 (322 unique) recent Alu insertion events, along with their respective target site duplications, precise genomic breakpoint coordinates, subfamily assignment, percent divergence, and estimated A-rich tail lengths. All the sequenced Alu loci were derived from the AluY lineage with no evidence of retrotransposition activity involving older Alu families (e.g., AluJ and AluS). AluYa5 is currently the most active Alu subfamily in the human lineage, followed by AluYb8, and many others including three newly identified subfamilies we have termed AluYb7a3, AluYb8b1, and AluYa4a1. This report provides the structural details of 322 unique Alu variants from individual human genomes collectively adding about 100 kb of genomic variation. Many Alu subfamilies are currently active in human populations, including a surprising level of AluY retrotransposition. Human Alu subfamilies exhibit continuous evolution with potential drivers sprouting new Alu lineages.
Collapse
Affiliation(s)
- Miriam K Konkel
- Department of Biological Sciences, Louisiana State University
| | | | - Ashley B Hotard
- Department of Biological Sciences, Louisiana State University
| | - Megan C Ranck
- Department of Biological Sciences, Louisiana State University
| | | | - Jessica Storer
- Department of Biological Sciences, Louisiana State University Department of Molecular, Cellular and Developmental Biology, The Ohio State University
| | - Chip Stewart
- Department of Biology, Boston College Cancer Genome Computational Analysis, Cambridge, MA
| | - Gabor T Marth
- Department of Biology, Boston College Eccles Institute of Human Genetics, University of Utah
| | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University
| |
Collapse
|
40
|
Longo MS, Brown JD, Zhang C, O'Neill MJ, O'Neill RJ. Identification of a recently active mammalian SINE derived from ribosomal RNA. Genome Biol Evol 2015; 7:775-88. [PMID: 25637222 PMCID: PMC4994717 DOI: 10.1093/gbe/evv015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Complex eukaryotic genomes are riddled with repeated sequences whose derivation does not coincide with phylogenetic history and thus is often unknown. Among such sequences, the capacity for transcriptional activity coupled with the adaptive use of reverse transcription can lead to a diverse group of genomic elements across taxa, otherwise known as selfish elements or mobile elements. Short interspersed nuclear elements (SINEs) are nonautonomous mobile elements found in eukaryotic genomes, typically derived from cellular RNAs such as tRNAs, 7SL or 5S rRNA. Here, we identify and characterize a previously unknown SINE derived from the 3'-end of the large ribosomal subunit (LSU or 28S rDNA) and transcribed via RNA polymerase III. This new element, SINE28, is represented in low-copy numbers in the human reference genome assembly, wherein we have identified 27 discrete loci. Phylogenetic analysis indicates these elements have been transpositionally active within primate lineages as recently as 6 MYA while modern humans still carry transcriptionally active copies. Moreover, we have identified SINE28s in all currently available assembled mammalian genome sequences. Phylogenetic comparisons indicate that these elements are frequently rederived from the highly conserved LSU rRNA sequences in a lineage-specific manner. We propose that this element has not been previously recognized as a SINE given its high identity to the canonical LSU, and that SINE28 likely represents one of possibly many unidentified, active transposable elements within mammalian genomes.
Collapse
Affiliation(s)
- Mark S Longo
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut
| | - Judy D Brown
- Department of Allied Health Sciences and Institute for Systems Genomics, University of Connecticut
| | - Chu Zhang
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut
| | - Michael J O'Neill
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut
| |
Collapse
|
41
|
Hayano T, Yamada S, Hosomichi K, Nakaoka H, Yoshihara K, Adachi S, Kashima K, Tanaka K, Enomoto T, Inoue I. Identification of novel exonic mobile element insertions in epithelial ovarian cancers. Hum Genome Var 2015; 2:15030. [PMID: 27081539 PMCID: PMC4785551 DOI: 10.1038/hgv.2015.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/02/2015] [Accepted: 07/04/2015] [Indexed: 11/09/2022] Open
Abstract
Mobile elements comprise about half of the human genome. Three active mobile element families (L1, Alu, and SVA) possibly cause diseases such as cancer. We conducted mobile element insertion (MEI) profiling of 44 epithelial ovarian cancers using exome-sequencing data. We identified a total of 106 MEIs using the Mobster program, 8 of which were novel exonic MEIs.
Collapse
Affiliation(s)
- Takahide Hayano
- Division of Human Genetics, National Institute of Genetics , Mishima, Japan
| | - Shiro Yamada
- Division of Human Genetics, National Institute of Genetics , Mishima, Japan
| | | | - Hirofumi Nakaoka
- Division of Human Genetics, National Institute of Genetics , Mishima, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences , Niigata, Japan
| | - Sosuke Adachi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences , Niigata, Japan
| | - Katsunori Kashima
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences , Niigata, Japan
| | - Kenichi Tanaka
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Niigata Medical Center Hospital, Niigata, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences , Niigata, Japan
| | - Ituro Inoue
- Division of Human Genetics, National Institute of Genetics , Mishima, Japan
| |
Collapse
|
42
|
Dynamic Alu methylation during normal development, aging, and tumorigenesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:784706. [PMID: 25243180 PMCID: PMC4163490 DOI: 10.1155/2014/784706] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/16/2014] [Indexed: 12/15/2022]
Abstract
DNA methylation primarily occurs on CpG dinucleotides and plays an important role in transcriptional regulations during tissue development and cell differentiation. Over 25% of CpG dinucleotides in the human genome reside within Alu elements, the most abundant human repeats. The methylation of Alu elements is an important mechanism to suppress Alu transcription and subsequent retrotransposition. Decades of studies revealed that Alu methylation is highly dynamic during early development and aging. Recently, many environmental factors were shown to have a great impact on Alu methylation. In addition, aberrant Alu methylation has been documented to be an early event in many tumors and Alu methylation levels have been associated with tumor aggressiveness. The assessment of the Alu methylation has become an important approach for early diagnosis and/or prognosis of cancer. This review focuses on the dynamic Alu methylation during development, aging, and tumor genesis. The cause and consequence of Alu methylation changes will be discussed.
Collapse
|
43
|
Darby MM, Sabunciyan S. Repetitive Elements and Epigenetic Marks in Behavior and Psychiatric Disease. ADVANCES IN GENETICS 2014; 86:185-252. [DOI: 10.1016/b978-0-12-800222-3.00009-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
McLain AT, Carman GW, Fullerton ML, Beckstrom TO, Gensler W, Meyer TJ, Faulk C, Batzer MA. Analysis of western lowland gorilla (Gorilla gorilla gorilla) specific Alu repeats. Mob DNA 2013; 4:26. [PMID: 24262036 PMCID: PMC4177385 DOI: 10.1186/1759-8753-4-26] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023] Open
Abstract
Background Research into great ape genomes has revealed widely divergent activity levels over time for Alu elements. However, the diversity of this mobile element family in the genome of the western lowland gorilla has previously been uncharacterized. Alu elements are primate-specific short interspersed elements that have been used as phylogenetic and population genetic markers for more than two decades. Alu elements are present at high copy number in the genomes of all primates surveyed thus far. The AluY subfamily and its derivatives have been recognized as the evolutionarily youngest Alu subfamily in the Old World primate lineage. Results Here we use a combination of computational and wet-bench laboratory methods to assess and catalog AluY subfamily activity level and composition in the western lowland gorilla genome (gorGor3.1). A total of 1,075 independent AluY insertions were identified and computationally divided into 10 subfamilies, with the largest number of gorilla-specific elements assigned to the canonical AluY subfamily. Conclusions The retrotransposition activity level appears to be significantly lower than that seen in the human and chimpanzee lineages, while higher than that seen in orangutan genomes, indicative of differential Alu amplification in the western lowland gorilla lineage as compared to other Homininae.
Collapse
Affiliation(s)
- Adam T McLain
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ahmed M, Li W, Liang P. Identification of three new Alu Yb subfamilies by source tracking of recently integrated Alu Yb elements. Mob DNA 2013; 4:25. [PMID: 24216009 PMCID: PMC3831846 DOI: 10.1186/1759-8753-4-25] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alu elements are the most abundant mobile elements in the human genome, with over 1 million copies and constituting more than 10% of the genome. The majority of these Alu elements were inserted into the primate genome 35 to 60 million years ago, but certain subfamilies of Alu elements are relatively very new and suspected to be still evolving. We attempted to trace the source/master copies of all human-specific members of the Alu Yb lineage using a computational approach by clustering similar Yb elements and constructing an evolutionary relation among the members of a cluster. RESULTS We discovered that one copy of Yb8 at 10p14 is the source of several active Yb8 copies, which retrotransposed to generate 712 copies or 54% of all human-specific Yb8 elements. We detected eight other Yb8 elements that had generated ten or more copies, potentially acting as 'stealth drivers'. One Yb8 element at 14q32.31 seemed to act as the source copy for all Yb9 elements tested, having producing 13 active Yb9 elements, and subsequently generated a total of 131 full-length copies. We identified and characterized three new subclasses of Yb elements: Yb8a1, Yb10 and Yb11. Their copy numbers in the reference genome are 75, 8 and 16. We analysed personal genome data from the 1000 Genome Project and detected an additional 6 Yb8a1, 3 Yb10 and 15 Yb11 copies outside the reference genome. Our analysis indicates that the Yb8a1 subfamily has a similar age to Yb9 (1.93 million years and 2.15 million years, respectively), while Yb10 and Yb11 evolved only 1.4 and 0.71 million years ago, suggesting a linear evolutionary path from Yb8a1 to Yb10 and then to Yb11. Our preliminary data indicate that members in Yb10 and Yb11 are mostly polymorphic, indicating their young age. CONCLUSIONS Our findings suggest that the Yb lineage is still evolving with new subfamilies being formed. Due to their very young age and the high rate of being polymorphic, insertions from these young subfamilies are very useful genetic markers for studying human population genetics and migration patterns, and the trend for mobile element insertions in the human genome.
Collapse
Affiliation(s)
| | | | - Ping Liang
- Department of Biological Sciences, Brock University, St Catharines, Ontario L2S 3A1, Canada.
| |
Collapse
|
46
|
Salem AH, Bahri R, Jarjanazi H, Chaabani H. Geographical and social influences on genetic diversity within the Egyptian population: analyses ofAluinsertion polymorphisms. Ann Hum Biol 2013; 41:61-6. [DOI: 10.3109/03014460.2013.826734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
David M, Mustafa H, Brudno M. Detecting Alu insertions from high-throughput sequencing data. Nucleic Acids Res 2013; 41:e169. [PMID: 23921633 PMCID: PMC3783187 DOI: 10.1093/nar/gkt612] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High-throughput sequencing technologies have allowed for the cataloguing of variation in personal human genomes. In this manuscript, we present alu-detect, a tool that combines read-pair and split-read information to detect novel Alus and their precise breakpoints directly from either whole-genome or whole-exome sequencing data while also identifying insertions directly in the vicinity of existing Alus. To set the parameters of our method, we use simulation of a faux reference, which allows us to compute the precision and recall of various parameter settings using real sequencing data. Applying our method to 100 bp paired Illumina data from seven individuals, including two trios, we detected on average 1519 novel Alus per sample. Based on the faux-reference simulation, we estimate that our method has 97% precision and 85% recall. We identify 808 novel Alus not previously described in other studies. We also demonstrate the use of alu-detect to study the local sequence and global location preferences for novel Alu insertions.
Collapse
Affiliation(s)
- Matei David
- Department of Computer Science, University of Toronto, 10 King's College Road, Toronto, ON M5S 3G4, Canada and Centre for Computational Medicine, Genetics and Genome Biology Program, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | | | | |
Collapse
|
48
|
Chen J, Gong M, Lu S, Liu F, Xia L, Nie D, Zou F, Shi J, Ju S, Zhao L, Zuo H, Qi J, Shi W. Detection of serum Alu element hypomethylation for the diagnosis and prognosis of glioma. J Mol Neurosci 2013; 50:368-75. [PMID: 23657981 DOI: 10.1007/s12031-013-0014-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/08/2013] [Indexed: 11/28/2022]
Abstract
Global genomic hypomethylation is a hallmark of cancer in humans. In the present study, the feasibility of measuring hypomethylation of Alu elements (Alu) in serum and its clinical utility were investigated. Tumor tissues and matched serum specimens from 65 glioma patients and serum samples from 30 healthy controls were examined for Alu hypomethylation by bisulfite sequencing. The median serum Alu methylation level was 47.30 % in patients (interquartile range (IQR), 35.40-54.25 %) and 57.90 % in the controls (IQR, 55.25-61.45 %). The median Alu methylation level in tumor samples was 40.30 % (IQR, 36.80-54.20 %), which shows the correlation of Alu hypomethylation between tumor and serum samples (r = 0.882) in the study group. The methylation level was higher in the low-grade glioma group than in the high-grade group both in tumor and serum samples. A correlation between high methylation level and longer survival time was detected in tumor and serum samples. Receiver operating characteristic curve analysis showed that the area under the curve for diagnosis was 0.861 (95 % confidence interval, 0.789-0.933), suggesting that Alu hypomethylation in serum may be of diagnostic value. Our results indicate that the detection of Alu hypomethylation in serum may be clinically useful for the diagnosis and prognosis of glioma.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurosurgery, Comprehensive Surgical Laboratory, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province, China 226001
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dridi S. Alu mobile elements: from junk DNA to genomic gems. SCIENTIFICA 2012; 2012:545328. [PMID: 24278713 PMCID: PMC3820591 DOI: 10.6064/2012/545328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/06/2012] [Indexed: 06/02/2023]
Abstract
Alus, the short interspersed repeated sequences (SINEs), are retrotransposons that litter the human genomes and have long been considered junk DNA. However, recent findings that these mobile elements are transcribed, both as distinct RNA polymerase III transcripts and as a part of RNA polymerase II transcripts, suggest biological functions and refute the notion that Alus are biologically unimportant. Indeed, Alu RNAs have been shown to control mRNA processing at several levels, to have complex regulatory functions such as transcriptional repression and modulating alternative splicing and to cause a host of human genetic diseases. Alu RNAs embedded in Pol II transcripts can promote evolution and proteome diversity, which further indicates that these mobile retroelements are in fact genomic gems rather than genomic junks.
Collapse
Affiliation(s)
- Sami Dridi
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081, USA
| |
Collapse
|
50
|
Abstract
To determine whether a large genomic rearrangement is actually novel and to gain insight about the mutational mechanism responsible for its occurrence, molecular characterization with breakpoint identification is mandatory. We here report the characterization of two large deletions involving the BRCA1 gene. The first rearrangement harbored a 89,664-bp deletion comprising exon 7 of the BRCA1 gene to exon 11 of the NBR1 gene (c.441+1724_oNBR1:c.1073+480del). Two highly homologous Alu elements were found in the genomic sequences flanking the deletion breakpoints. Furthermore, a 20-bp overlapping sequence at the breakpoint junction was observed, suggesting that the most likely mechanism for the occurrence of this rearrangement was nonallelic homologous recombination. The second rearrangement fully characterized at the nucleotide level was a BRCA1 exons 11-15 deletion (c.671-319_4677-578delinsAlu). The case harbored a 23,363-bp deletion with an Alu element inserted at the breakpoints of the deleted region. As the Alu element inserted belongs to a still active AluY family, the observed rearrangement could be due to an insertion-mediated deletion mechanism caused by Alu retrotransposition. To conclude, we describe the breakpoints of two novel large deletions involving the BRCA1 gene and analysis of their genomic context allowed us to gain insight about the respective mutational mechanism.
Collapse
|