1
|
Galea D, Herzberg M, Dobritzsch D, Fuszard M, Nies DH. Linking the transcriptome to physiology: response of the proteome of Cupriavidus metallidurans to changing metal availability. Metallomics 2024; 16:mfae058. [PMID: 39562290 DOI: 10.1093/mtomcs/mfae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
Cupriavidus metallidurans CH34 is a metal-resistant bacterium. Its metal homeostasis is based on a flow equilibrium of metal ion uptake and efflux reactions, which adapts to changing metal concentrations within an hour. At high metal concentrations, upregulation of the genes for metal efflux systems occurs within minutes. Here, we investigate the changes in the bacterial proteome accompanying these genetic and physiological events after 1.5 cell duplications, which took 3 h. To that end, C. metallidurans CH34 and its plasmid-free derivative, AE104, either were challenged with a toxic metal mix or were cultivated under metal-starvation conditions, followed by bottom-up proteomics. When metal-shocked or -starved cells were compared with their respective controls, 3540 proteins changed in abundance, with 76% appearing in one, but not the other, condition; the remaining 24% were up- or downregulated. Metal-shocked C. metallidurans strains had adjusted their proteomes to combat metal stress. The most prominent polypeptides were the products of the plasmid-encoded metal-resistance determinants in strain CH34, particularly the CzcCBA transenvelope efflux system. Moreover, the influence of antisense transcripts on the proteome was also revealed. In one specific example, the impact of an asRNA on the abundance of gene products could be demonstrated and this yielded new insights into the function of the transmembrane efflux complex ZniCBA under conditions of metal starvation.
Collapse
Affiliation(s)
- Diana Galea
- Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Martin Herzberg
- Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Dirk Dobritzsch
- Core Facility-Proteomic Mass Spectrometry, Charles Tanford Center, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Matt Fuszard
- Core Facility-Proteomic Mass Spectrometry, Charles Tanford Center, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Dietrich H Nies
- Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
2
|
Schulz V, Galea D, Schleuder G, Strohmeyer P, Große C, Herzberg M, Nies DH. The efflux system CdfX exports zinc that cannot be transported by ZntA in Cupriavidus metallidurans. J Bacteriol 2024; 206:e0029924. [PMID: 39475293 PMCID: PMC11580412 DOI: 10.1128/jb.00299-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024] Open
Abstract
Cupriavidus metallidurans is able to survive exposure to high concentrations of transition metals, but is also able to grow under metal starvation conditions. A prerequisite of cellular zinc homeostasis is a flow equilibrium combining zinc uptake and efflux processes. The mutant strain ∆e4 of the parental plasmid-free strain AE104 with a deletion of all four chromosomally encoded genes of previously known efflux systems ZntA, CadA, DmeF, and FieF was still able to efflux zinc in a pulse-chase experiment, indicating the existence of a fifth efflux system. The gene cdfX, encoding a protein of the cation diffusion facilitator (CDF) family, is located in proximity to the cadA gene, encoding a P-type ATPase. Deletion of cdfX in the ∆e4 mutant resulted in a further decrease in zinc resistance. Pulse-chase experiments with radioactive 65Zn(II) and stable-isotope-enriched 67Zn(II) provided evidence that CdfX was responsible for the residual zinc efflux activity of the mutant strain ∆e4. Reporter gene fusions with cdfX-lacZ indicated that the MerR-type regulator ZntR, the main regulator of zntA expression, was responsible for zinc- and cadmium-dependent upregulation of cdfX expression, especially in mutant cells lacking one or both of the previously characterized efflux systems, ZntA and CadA. Expression of zntR also proved to be controlled by ZntR itself as well as by zinc and cadmium availability. These data indicate that the cdfX-cadA region provides C. metallidurans with a backup system for the zinc-cadmium-exporting P-type ATPase ZntA, with CdfX exporting zinc and CadA cadmium.IMPORTANCEBacteria have evolved the ability to supply the important trace element zinc to zinc-dependent proteins, despite external zinc concentrations varying over a wide range. Zinc homeostasis can be understood as adaptive layering of homeostatic systems, allowing coverage from extreme starvation to extreme resistance. Central to zinc homeostasis is a flow equilibrium of zinc comprising uptake and efflux reactions, which adjusts the cytoplasmic zinc content. This report describes what happens when an imbalance in zinc and cadmium concentrations impairs the central inner-membrane zinc efflux system for zinc by competitive inhibition for this exporter. The problem is solved by activation of Cd-exporting CadA or Zn-exporting CdfX as additional efflux systems.
Collapse
Affiliation(s)
- Vladislava Schulz
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Diana Galea
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Grit Schleuder
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Philipp Strohmeyer
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Cornelia Große
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Martin Herzberg
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Dietrich H. Nies
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| |
Collapse
|
3
|
Rezaei F, Alebouyeh M, Mirbagheri SZ, Ebrahimi A, Foroushani AR, Bakhtiari R. Transcriptional analysis of Helicobacter pylori cytotoxic-associated gene-pathogenicity island in response to different pH levels and proton pump inhibitor exposure. Indian J Gastroenterol 2023; 42:686-693. [PMID: 37665542 DOI: 10.1007/s12664-023-01422-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 06/21/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Long-term use of proton pump inhibitors (PPIs) can increase the risk of gastric cancer in Helicobacter pylori-infected patients; nevertheless, there is no data about their impact on the pathogenicity of H. pylori. This study aimed at investigating the transcriptional alteration of key gene mediators of cytotoxin-associated gene-pathogenicity island (cag-PAI) among clinical H. pylori isolates in response to omeprazole at different pH levels. METHODS Accordingly, H. pylori isolates with the same virulence genotypes selected from the gastric biopsies of patients and transcriptional alteration in the cag-PAI genes studied in the presence or absence of omeprazole (2 mg/mL) at pH 2.0, 4.0 and 7.0 after 30 and 90 minutes of the treatment. Relative changes in the transcriptional levels were recorded in each assay, separately. RESULTS Of 18 H. pylori isolates, the cag-PAI empty site was detected in four strains, while the presence of cagA, cagL and cagY was characterized in 77.7%, 83.3% and 83.3% of the cag-PAI-positive strains, respectively. Transcriptional analysis of the selected strains showed up-regulation of cagA and cagL, mainly at pH 2.0 and 4.0 after 30 and 90-minute exposure. A diversity in the expression levels of cag-PAI genes was seen among the strains at the extent and time of induction. CONCLUSION Our results showed that omeprazole could increase the expression of H. pylori cagA and cagL at acidic pH. Heterogeneity among the strains probably has an impact on the extent of their interplay with PPIs. Further studies are needed to establish this correlation.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Pathobiology, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Alebouyeh
- Pediatric Infections Research Centre, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zohre Mirbagheri
- Department of Pathobiology, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ebrahimi
- Department of Pathobiology, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ronak Bakhtiari
- Department of Pathobiology, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Zhang H, Sun T, Cao X, Wang Y, Ma Z, Wang Y, Yang N, Xu M, Deng X, Li H, Wang B, Yi J, Wang Z, Zhang Q, Chen C. Scanning iron response regulator binding sites using Dap-seq in the Brucella genome. PLoS Negl Trop Dis 2023; 17:e0011481. [PMID: 37459300 PMCID: PMC10374146 DOI: 10.1371/journal.pntd.0011481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/27/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Iron is an essential element required for all organisms. Iron response regulator (Irr) is a crucial transcriptional regulator and can affect the growth and iron uptake of Brucella. The growth rate of Brucella melitensis M5-90 irr mutant was significantly lower than that of B. melitensis M5-90 under normal or iron-sufficient conditions, however, the growth rate of the B. melitensis M5-90 irr mutant was significantly higher than that of B. melitensis M5-90 under iron-limited conditions. In addition, irr mutation significantly reduced iron uptake under iron-limited conditions. Previous studies suggested that the Irr protein has multiple target genes in the Brucella genome that are involved in iron metabolism. Therefore, in the present study, a Dap-seq approach was used to investigate the other iron metabolism genes that are also regulated by the Irr protein in Brucella. A total of seven genes were identified as target genes for Irr in this study and the expression levels of these seven genes was identified using qRT-PCR. The electrophoretic mobility shift assay confirmed that six out of the seven genes, namely rirA (BME_RS13665), membrane protein (BME_RS01725), hypothetical protein (BME_RS09560), ftrA (BME_RS14525), cation-transporting P-type ATPase (zntA) (BME_RS10660), and 2Fe-2S binding protein (BME_RS13655), interact with the Irr protein. Furthermore, the iron utilization and growth assay experiments confirmed that rirA was involve in iron metabolism and growth of Brucella. In summary, our results identified six genes regulated by the Irr protein that may participate in iron metabolism, and the rirA was identified as a regulon of Irr and it also plays a role in iron metabolism of Brucella. Collectively, these results provide valuable insights for the exploration of Brucella iron metabolism.
Collapse
Affiliation(s)
- Huan Zhang
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, Shihezi, Xinjiang, China
| | - Tianhao Sun
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, Shihezi, Xinjiang, China
| | - Xudong Cao
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, Shihezi, Xinjiang, China
- School of Medicine, HeXi University, Zhangye City, Gansu, China
| | - Yifan Wang
- State key Laboratory of Agricultural Microbiology/College of Veterinary Medicine Huazhong Agricultural University 1 Wuhan, China
| | - Zhongchen Ma
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, Shihezi, Xinjiang, China
| | - Yueli Wang
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, Shihezi, Xinjiang, China
| | - Ningning Yang
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, Shihezi, Xinjiang, China
| | - Mingguo Xu
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, Shihezi, Xinjiang, China
| | - Xiaoyu Deng
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, Shihezi, Xinjiang, China
| | - Honghuan Li
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, Shihezi, Xinjiang, China
| | - Benben Wang
- School of Life Science, Shihezi University, Shihezi City, Xinjiang, China
| | - Jihai Yi
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, Shihezi, Xinjiang, China
| | - Zhen Wang
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, Shihezi, Xinjiang, China
| | - Qian Zhang
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, Shihezi, Xinjiang, China
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agriculture and Reclamation Science,Shihezi, Xinjiang, China
| | - Chuangfu Chen
- School of Animal Science and Technology, Shihezi University, Shihezi City, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, Shihezi, Xinjiang, China
| |
Collapse
|
5
|
González-Lozano KJ, Aréchiga-Carvajal ET, Jiménez-Salas Z, Valdez-Rodríguez DM, León-Ramírez CG, Ruiz-Herrera J, Adame-Rodríguez JM, López-Cabanillas-Lomelí M, Campos-Góngora E. Identification and Characterization of Dmct: A Cation Transporter in Yarrowia lipolytica Involved in Metal Tolerance. J Fungi (Basel) 2023; 9:600. [PMID: 37367535 DOI: 10.3390/jof9060600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Yarrowia lipolytica is a dimorphic fungus used as a model organism to investigate diverse biotechnological and biological processes, such as cell differentiation, heterologous protein production, and bioremediation strategies. However, little is known about the biological processes responsible for cation concentration homeostasis. Metals play pivotal roles in critical biochemical processes, and some are toxic at unbalanced intracellular concentrations. Membrane transport proteins control intracellular cation concentrations. Analysis of the Y. lipolytica genome revealed a characteristic functional domain of the cation efflux protein family, i.e., YALI0F19734g, which encodes YALI0F19734p (a putative Yl-Dmct protein), which is related to divalent metal cation tolerance. We report the in silico analysis of the putative Yl-Dmct protein's characteristics and the phenotypic response to divalent cations (Ca2+, Cu2+, Fe2+, and Zn2+) in the presence of mutant strains, Δdmct and Rdmct, constructed by deletion and reinsertion of the DMCT gene, respectively. The absence of the Yl-Dmct protein induces cellular and growth rate changes, as well as dimorphism differences, when calcium, copper, iron, and zinc are added to the cultured medium. Interestingly, the parental and mutant strains were able to internalize the ions. Our results suggest that the protein encoded by the DMCT gene is involved in cell development and cation homeostasis in Y. lipolytica.
Collapse
Affiliation(s)
- Katia Jamileth González-Lozano
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología, LMYF, Unidad de Manipulación Genética, Monterrey CP 66455, Nuevo León, Mexico
| | - Elva Teresa Aréchiga-Carvajal
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología, LMYF, Unidad de Manipulación Genética, Monterrey CP 66455, Nuevo León, Mexico
| | - Zacarías Jiménez-Salas
- Universidad Autónoma de Nuevo León, Centro de Investigación en Nutrición y Salud Pública, Monterrey CP 64460, Nuevo León, Mexico
| | - Debany Marlen Valdez-Rodríguez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología, LMYF, Unidad de Manipulación Genética, Monterrey CP 66455, Nuevo León, Mexico
| | - Claudia Geraldine León-Ramírez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Departamento de Ingeniería Genética, Irapuato CP 36824, Guanajuato, Mexico
| | - José Ruiz-Herrera
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Departamento de Ingeniería Genética, Irapuato CP 36824, Guanajuato, Mexico
| | - Juan Manuel Adame-Rodríguez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología, LMYF, Unidad de Manipulación Genética, Monterrey CP 66455, Nuevo León, Mexico
| | - Manuel López-Cabanillas-Lomelí
- Universidad Autónoma de Nuevo León, Centro de Investigación en Nutrición y Salud Pública, Monterrey CP 64460, Nuevo León, Mexico
| | - Eduardo Campos-Góngora
- Universidad Autónoma de Nuevo León, Centro de Investigación en Nutrición y Salud Pública, Monterrey CP 64460, Nuevo León, Mexico
| |
Collapse
|
6
|
Mazhar SH, Herzberg M, Ben Fekih I, Zhang C, Bello SK, Li YP, Su J, Xu J, Feng R, Zhou S, Rensing C. Comparative Insights Into the Complete Genome Sequence of Highly Metal Resistant Cupriavidus metallidurans Strain BS1 Isolated From a Gold-Copper Mine. Front Microbiol 2020; 11:47. [PMID: 32117100 PMCID: PMC7019866 DOI: 10.3389/fmicb.2020.00047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
The highly heavy metal resistant strain Cupriavidus metallidurans BS1 was isolated from the Zijin gold–copper mine in China. This was of particular interest since the extensively studied, closely related strain, C. metallidurans CH34 was shown to not be only highly heavy metal resistant but also able to reduce metal complexes and biomineralizing them into metallic nanoparticles including gold nanoparticles. After isolation, C. metallidurans BS1 was characterized and complete genome sequenced using PacBio and compared to CH34. Many heavy metal resistance determinants were identified and shown to have wide-ranging similarities to those of CH34. However, both BS1 and CH34 displayed extensive genome plasticity, probably responsible for significant differences between those strains. BS1 was shown to contain three prophages, not present in CH34, that appear intact and might be responsible for shifting major heavy metal resistance determinants from plasmid to chromid (CHR2) in C. metallidurans BS1. Surprisingly, the single plasmid – pBS1 (364.4 kbp) of BS1 contains only a single heavy metal resistance determinant, the czc determinant representing RND-type efflux system conferring resistance to cobalt, zinc and cadmium, shown here to be highly similar to that determinant located on pMOL30 in C. metallidurans CH34. However, in BS1 another homologous czc determinant was identified on the chromid, most similar to the czc determinant from pMOL30 in CH34. Other heavy metal resistance determinants such as cnr and chr determinants, located on megaplasmid pMOL28 in CH34, were shown to be adjacent to the czc determinant on chromid (CHR2) in BS1. Additionally, other heavy metal resistance determinants such as pbr, cop, sil, and ars were located on the chromid (CHR2) and not on pBS1 in BS1. A diverse range of genomic rearrangements occurred in this strain, isolated from a habitat of constant exposure to high concentrations of copper, gold and other heavy metals. In contrast, the megaplasmid in BS1 contains mostly genes encoding unknown functions, thus might be more of an evolutionary playground where useful genes could be acquired by horizontal gene transfer and possibly reshuffled to help C. metallidurans BS1 withstand the intense pressure of extreme concentrations of heavy metals in its environment.
Collapse
Affiliation(s)
- Sohaib H Mazhar
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ibtissem Ben Fekih
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenkang Zhang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Suleiman Kehinde Bello
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junming Su
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junqiang Xu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Renwei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Phenotypic and genomic analysis of multiple heavy metal–resistant Micrococcus luteus strain AS2 isolated from industrial waste water and its potential use in arsenic bioremediation. Appl Microbiol Biotechnol 2020; 104:2243-2254. [DOI: 10.1007/s00253-020-10351-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 12/23/2022]
|
8
|
Campoy-Diaz AD, Escobar-Correas S, Canizo BV, Wuilloud RG, Vega IA. A freshwater symbiosis as sensitive bioindicator of cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:2580-2587. [PMID: 31832941 DOI: 10.1007/s11356-019-07082-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
The vulnerability of aquatic ecosystems due to the entry of cadmium (Cd) is a concern of public and environmental health. This work explores the ability of tissues and symbiotic corpuscles of Pomacea canaliculata to concentrate and depurate Cd. From hatching to adulthood (4 months), snails were cultured in reconstituted water, which was a saline solution in ASTM Type I water. Then, adult snails were exposed for 8 weeks (exposure phase) to Cd (5 μg/L) and then returned to reconstituted water for other 8 weeks (depuration phase). Cadmium concentration in the digestive gland, kidney, head/foot and viscera (remaining of the snail body), symbiotic corpuscles, and particulate excreta was determined by electrothermal atomic absorption spectrometry. After exposure, the digestive gland showed the highest concentration of Cd (BCF = 5335). Symbiotic corpuscles bioaccumulated Cd at a concentration higher than that present in the water (BCF = 231 for C symbiotic corpuscles, BCF = 8 for K symbiotic corpuscles). No tissues or symbiotic corpuscles showed a significant change in the Cd levels at different time points of the depuration phase (weeks 8, 9, 10, 12, and 16). The symbiotic depuration through particulate excreta was faster between weeks 8 and 10, and then slower after on. Our findings show that epithelial cells of the digestive gland of P. canaliculata and their symbiotic C corpuscles are sensitive places for the bioindication of Cd in freshwater bodies.
Collapse
Affiliation(s)
- Alejandra D Campoy-Diaz
- IHEM - CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Sophia Escobar-Correas
- IHEM - CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Brenda V Canizo
- Laboratorio de Química Analítica para Investigación y Desarrollo (QUIANID), Instituto Interdisciplinario de Ciencias Básicas, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Exactas y Naturales, Padre J. Contreras 1300, (5500) Mendoza, Argentina
| | - Rodolfo G Wuilloud
- Laboratorio de Química Analítica para Investigación y Desarrollo (QUIANID), Instituto Interdisciplinario de Ciencias Básicas, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Exactas y Naturales, Padre J. Contreras 1300, (5500) Mendoza, Argentina
| | - Israel A Vega
- IHEM - CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina.
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
9
|
Große C, Poehlein A, Blank K, Schwarzenberger C, Schleuder G, Herzberg M, Nies DH. The third pillar of metal homeostasis inCupriavidus metalliduransCH34: preferences are controlled by extracytoplasmic function sigma factors. Metallomics 2019; 11:291-316. [DOI: 10.1039/c8mt00299a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
InC. metallidurans, a network of 11 extracytoplasmic function sigma factors forms the third pillar of metal homeostasis acting in addition to the metal transportome and metal repositories as the first and second pillar.
Collapse
Affiliation(s)
- Cornelia Große
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Anja Poehlein
- Göttingen Genomics Laboratory
- Georg-August-University Göttingen, Grisebachstr. 8
- 37077 Göttingen
- Germany
| | - Kathrin Blank
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Claudia Schwarzenberger
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Grit Schleuder
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Martin Herzberg
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Dietrich H. Nies
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| |
Collapse
|
10
|
Almutairi ZM. Comparative genomics of HORMA domain-containing proteins in prokaryotes and eukaryotes. Cell Cycle 2018; 17:2531-2546. [PMID: 30488757 PMCID: PMC6300099 DOI: 10.1080/15384101.2018.1553402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/14/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022] Open
Abstract
In eukaryotes, critical regulation of cell cycle is required to ensure the integrity of cell division. HORMA-containing proteins include various proteins that contain HORMA domain and play important role in the regulation of cell cycle in eukaryotes. Many types of HORMA-containing proteins are found in eukaryotes, but their role in prokaryotes has not been proven. Therefore, we conduct an extensive search in GenBank for HORMA-containing proteins in prokaryotes to compare HORMA domain structure and architecture across eukaryotes and prokaryotes. Strikingly, genome sequencing for many prokaryotic organisms reveals that HORMA domain is present in many bacterial genomes and only two archaeal genomes. We perform sequence alignment and phylogenetic analysis to trace the evolutionary link between HORMA domain in prokaryotes and eukaryotes. HORMA domain in prokaryotes appears to vary in sequence and architecture. Interestingly, seven bacterial HORMA-containing proteins and the two archaeal HORMA-containing proteins showed close relationships with eukaryotic HORMA-containing proteins. Additionally, we uncovered remarkable close relationships between HORMA-containing protein from Chlamydia trachomatis and eukaryotic MAD2 proteins. Our results provide insights into evolutionary relationships between prokaryotic and eukaryotic systems, which facilitate our understanding of the evolution of cell cycle regulation mechanisms.
Collapse
Affiliation(s)
- Zainab M. Almutairi
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
11
|
Gene silencing reveals multiple functions of Na +/K +-ATPase in the salmon louse (Lepeophtheirus salmonis). Exp Parasitol 2018; 185:79-91. [PMID: 29339143 DOI: 10.1016/j.exppara.2018.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/23/2017] [Accepted: 01/03/2018] [Indexed: 11/20/2022]
Abstract
Na+/K+-ATPase has a key function in a variety of physiological processes including membrane excitability, osmoregulation, regulation of cell volume, and transport of nutrients. While knowledge about Na+/K+-ATPase function in osmoregulation in crustaceans is extensive, the role of this enzyme in other physiological and developmental processes is scarce. Here, we report characterization, transcriptional distribution and likely functions of the newly identified L. salmonis Na+/K+-ATPase (LsalNa+/K+-ATPase) α subunit in various developmental stages. The complete mRNA sequence was identified, with 3003 bp open reading frame encoding a putative protein of 1001 amino acids. Putative protein sequence of LsalNa+/K+-ATPase revealed all typical features of Na+/K+-ATPase and demonstrated high sequence identity to other invertebrate and vertebrate species. Quantitative RT-PCR analysis revealed higher LsalNa+/K+-ATPase transcript level in free-living stages in comparison to parasitic stages. In situ hybridization analysis of copepodids and adult lice revealed LsalNa+/K+-ATPase transcript localization in a wide variety of tissues such as nervous system, intestine, reproductive system, and subcuticular and glandular tissue. RNAi mediated knock-down of LsalNa+/K+-ATPase caused locomotion impairment, and affected reproduction and feeding. Morphological analysis of dsRNA treated animals revealed muscle degeneration in larval stages, severe changes in the oocyte formation and maturation in females and abnormalities in tegmental glands. Thus, the study represents an important foundation for further functional investigation and identification of physiological pathways in which Na+/K+-ATPase is directly or indirectly involved.
Collapse
|
12
|
Seddigh S. Comprehensive comparison of two protein family of P-ATPases (13A1 and 13A3) in insects. Comput Biol Chem 2017; 68:266-281. [DOI: 10.1016/j.compbiolchem.2017.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/06/2017] [Accepted: 04/12/2017] [Indexed: 01/22/2023]
|
13
|
Chong TM, Yin WF, Chen JW, Mondy S, Grandclément C, Faure D, Dessaux Y, Chan KG. Comprehensive genomic and phenotypic metal resistance profile of Pseudomonas putida strain S13.1.2 isolated from a vineyard soil. AMB Express 2016; 6:95. [PMID: 27730570 PMCID: PMC5059233 DOI: 10.1186/s13568-016-0269-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/04/2016] [Indexed: 11/17/2022] Open
Abstract
Trace metals are required in many cellular processes in bacteria but also induce toxic effects to cells when present in excess. As such, various forms of adaptive responses towards extracellular trace metal ions are essential for the survival and fitness of bacteria in their environment. A soil Pseudomonas putida, strain S13.1.2 has been isolated from French vineyard soil samples, and shown to confer resistance to copper ions. Further investigation revealed a high capacity to tolerate elevated concentrations of various heavy metals including nickel, cobalt, cadmium, zinc and arsenic. The complete genome analysis was conducted using single-molecule real-time (SMRT) sequencing and the genome consisted in a single chromosome at the size of 6.6 Mb. Presence of operons and gene clusters such as cop, cus, czc, nik, and asc systems were detected and accounted for the observed resistance phenotypes. The unique features in terms of specificity and arrangements of some genetic determinants were also highlighted in the study. Our findings has provided insights into the adaptation of this strain to accumulation and persistence of copper and other heavy metals in vineyard soil environment.
Collapse
|
14
|
Al-Gheethi AA, Mohamed RMSR, Efaq AN, Norli I, Abd Halid A, Amir HK, Ab Kadir MO. Bioaugmentation process of secondary effluents for reduction of pathogens, heavy metals and antibiotics. JOURNAL OF WATER AND HEALTH 2016; 14:780-795. [PMID: 27740544 DOI: 10.2166/wh.2016.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The study probed into reducing faecal indicators and pathogenic bacteria, heavy metals and β-lactam antibiotics, from four types of secondary effluents by bioaugmentation process, which was conducted with Bacillus subtilis strain at 45 °C. As a result, faecal indicators and pathogenic bacteria were reduced due to the effect of thermal treatment process (45 °C), while the removal of heavy metals and β-lactam antibiotics was performed through the functions of bioaccumulation and biodegradation processes of B. subtilis. Faecal coliform met the guidelines outlined by WHO and US EPA standards after 4 and 16 days, respectively. Salmonella spp. and Staphylococcus aureus were reduced to below the detection limits without renewed growth in the final effluents determined by using a culture-based method. Furthermore, 13.5% and 56.1% of cephalexin had been removed, respectively, from secondary effluents containing 1 g of cephalexin L-1 (secondary effluent 3), as well as 1 g of cephalexin L-1 and 10 mg of Ni2+ L-1 (secondary effluent 4) after 16 days. The treatment process, eventually, successfully removed 96.6% and 66.3% of Ni2+ ions from the secondary effluents containing 10 mg of Ni2+ L-1 (secondary effluent 2) and E4, respectively. The bioaugmentation process improved the quality of secondary effluents.
Collapse
Affiliation(s)
- A A Al-Gheethi
- Micro-pollution Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor 86400, Malaysia
| | - R M S R Mohamed
- Micro-pollution Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor 86400, Malaysia
| | - A N Efaq
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Penang 11800, Malaysia E-mail:
| | - I Norli
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Penang 11800, Malaysia E-mail:
| | - Abdullah Abd Halid
- Department of Architecture and Engineering Design, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor 86400, Malaysia
| | - H K Amir
- Micro-pollution Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor 86400, Malaysia
| | - M O Ab Kadir
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Penang 11800, Malaysia E-mail:
| |
Collapse
|
15
|
Pal S, Banat F, Almansoori A, Abu Haija M. Review of technologies for biotreatment of refinery wastewaters: progress, challenges and future opportunities. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/21622515.2016.1164252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sreela Pal
- Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, UAE
| | - Fawzi Banat
- Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, UAE
| | - Ali Almansoori
- Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, UAE
| | | |
Collapse
|
16
|
Pham D, Charmantier G, Boulo V, Wabete N, Ansquer D, Dauga C, Grousset E, Labreuche Y, Charmantier-Daures M. Ontogeny of osmoregulation in the Pacific blue shrimp, Litopenaeus stylirostris (Decapoda, Penaeidae): Deciphering the role of the Na(+)/K(+)-ATPase. Comp Biochem Physiol B Biochem Mol Biol 2016; 196-197:27-37. [PMID: 26827851 DOI: 10.1016/j.cbpb.2015.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/19/2015] [Accepted: 12/02/2015] [Indexed: 12/20/2022]
Abstract
The role of the main ion transporting enzyme Na+/K+-ATPase in osmoregulation processes was investigated in Litopenaeus stylirostris. The development and localization of the osmoregulation sites were studied during ontogenesis by immunodetection of Na(+)K(+)-ATPase using monoclonal antibodies and transmission electron microscopy (TEM). Osmoregulation sites were identified as the pleurae and branchiostegites in the zoeae and mysis stages. In the subsequent post-metamorphic stages the osmoregulatory function was mainly located in the epipodites and branchiostegites and osmotic regulation was later detected in the gills. The presence of ionocytes and microvilli in these tissues confirmed their role in ionic processes. The complete open reading frame of the mRNA coding for the α-subunit of Na+K+-ATPase was characterized in L. stylirostris. The resulting 3092-bp cDNA (LsNKA) encodes a putative 1011-amino-acid protein with a predicted molecular mass of 112.3kDa. The inferred amino acid sequence revealed that the putative protein possesses the main structural characteristics of the Na+K+-ATPase α-subunits. Quantitative RT-PCR analyses indicated that LsNKA transcripts did not significantly vary between the different developmental stages. The number of transcripts was about 2.5-fold higher in the epipodites and gills than in any other tissues tested in juveniles. A reverse genetic approach was finally implemented to study the role of LsNKA in vivo. Knockdown of LsNKA expression by gene-specific dsRNA injection led to an increase of shrimp mortality following an abrupt salinity change compared to control animals. These data strongly suggest that LsNKA plays an important role in osmoregulation when the shrimp are challenged by changing salinities.
Collapse
Affiliation(s)
- Dominique Pham
- Lagon, Environnement et Aquaculture Durable, Ifremer, Boulouparis, Nouvelle-Calédonie, France.
| | - Guy Charmantier
- Université de Montpellier, Adaptation Ecophysiologique et Ontogenèse, UMR 9190, Marbec, UM, CNRS, IRD, Ifremer, Place Eugène Bataillon, CC 092, 34095 Montpellier Cedex 05, France
| | - Viviane Boulo
- Lagon, Environnement et Aquaculture Durable, Ifremer, Boulouparis, Nouvelle-Calédonie, France; Université de Montpellier, Adaptation Ecophysiologique et Ontogenèse, UMR 9190, Marbec, UM, CNRS, IRD, Ifremer, Place Eugène Bataillon, CC 092, 34095 Montpellier Cedex 05, France
| | - Nelly Wabete
- Lagon, Environnement et Aquaculture Durable, Ifremer, Boulouparis, Nouvelle-Calédonie, France
| | - Dominique Ansquer
- Lagon, Environnement et Aquaculture Durable, Ifremer, Boulouparis, Nouvelle-Calédonie, France
| | - Clément Dauga
- Lagon, Environnement et Aquaculture Durable, Ifremer, Boulouparis, Nouvelle-Calédonie, France
| | - Evelyse Grousset
- Université de Montpellier, Adaptation Ecophysiologique et Ontogenèse, UMR 9190, Marbec, UM, CNRS, IRD, Ifremer, Place Eugène Bataillon, CC 092, 34095 Montpellier Cedex 05, France
| | - Yannick Labreuche
- Ifremer, Unite Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280 Plouzane, France; Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France.
| | - Mireille Charmantier-Daures
- Université de Montpellier, Adaptation Ecophysiologique et Ontogenèse, UMR 9190, Marbec, UM, CNRS, IRD, Ifremer, Place Eugène Bataillon, CC 092, 34095 Montpellier Cedex 05, France
| |
Collapse
|
17
|
Computational Classification of P-Type ATPases. Methods Mol Biol 2015; 1377:493-502. [PMID: 26695056 DOI: 10.1007/978-1-4939-3179-8_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Analysis of sequence data is inevitable in modern molecular biology, and important information about for example proteins can be inferred efficiently using computational methods. Here, we explain how to use the information in freely available databases together with computational methods for classification and motif detection to assess whether a protein sequence corresponds to a P-type ATPase (and if so, which subtype) or not.
Collapse
|
18
|
Abstract
This chapter focuses on transition metals. All transition metal cations are toxic-those that are essential for Escherichia coli and belong to the first transition period of the periodic system of the element and also the "toxic-only" metals with higher atomic numbers. Common themes are visible in the metabolism of these ions. First, there is transport. High-rate but low-affinity uptake systems provide a variety of cations and anions to the cells. Control of the respective systems seems to be mainly through regulation of transport activity (flux control), with control of gene expression playing only a minor role. If these systems do not provide sufficient amounts of a needed ion to the cell, genes for ATP-hydrolyzing high-affinity but low-rate uptake systems are induced, e.g., ABC transport systems or P-type ATPases. On the other hand, if the amount of an ion is in surplus, genes for efflux systems are induced. By combining different kinds of uptake and efflux systems with regulation at the levels of gene expression and transport activity, the concentration of a single ion in the cytoplasm and the composition of the cellular ion "bouquet" can be rapidly adjusted and carefully controlled. The toxicity threshold of an ion is defined by its ability to produce radicals (copper, iron, chromate), to bind to sulfide and thiol groups (copper, zinc, all cations of the second and third transition period), or to interfere with the metabolism of other ions. Iron poses an exceptional metabolic problem due its metabolic importance and the low solubility of Fe(III) compounds, combined with the ability to cause dangerous Fenton reactions. This dilemma for the cells led to the evolution of sophisticated multi-channel iron uptake and storage pathways to prevent the occurrence of unbound iron in the cytoplasm. Toxic metals like Cd2+ bind to thiols and sulfide, preventing assembly of iron complexes and releasing the metal from iron-sulfur clusters. In the unique case of mercury, the cation can be reduced to the volatile metallic form. Interference of nickel and cobalt with iron is prevented by the low abundance of these metals in the cytoplasm and their sequestration by metal chaperones, in the case of nickel, or by B12 and its derivatives, in the case of cobalt. The most dangerous metal, copper, catalyzes Fenton-like reactions, binds to thiol groups, and interferes with iron metabolism. E. coli solves this problem probably by preventing copper uptake, combined with rapid efflux if the metal happens to enter the cytoplasm.
Collapse
|
19
|
Guerra F, Bondar AN. Dynamics of the Plasma Membrane Proton Pump. J Membr Biol 2014; 248:443-53. [DOI: 10.1007/s00232-014-9732-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 09/18/2014] [Indexed: 12/01/2022]
|
20
|
Lipid flippase modulates olfactory receptor expression and odorant sensitivity in Drosophila. Proc Natl Acad Sci U S A 2014; 111:7831-6. [PMID: 24821794 DOI: 10.1073/pnas.1401938111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In Drosophila melanogaster, the male-specific pheromone cVA (11-cis-vaccenyl acetate) functions as a sex-specific social cue. However, our understanding of the molecular mechanisms underlying cVA pheromone transduction and its regulation are incomplete. Using a genetic screen combined with an electrophysiological assay to monitor pheromone-evoked activity in the cVA-sensing Or67d neurons, we identified an olfactory sensitivity factor encoded by the dATP8B gene, the Drosophila homolog of mammalian ATP8B. dATP8B is expressed in all olfactory neurons that express Orco, the odorant receptor coreceptor, and the odorant responses in most Orco-expressing neurons are reduced. Or67d neurons are severely affected, with strongly impaired cVA-induced responses and lacking spontaneous spiking in the mutants. The dATP8B locus encodes a member of the P4-type ATPase family thought to flip aminophospholipids such as phosphatidylserine and phosphatidylethanolamine from one membrane leaflet to the other. dATP8B protein is concentrated in the cilia of olfactory neuron dendrites, the site of odorant transduction. Focusing on Or67d neuron function, we show that Or67d receptors are mislocalized in dATP8B mutants and that cVA responses can be restored to dATP8B mutants by misexpressing a wild-type dATP8B rescuing transgene, by expressing a vertebrate P4-type ATPase member in the pheromone-sensing neurons or by overexpressing Or67d receptor subunits. These findings reveal an unexpected role for lipid translocation in olfactory receptor expression and sensitivity to volatile odorants.
Collapse
|
21
|
Pedersen BP, Ifrim G, Liboriussen P, Axelsen KB, Palmgren MG, Nissen P, Wiuf C, Pedersen CNS. Large scale identification and categorization of protein sequences using structured logistic regression. PLoS One 2014; 9:e85139. [PMID: 24465495 PMCID: PMC3896382 DOI: 10.1371/journal.pone.0085139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/24/2013] [Indexed: 01/12/2023] Open
Abstract
Background Structured Logistic Regression (SLR) is a newly developed machine learning tool first proposed in the context of text categorization. Current availability of extensive protein sequence databases calls for an automated method to reliably classify sequences and SLR seems well-suited for this task. The classification of P-type ATPases, a large family of ATP-driven membrane pumps transporting essential cations, was selected as a test-case that would generate important biological information as well as provide a proof-of-concept for the application of SLR to a large scale bioinformatics problem. Results Using SLR, we have built classifiers to identify and automatically categorize P-type ATPases into one of 11 pre-defined classes. The SLR-classifiers are compared to a Hidden Markov Model approach and shown to be highly accurate and scalable. Representing the bulk of currently known sequences, we analysed 9.3 million sequences in the UniProtKB and attempted to classify a large number of P-type ATPases. To examine the distribution of pumps on organisms, we also applied SLR to 1,123 complete genomes from the Entrez genome database. Finally, we analysed the predicted membrane topology of the identified P-type ATPases. Conclusions Using the SLR-based classification tool we are able to run a large scale study of P-type ATPases. This study provides proof-of-concept for the application of SLR to a bioinformatics problem and the analysis of P-type ATPases pinpoints new and interesting targets for further biochemical characterization and structural analysis.
Collapse
Affiliation(s)
- Bjørn P. Pedersen
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Aarhus C, Denmark
- Department of Molecular Biology, Aarhus University, Aarhus C, Denmark
- * E-mail: ;
| | - Georgiana Ifrim
- INSIGHT Centre for Data Analytics, University College Dublin, Dublin, Ireland
| | - Poul Liboriussen
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Aarhus C, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus C, Denmark
| | - Kristian B. Axelsen
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Aarhus C, Denmark
- Swiss-Prot Group, Swiss Institute of Bioinformatics, CMU, Geneva, Switzerland
| | - Michael G. Palmgren
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Aarhus C, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Aarhus C, Denmark
- Department of Molecular Biology, Aarhus University, Aarhus C, Denmark
| | - Carsten Wiuf
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| | - Christian N. S. Pedersen
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Aarhus C, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus C, Denmark
- * E-mail: ;
| |
Collapse
|
22
|
Guilhen C, Taha MK, Veyrier FJ. Role of transition metal exporters in virulence: the example of Neisseria meningitidis. Front Cell Infect Microbiol 2013; 3:102. [PMID: 24392357 PMCID: PMC3870273 DOI: 10.3389/fcimb.2013.00102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/05/2013] [Indexed: 01/01/2023] Open
Abstract
Transition metals such as iron, manganese, and zinc are essential micronutrients for bacteria. However, at high concentration, they can generate non-functional proteins or toxic compounds. Metal metabolism is therefore regulated to prevent shortage or overload, both of which can impair cell survival. In addition, equilibrium among these metals has to be tightly controlled to avoid molecular replacement in the active site of enzymes. Bacteria must actively maintain intracellular metal concentrations to meet physiological needs within the context of the local environment. When intracellular buffering capacity is reached, they rely primarily on membrane-localized exporters to maintain metal homeostasis. Recently, several groups have characterized new export systems and emphasized their importance in the virulence of several pathogens. This article discusses the role of export systems as general virulence determinants. Furthermore, it highlights the contribution of these exporters in pathogens emergence with emphasis on the human nasopharyngeal colonizer Neisseria meningitidis.
Collapse
Affiliation(s)
- Cyril Guilhen
- Département Infection et Epidémiologie, Institut Pasteur, Unité des Infections Bactériennes Invasives Paris, France
| | - Muhamed-Kheir Taha
- Département Infection et Epidémiologie, Institut Pasteur, Unité des Infections Bactériennes Invasives Paris, France
| | - Frédéric J Veyrier
- Département Infection et Epidémiologie, Institut Pasteur, Unité des Infections Bactériennes Invasives Paris, France
| |
Collapse
|
23
|
Wang Y, Luo P, Zhang L, Hu C, Ren C, Xia J. Cloning of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) gene from white shrimp, Litopenaeus vannamei and its expression level analysis under salinity stress. Mol Biol Rep 2013; 40:6213-21. [DOI: 10.1007/s11033-013-2733-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 09/14/2013] [Indexed: 01/03/2023]
|
24
|
Liaw SH, Chuang LM. Cu2+-ATPases: Sequence Analyses and Implications in the Wilson Disease. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.199900099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Rudbeck ME, Blomberg MRA, Barth A. Hydrolysis of the E2P Phosphoenzyme of the Ca2+-ATPase: A Theoretical Study. J Phys Chem B 2013; 117:9224-32. [DOI: 10.1021/jp4049814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maria E. Rudbeck
- Department of Biochemistry and
Biophysics, Arrhenius Laboratories, Stockholm University, 10691 Stockholm, Sweden
| | - Margareta R. A. Blomberg
- Department of Organic Chemistry,
Arrhenius Laboratories, Stockholm University, 10691 Stockholm, Sweden
| | - Andreas Barth
- Department of Biochemistry and
Biophysics, Arrhenius Laboratories, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
26
|
Xu Y, Yin H, Jiang H, Liang Y, Guo X, Ma L, Xiao Y, Liu X. Comparative study of nickel resistance of pure culture and co-culture of Acidithiobacillus thiooxidans and Leptospirillum ferriphilum. Arch Microbiol 2013; 195:637-46. [PMID: 23861147 DOI: 10.1007/s00203-013-0900-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/09/2013] [Accepted: 04/30/2013] [Indexed: 12/01/2022]
Abstract
The effect of Ni²⁺ on the growth and functional gene expression of the pure culture and co-culture of Acidithiobacillus thiooxidans and Leptospirillum ferriphilum has been studied. Compared with the pure culture, the co-culture showed a stronger sulfur and ferrous ion oxidation activity. At 100 mM, A. thiooxidans in co-culture grew faster and had 48 h shorter lag phases. The cell number of A. thiooxidans in co-culture was about 5 times higher than that in pure culture. The existence of A. thiooxidans in co-culture activated the expression of some metal resistance genes in L. ferriphilum at least 16 h in advance. A. thiooxidans in co-culture tends to chose more efficient pathways to transport nickel ion, ensuring the export of heavy metal was faster and more effective than that in pure culture. All the data indicated that there were synergetic interactions between iron- and sulfur-oxidizing bacteria under the stress of Ni²⁺.
Collapse
Affiliation(s)
- Ying Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kamrul Huda KM, Yadav S, Akhter Banu MS, Trivedi DK, Tuteja N. Genome-wide analysis of plant-type II Ca(2+)ATPases gene family from rice and Arabidopsis: potential role in abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 65:32-47. [PMID: 23416494 DOI: 10.1016/j.plaphy.2013.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/18/2013] [Indexed: 05/05/2023]
Abstract
The Plant Ca(2+)ATPases are members of the P-type ATPase superfamily and play essential roles in pollen tube growth, vegetative development, inflorescence architecture, stomatal opening or closing as well as transport of Ca(2+), Mn(2+) and Zn(2+). Their role in abiotic stress adaptation by activation of different signaling pathways is emerging. In Arabidopsis, the P-type Ca(2+)ATPases can be classified in two distinct groups: type IIA (ECA) and type IIB (ACA). The availability of rice genome sequence allowed performing a genome-wide search for P-type Ca(2+)ATPases proteins, and the comparison of the identified proteins with their homologs in Arabidopsis model plant. In the present study, we identified the P-type II Ca(2+)ATPases from rice by analyzing their phylogenetic relationship, multiple alignment, cis-regulatory elements, protein domains, motifs and homology percentage. The phylogenetic analysis revealed that rice type IIA Ca(2+)ATPases clustered with Arabidopsis type IIA Ca(2+)ATPases and showed high sequence similarity within the group, whereas rice type IIB Ca(2+)ATPases presented variable sequence similarities with Arabidopsis type IIB members. The protein homology modeling, identification of putative transmembrane domains and conserved motifs of rice P-type II Ca(2+)ATPases provided information on their functions and structural architecture. The analysis of P-type II Ca(2+)ATPases promoter regions in rice showed multiple stress-induced cis-acting elements. The expression profile analysis indicated vital roles of P-type II Ca(2+)ATPases in stress signaling, plant development and abiotic stress responses. The comprehensive analysis and expression profiling provided a critical platform for functional characterization of P-type II Ca(2+)ATPase genes that could be applied in engineering crop plants with modified calcium signaling and homeostatic pathways.
Collapse
Affiliation(s)
- Kazi Md Kamrul Huda
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
28
|
Mattle D, Sitsel O, Autzen HE, Meloni G, Gourdon P, Nissen P. On allosteric modulation of P-type Cu(+)-ATPases. J Mol Biol 2013; 425:2299-308. [PMID: 23500486 DOI: 10.1016/j.jmb.2013.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 11/17/2022]
Abstract
P-type ATPases perform active transport of various compounds across biological membranes and are crucial for ion homeostasis and the asymmetric composition of lipid bilayers. Although their functional cycle share principles of phosphoenzyme intermediates, P-type ATPases also show subclass-specific sequence motifs and structural elements that are linked to transport specificity and mechanistic modulation. Here we provide an overview of the Cu(+)-transporting ATPases (of subclass PIB) and compare them to the well-studied sarco(endo)plasmic reticulum Ca(2+)-ATPase (of subclass PIIA). Cu(+) ions in the cell are delivered by soluble chaperones to Cu(+)-ATPases, which expose a putative "docking platform" at the intracellular interface. Cu(+)-ATPases also contain heavy-metal binding domains providing a basis for allosteric control of pump activity. Database analysis of Cu(+) ligating residues questions a two-site model of intramembranous Cu(+) binding, and we suggest an alternative role for the proposed second site in copper translocation and proton exchange. The class-specific features demonstrate that topological diversity in P-type ATPases may tune a general energy coupling scheme to the translocation of compounds with remarkably different properties.
Collapse
Affiliation(s)
- Daniel Mattle
- Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
29
|
Influence of copper resistance determinants on gold transformation by Cupriavidus metallidurans strain CH34. J Bacteriol 2013; 195:2298-308. [PMID: 23475973 DOI: 10.1128/jb.01951-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cupriavidus metallidurans is associated with gold grains and may be involved in their formation. Gold(III) complexes influence the transcriptome of C. metallidurans (F. Reith et al., Proc. Natl. Acad. Sci. U. S. A. 106:17757-17762, 2009), leading to the upregulation of genes involved in the detoxification of reactive oxygen species and metal ions. In a systematic study, the involvement of these systems in gold transformation was investigated. Treatment of C. metallidurans cells with Au(I) complexes, which occur in this organism's natural environment, led to the upregulation of genes similar to those observed for treatment with Au(III) complexes. The two indigenous plasmids of C. metallidurans, which harbor several transition metal resistance determinants, were not involved in resistance to Au(I/III) complexes nor in their transformation to metallic nanoparticles. Upregulation of a cupA-lacZ fusion by the MerR-type regulator CupR with increasing Au(III) concentrations indicated the presence of gold ions in the cytoplasm. A hypothesis stating that the Gig system detoxifies gold complexes by the uptake and reduction of Au(III) to Au(I) or Au(0) reminiscent to detoxification of Hg(II) was disproven. ZupT and other secondary uptake systems for transition metal cations influenced Au(III) resistance but not the upregulation of the cupA-lacZ fusion. The two copper-exporting P-type ATPases CupA and CopF were also not essential for gold resistance. The copABCD determinant on chromosome 2, which encodes periplasmic proteins involved in copper resistance, was required for full gold resistance in C. metallidurans. In conclusion, biomineralization of gold particles via the reduction of mobile Au(I/III) complexes in C. metallidurans appears to primarily occur in the periplasmic space via copper-handling systems.
Collapse
|
30
|
Srivastava P, Kowshik M. Mechanisms of metal resistance and homeostasis in haloarchaea. ARCHAEA (VANCOUVER, B.C.) 2013; 2013:732864. [PMID: 23533331 PMCID: PMC3600143 DOI: 10.1155/2013/732864] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/20/2012] [Accepted: 01/10/2013] [Indexed: 11/20/2022]
Abstract
Haloarchaea are the predominant microflora of hypersaline econiches such as solar salterns, soda lakes, and estuaries where the salinity ranges from 35 to 400 ppt. Econiches like estuaries and solar crystallizer ponds may contain high concentrations of metals since they serve as ecological sinks for metal pollution and also as effective traps for river borne metals. The availability of metals in these econiches is determined by the type of metal complexes formed and the solubility of the metal species at such high salinity. Haloarchaea have developed specialized mechanisms for the uptake of metals required for various key physiological processes and are not readily available at high salinity, beside evolving resistance mechanisms for metals with high solubility. The present paper seeks to give an overview of the main molecular mechanisms involved in metal tolerance in haloarchaea and focuses on factors such as salinity and metal speciation that affect the bioavailability of metals to haloarchaea. Global transcriptomic analysis during metal stress in these organisms will help in determining the various factors differentially regulated and essential for metal physiology.
Collapse
Affiliation(s)
- Pallavee Srivastava
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH-17B, Zuarinagar, Goa 403 726, India
| | - Meenal Kowshik
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH-17B, Zuarinagar, Goa 403 726, India
| |
Collapse
|
31
|
MA FEI, HUANG HUIFANG, LIN LUPING, XUE CHENGHAI, LI-LING JESSE, CHEN LIMING, WANG YIQUAN, LI QINGWEI, LI YANGDA. PHYLOGENETIC ANALYSIS OFNa+/K+ATPase: INSIGHT INTO THE MECHANISM FOR THE GENESIS OF MULTI-ISOFORMS OF PROTEIN COMPLEX. J BIOL SYST 2011. [DOI: 10.1142/s0218339005001537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
One most notable trend during the evolution is the substantial expansion of genomes along with dramatic expansion of protein diversity. It has been discovered that, whilst in prokaryotes subunits of many proteinases are encoded by single genes, these are mostly encoded by multi-genes in eukaryotes. To understand the mechanism for the genesis of multi-isoforms of protein complex, we have analyzed amino acid sequences of Na+/ K+ATPase from various species ranging from archaea to vertebrates. Phylogenetic relationship between the selected species was considered from the perspective of important functional domains of Na+/ K+ATPase including cation ATPase N termination, E1-E2 ATPase, hydrolase, and cation ATPase C termination of the α subunit, Na+/ K+ATPase of the β subunit, and ATP1G1_PLM_MAT8 of the γ subunit. Coincident trees, obtained through comparison of aforementioned domains of the α and β subunits, were used to examine the evolutionary divergence. By conservational and phylogenetic analyses, evolution of the Na+/ K+ATPase was outlined. Evidence was also found that essential domains of the Na+/ K+ATPase have been conserved during the evolution. These investigations seem to imply that various isoforms of α and β subunits of vertebral Na+/ K+ATPases have evolved from single ancestral α and β subunit genes through duplication events. In addition, our results seem to suggest a third fate for duplicated genes, e.g. the duplicate may have the same function as their ancestor gene. The results may also provide important clues to the underlying mechanisms of genesis of Na+/ K+ATPase multi-isoforms.
Collapse
Affiliation(s)
- FEI MA
- Laboratory of Comparative Genome and Bioinformatics, College of Life Science, Liaoning Normal University, Dalian 116029, China
| | - HUIFANG HUANG
- School of Life Science, Xiamen University, Xiamen 361005, China
| | - LUPING LIN
- School of Life Science, Xiamen University, Xiamen 361005, China
| | - CHENGHAI XUE
- MOE Key Laboratory of Bioinformatics, Department of Automation, Tsinghua University, Beijing 100084, China
- Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China
| | - JESSE LI-LING
- Department of Medical Genetics, China Medical University, Shenyang 110001, China
| | - LIMING CHEN
- School of Life Science, Xiamen University, Xiamen 361005, China
| | - YIQUAN WANG
- School of Life Science, Xiamen University, Xiamen 361005, China
| | - QINGWEI LI
- Laboratory of Comparative Genome and Bioinformatics, College of Life Science, Liaoning Normal University, Dalian 116029, China
| | - YANGDA LI
- MOE Key Laboratory of Bioinformatics, Department of Automation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Hu MY, Sucré E, Charmantier-Daures M, Charmantier G, Lucassen M, Himmerkus N, Melzner F. Localization of ion-regulatory epithelia in embryos and hatchlings of two cephalopods. Cell Tissue Res 2010; 339:571-83. [PMID: 20127256 DOI: 10.1007/s00441-009-0921-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 12/16/2009] [Indexed: 10/19/2022]
Abstract
The tissue distribution and ontogeny of Na(+)/K(+)-ATPase has been examined as an indicator for ion-regulatory epithelia in whole animal sections of embryos and hatchlings of two cephalopod species: the squid Loligo vulgaris and the cuttlefish Sepia officinalis. This is the first report of the immunohistochemical localization of cephalopod Na(+)/K(+)-ATPase with the polyclonal antibody alpha (H-300) raised against the human alpha1-subunit of Na(+)/K(+)-ATPase. Na(+)/K(+)-ATPase immunoreactivity was observed in several tissues (gills, pancreatic appendages, nerves), exclusively located in baso-lateral membranes lining blood sinuses. Furthermore, large single cells in the gill of adult L. vulgaris specimens closely resembled Na(+)/K(+)-ATPase-rich cells described in fish. Immunohistochemical observations indicated that the amount and distribution of Na(+)/K(+)-ATPase in late cuttlefish embryos was similar to that found in juvenile and adult stages. The ion-regulatory epithelia (e.g., gills, excretory organs) of the squid embryos and paralarvae exhibited less differentiation than adults. Na(+)/K(+)-ATPase activities for whole animals were higher in hatchlings of S. officinalis (157.0 +/- 32.4 micromol g (FM) (-1) h(-1)) than in those of L. vulgaris (31.8 +/- 3.3 micromol g (FM) (-1) h(-1)). S. officinalis gills and pancreatic appendages achieved activities of 94.8 +/- 18.5 and 421.8 +/- 102.3 micromol(ATP) g (FM) (-1) h(-1), respectively. High concentrations of Na(+)/K(+)-ATPase in late cephalopod embryos might be important in coping with the challenging abiotic conditions (low pH, high pCO(2)) that these organisms encounter inside their eggs. Our results also suggest a higher sensitivity of squid vs. cuttlefish embryos to environmental acid-base disturbances.
Collapse
Affiliation(s)
- Marian Y Hu
- Leibniz Institute of Marine Sciences, Kiel, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Scherer J, Nies DH. CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol Microbiol 2009; 73:601-21. [PMID: 19602147 DOI: 10.1111/j.1365-2958.2009.06792.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cupriavidus metallidurans CH34 possesses a multitude of metal efflux systems. Here, the function of the novel P(IB4)-type ATPase CzcP is characterized, which belongs to the plasmid pMOL30-mediated cobalt-zinc-cadmium (Czc) resistance system. Contribution of CzcP to transition metal resistance in C. metallidurans was compared with that of three P(IB2)-type ATPases (CadA, ZntA, PrbA) and to other efflux proteins by construction and characterization of multiple deletion mutants. These data also yielded additional evidence for an export of metal cations from the periplasm to the outside of the cell rather than from the cytoplasm to the outside. Moreover, metal-sensitive Escherichia coli strains were functionally substituted in trans with CzcP and the three P(IB2)-type ATPases. Metal transport kinetics performed with inside-out vesicles identified the main substrates for these four exporters, the K(m) values and apparent turn-over numbers. In combination with the mutant data, transport kinetics indicated that CzcP functions as 'resistance enhancer': this P(IB4)-type ATPase exports transition metals Zn(2+), Cd(2+) and Co(2+) much more rapidly than the three P(IB2)-type proteins. However, a basic resistance level has to be provided by the P(IB2)-type efflux pumps because CzcP may not be able to reach all different speciations of these metals in the cytoplasm.
Collapse
Affiliation(s)
- Judith Scherer
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University, Halle-Wittenberg, Germany
| | | |
Collapse
|
34
|
González-Guerrero M, Hong D, Argüello JM. Chaperone-mediated Cu+ delivery to Cu+ transport ATPases: requirement of nucleotide binding. J Biol Chem 2009; 284:20804-11. [PMID: 19525226 DOI: 10.1074/jbc.m109.016329] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cu(+)-ATPases drive the efflux of Cu(+) from the cell cytoplasm. During their catalytic/transport cycle, cytoplasmic Cu(+)-chaperones deliver the metal to the two transmembrane metal-binding sites (TM-MBSs) responsible for Cu(+) translocation. Here, using Archaeoglobus fulgidus Cu(+)-ATPase CopA and the C-terminal Cu(+)-chaperone domain of CopZ (Ct-CopZ), we describe the mechanism of Cu(+) transfer to both TM-MBSs. In absence of other ligands, Ct-CopZ transfers Cu(+) to wild-type CopA and to various CopA constructs lacking or having mutated cytoplasmic metal-binding domains, in a fashion consistent with occupancy of a single TM-MBS. Similar experiments performed in the presence of 2.5 mm ADP-Mg(2+), stabilizing an E1.ADP, lead to full occupancy of both TM-MBSs. In both cases, the transfer is largely stoichiometric, i.e. equimolar amounts of Ct-CopZ.Cu(+) saturated the TM-MBSs. Experiments performed with CopA mutants lacking either TM-MBS showed that both sites are loaded independently, and nucleotide binding does not affect their availability. The nucleotide-induced E2-->E1 transition is structurally characterized by a large displacement of the A and N domains opening the cytoplasmic region of P-type ATPases. Then, it is apparent that, whereas the first Cu(+)-chaperone can bind an ATPase form available in the absence of ligands, the second requires the E1.nucleotide intermediary to interact and deliver the metal. Interestingly, independent of TM-MBS Cu(+) loading, nucleotide binding also prevents the regulatory interaction of the N-terminal cytoplasmic metal-binding domain with the nucleotide binding domain.
Collapse
Affiliation(s)
- Manuel González-Guerrero
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | | | | |
Collapse
|
35
|
Thever MD, Saier MH. Bioinformatic characterization of p-type ATPases encoded within the fully sequenced genomes of 26 eukaryotes. J Membr Biol 2009; 229:115-30. [PMID: 19548020 PMCID: PMC2709905 DOI: 10.1007/s00232-009-9176-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 05/14/2009] [Indexed: 10/30/2022]
Abstract
P-type ATPases play essential roles in numerous processes, which in humans include nerve impulse propagation, relaxation of muscle fibers, secretion and absorption in the kidney, acidification of the stomach and nutrient absorption in the intestine. Published evidence suggests that uncharacterized families of P-type ATPases with novel specificities exist. In this study, the fully sequenced genomes of 26 eukaryotes, including animals, plants, fungi and unicellular eukaryotes, were analyzed for P-type ATPases. We report the organismal distributions, phylogenetic relationships, probable topologies and conserved motifs of nine functionally characterized families and 13 uncharacterized families of these enzyme transporters. We have classified these proteins according to the conventions of the functional and phylogenetic IUBMB-approved transporter classification system ( www.tcdb.org , Saier et al. in Nucleic Acids Res 34:181-186, 2006; Nucleic Acids Res 37:274-278, 2009).
Collapse
Affiliation(s)
- Mark D. Thever
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, 92093-0116 CA USA
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, 92093-0116 CA USA
| |
Collapse
|
36
|
Mikolay A, Nies DH. The ABC-transporter AtmA is involved in nickel and cobalt resistance of Cupriavidus metallidurans strain CH34. Antonie van Leeuwenhoek 2009; 96:183-91. [PMID: 19132541 DOI: 10.1007/s10482-008-9303-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/22/2008] [Indexed: 11/26/2022]
Abstract
Cupriavidus metallidurans CH34 genome contains an ortholog of Atm1p named AtmA (Rmet_0391, YP_582546). In Saccharomyces cerevisiae, the ABC-type transport system Atm1p is involved in export of iron-sulfur clusters from mitochondria into the cytoplasm for assembly of cytoplasmic iron-sulfur containing proteins. An atmA mutant of C. metallidurans was sensitive to nickel and cobalt but not iron cations. AtmA increased also resistance to these cations in Escherichia coli strains that carry deletions of the genes for other nickel and cobalt transport systems. In C. metallidurans, atmA expression was not significantly induced by nickel and cobalt, but repressed by zinc. AtmA was purified as a 70 kDa protein after expression in E. coli. ATPase activity of AtmA was stimulated by nickel and cobalt.
Collapse
Affiliation(s)
- André Mikolay
- Life Science Faculty, Institute for Biology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099, Halle, Germany
| | | |
Collapse
|
37
|
Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie van Leeuwenhoek 2008; 96:115-39. [DOI: 10.1007/s10482-008-9284-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
|
38
|
Shpakov AO, Pertseva MN. Chapter 4 Signaling Systems of Lower Eukaryotes and Their Evolution. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:151-282. [DOI: 10.1016/s1937-6448(08)01004-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
In silico insight into two rice chromosomal regions associated with submergence tolerance and resistance to bacterial leaf blight and gall midge. Biotechnol Adv 2006; 24:561-89. [PMID: 16887318 DOI: 10.1016/j.biotechadv.2006.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Revised: 05/26/2006] [Accepted: 05/26/2006] [Indexed: 01/08/2023]
Abstract
Plants respond to both biotic and abiotic stresses through a common signaling system to provide defense and protection against many adverse environments. Many genes/QTLs governing resistance to both biotic and abiotic stresses have been studied and mapped in rice. Sub1, a major QTL for submergence tolerance is collocated with a gene Gm1 for gall midge resistance on chromosome 9 (Region 1). Likewise a bigger region on chromosome 5 (Region 2) has a minor QTL for submergence tolerance collocated with genes for bacterial blight resistance. Utilizing the rice sequence and annotation data (TIGR) and rice genome annotation project database (RAP-DB), we wanted to know the kinds of genes underlying these two chromosomal regions where genes/QTL governing tolerance to both biotic and abiotic stresses are collocated. We also analyzed the pattern of distribution of these genes across the BAC/PAC clones spanning the region so that candidate genes can be short listed for a functional analysis. Genes known to have a role in submergence tolerance were present in both the regions. Region 1, had a unique transcription factor like trithorax protein, which is a positional candidate gene for submergence tolerance. Pyruvate decarboxylase (PDC) gene for alcohol fermentation and cation transporting ATPase c-terminal domain are likely candidates for submergence QTL in Region 2. Genes such as SKP1 and elicitor induced cytochrome p450 associated with tissue necrosis and insect resistance were found in region 1. Multiple copies of ORFs for signal transduction proteins, transcription factors, genes for systemic acquired resistance, Ubiquitin proteins and pathogen elicitor identification and degrading proteins were located as a cluster in Region 2, where bacterial blight resistance genes mapped. Validation of the data obtained from TIGR with other databases (RAP and KOME) confirmed our findings. The functional role of some of the significant candidate genes needs to be established. Allele/gene specific markers can then be designed for use in MAS thus enhancing durable tolerance/resistance faster.
Collapse
|
40
|
Burroughs AM, Allen KN, Dunaway-Mariano D, Aravind L. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J Mol Biol 2006; 361:1003-34. [PMID: 16889794 DOI: 10.1016/j.jmb.2006.06.049] [Citation(s) in RCA: 340] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 06/16/2006] [Accepted: 06/20/2006] [Indexed: 11/21/2022]
Abstract
The HAD (haloacid dehalogenase) superfamily includes phosphoesterases, ATPases, phosphonatases, dehalogenases, and sugar phosphomutases acting on a remarkably diverse set of substrates. The availability of numerous crystal structures of representatives belonging to diverse branches of the HAD superfamily provides us with a unique opportunity to reconstruct their evolutionary history and uncover the principal determinants that led to their diversification of structure and function. To this end we present a comprehensive analysis of the HAD superfamily that identifies their unique structural features and provides a detailed classification of the entire superfamily. We show that at the highest level the HAD superfamily is unified with several other superfamilies, namely the DHH, receiver (CheY-like), von Willebrand A, TOPRIM, classical histone deacetylases and PIN/FLAP nuclease domains, all of which contain a specific form of the Rossmannoid fold. These Rossmannoid folds are distinguished from others by the presence of equivalently placed acidic catalytic residues, including one at the end of the first core beta-strand of the central sheet. The HAD domain is distinguished from these related Rossmannoid folds by two key structural signatures, a "squiggle" (a single helical turn) and a "flap" (a beta hairpin motif) located immediately downstream of the first beta-strand of their core Rossmanoid fold. The squiggle and the flap motifs are predicted to provide the necessary mobility to these enzymes for them to alternate between the "open" and "closed" conformations. In addition, most members of the HAD superfamily contains inserts, termed caps, occurring at either of two positions in the core Rossmannoid fold. We show that the cap modules have been independently inserted into these two stereotypic positions on multiple occasions in evolution and display extensive evolutionary diversification independent of the core catalytic domain. The first group of caps, the C1 caps, is directly inserted into the flap motif and regulates access of reactants to the active site. The second group, the C2 caps, forms a roof over the active site, and access to their internal cavities might be in part regulated by the movement of the flap. The diversification of the cap module was a major factor in the exploration of a vast substrate space in the course of the evolution of this superfamily. We show that the HAD superfamily contains 33 major families distributed across the three superkingdoms of life. Analysis of the phyletic patterns suggests that at least five distinct HAD proteins are traceable to the last universal common ancestor (LUCA) of all extant organisms. While these prototypes diverged prior to the emergence of the LUCA, the major diversification in terms of both substrate specificity and reaction types occurred after the radiation of the three superkingdoms of life, primarily in bacteria. Most major diversification events appear to correlate with the acquisition of new metabolic capabilities, especially related to the elaboration of carbohydrate metabolism in the bacteria. The newly identified relationships and functional predictions provided here are likely to aid the future exploration of the numerous poorly understood members of this large superfamily of enzymes.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
41
|
Stokes DL, Delavoie F, Rice WJ, Champeil P, McIntosh DB, Lacapère JJ. Structural Studies of a Stabilized Phosphoenzyme Intermediate of Ca2+-ATPase. J Biol Chem 2005; 280:18063-72. [PMID: 15734741 DOI: 10.1074/jbc.m500031200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(2+)-ATPase belongs to the family of P-type ATPases and maintains low concentrations of intracellular Ca(2+). Its reaction cycle consists of four main intermediates that alternate ion binding in the transmembrane domain with phosphorylation of an aspartate residue in a cytoplasmic domain. Previous work characterized an ultrastable phosphoenzyme produced first by labeling with fluorescein isothiocyanate, then by allowing this labeled enzyme to establish a maximal Ca(2+) gradient, and finally by removing Ca(2+) from the solution. This phosphoenzyme is characterized by very low fluorescence and has specific enzymatic properties suggesting the existence of a high energy phosphoryl bond. To study the structural properties of this phosphoenzyme, we used cryoelectron microscopy of two-dimensional crystals formed in the presence of decavanadate and determined the structure at 8-A resolution. To our surprise we found that at this resolution the low fluorescence phosphoenzyme had a structure similar to that of the native enzyme crystallized under equivalent conditions. We went on to use glutaraldehyde cross-linking and proteolysis for independent structural assessment and concluded that, like the unphosphorylated native enzyme, Ca(2+) and vanadate exert a strong influence over the global structure of this low fluorescence phosphoenzyme. Based on a structural model with fluorescein isothiocyanate bound at the ATP site, we suggest that the stability as well as the low fluorescence of this phosphoenzyme is due to a fluorescein-mediated cross-link between two cytoplasmic domains that prevents hydrolysis of the aspartyl phosphate. Finally, we consider the alternative possibility that phosphate transfer to fluorescein itself could explain the properties of this low fluorescence species.
Collapse
Affiliation(s)
- David L Stokes
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York 10012, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The fluorescent styryl dye RH421 was used to identify and investigate electrogenic reaction steps of the H,K-ATPase pump cycle. Equilibrium titration experiments were performed with membrane vesicles isolated from hog gastric mucosa, and cytoplasmic and luminal binding of K(+) and H(+) ions was studied. It was found that the binding and release steps of both ion species in both principal conformations of the ion pump, E(1) and P-E(2), are electrogenic, whereas the conformation transitions do not contribute significantly to a charge movement within the membrane dielectric. This behavior is in agreement with the transport mechanism found for the Na,K-ATPase and the sarcoplasmic reticulum Ca-ATPase. The data were analyzed on the basis of the Post-Albers reaction cycle. For proton binding, two pK values were found in both conformations: 6.7 and </=4.5 in the E(1) conformation; 6.7 and </=2 in the P-E(2) conformation. The equilibrium dissociation constants for K(+) binding on the cytoplasmic side were 11 and 16 mM. The respective equilibrium dissociation constants on the luminal side were obtained via K(+) concentration dependence of the enzyme activity and determined to be 0.11 mM for both luminal binding sites.
Collapse
Affiliation(s)
- Anna Diller
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
43
|
Miranda K, Vercesi AE, Catisti R, De Souza W, Rodrigues CO, Docampo R. P-type Proton ATPases are Involved in Intracellular Calcium and Proton Uptake in the Plant Parasite Phytomonas francai. J Eukaryot Microbiol 2005; 52:55-60. [PMID: 15702981 DOI: 10.1111/j.1550-7408.2005.3309rr.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of digitonin to permeabilize the plasma membrane of promastigotes of Phytomonas francai allowed the identification of two non-mitochondrial Ca(2+) compartments; one sensitive to ionomycin and vanadate (neutral or alkaline), possibly the endoplasmic reticulum, and another sensitive to the combination of nigericin plus ionomycin (acidic), possibly the acidocalcisomes. A P-type (phospho-intermediate form) Ca(2+)-ATPase activity was found to be responsible for intracellular Ca(2+) transport in these cells, with no evidence of a mitochondrial Ca(2+) transport activity. ATP-driven acidification of internal compartments in cell lysates and cells mechanically permeabilized was assayed spectrophotometrically with acridine orange. This activity was inhibited by low concentrations of vanadate and digitonin, was insensitive to bafilomycin A(1), and stimulated by Na(+) ions. Taken together, our results indicate that P-type ATPases are involved in intracellular Ca(2+) and H(+) transport in promastigotes of P. francai.
Collapse
Affiliation(s)
- Kildare Miranda
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Suzuki Y, Ueno S, Ohnuma R, Koyama N. Cloning, sequencing and functional expression in Escherichia coli of the gene for a P-type Na(+)-ATPase of a facultatively anaerobic alkaliphile, Exiguobacterium aurantiacum. ACTA ACUST UNITED AC 2005; 1727:162-8. [PMID: 15715958 DOI: 10.1016/j.bbaexp.2004.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 12/21/2004] [Accepted: 12/22/2004] [Indexed: 11/21/2022]
Abstract
Cloning and sequencing of the gene encoding a P-type Na(+)-ATPase of a facultatively anaerobic alkaliphile, Exiguobacterium aurantiacum, were conducted. The structural gene was composed of 2628 nucleotides. The deduced amino acid sequence (876 amino acid residues; Mr, 96,664) suggested that the enzyme possesses 10 membrane-spanning regions. When the amino acid sequences of the four putative membrane regions, M4, M5, M6 and M8, of BL77/1 ATPase were aligned with those of fungal Na(+)-ATPase, Na(+)/K(+)-ATPase, H(+)-ATPases and sarcoplasmic reticulum Ca(2+)-ATPase, it exhibited the highest homology with Ca(2+)-ATPase except M5 region. By the transformation of Escherichia coli with the expression vector (pQE30) containing the ATPase gene, the enzyme was functionally expressed in E. coli membranes.
Collapse
Affiliation(s)
- Yuusuke Suzuki
- Department of Chemistry, Faculty of Science, Chiba University, Yayoi, Inage-ku, Chiba 263-8522, Japan
| | | | | | | |
Collapse
|
45
|
Abstract
With the recent atomic models for the sarcoplasmic reticulum Ca(2+)-ATPase in the Ca(2+)-bound state, the Ca(2+)-free, thapsigargin-inhibited state, and the Ca(2+)-free, vanadate-inhibited state, we are that much closer to understanding and animating the Ca(2+)-transport cycle. These "snapshots" of the Ca(2+)-transport cycle reveal an impressive breadth and complexity of conformational change. The cytoplasmic domains undergo rigid-body movements that couple the energy of ATP to the transport of Ca2+ across the membrane. Large-scale rearrangements in the transmembrane domain suggest that the Ca(2+)-binding sites may alternately cease to exist and reform during the transport cycle. Of the three cytoplasmic domains, the actuator (A) domain undergoes the largest movement, namely a 110 degrees rotation normal to the membrane. This domain is linked to transmembrane segments M1-M3, which undergo large rearrangements in the membrane domain. Together, these movements are a main event in Ca2+ transport, yet their significance is poorly understood. Nonetheless, inhibition or modulation of Ca(2+)-ATPase activity appears to target these conformational changes. Thapsigargin is a high-affinity inhibitor that binds to the M3 helix near Phe256, and phospholamban is a modulator of Ca(2+)-ATPase activity that has been cross-linked to M2 and M4. The purpose of this review is to postulate roles for the A domain and M1-M3 in Ca2+ transport and inhibition.
Collapse
Affiliation(s)
- H S Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G2H7, Canada.
| | | |
Collapse
|
46
|
Xu G, Kane DJ, Faller LD, Farley RA. The role of loop 6/7 in folding and functional performance of Na,K-ATPase. J Biol Chem 2004; 279:45594-602. [PMID: 15322120 DOI: 10.1074/jbc.m408147200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alanine substitutions were made for 15 amino acids in the cytoplasmic loop between transmembrane helices 6 and 7 (L6/7) of the human alpha(1)-subunit of Na,K-ATPase. Most mutations reduced Na,K-ATPase activity by less than 50%; however, the mutations R834A, R837A, and R848A reduced Na,K-ATPase activity by 75, 89, and 66%, respectively. Steady-state phosphoenzyme formation from ATP was reduced in mutants R834A, R837A, and R848A, and R837A also had a faster E(2)P --> E(2) dephosphorylation rate compared with the wild-type enzyme. Effects of L6/7 mutations on the phosphorylation domain of the protein were also demonstrated by (18)O exchange, which showed that intrinsic rate constants for P(i) binding and/or reaction with the protein were altered. Although most L6/7 mutations had no effect on the interaction of Na(+) or K(+) with Na,K-ATPase, the E825A, E828A, R834A, and R837A mutations reduced the apparent affinity of the enzyme for both Na(+) and K(+) by 1.5-3-fold. 1-Bromo-2,4,6-tris(methylisothiouronium)benzene (Br-TITU(3+)), a competitive antagonist of Rb(+) and Na(+) occlusion, was used to test whether charged residues in L6/7 are involved in binding monovalent cations and cation antagonists. Br-TITU(3+) inhibited ouabain binding to wild type Na,K-ATPase with an IC(50) of 30 microM. Ouabain binding to the E825A, E828A, R834A, or R837A mutants was still inhibited by Br-TITU(3+), indicating that Br-TITU(3+) does not bind to charged residues in L6/7. This observation makes it unlikely that L6/7 functions as a cytoplasmic cation binding site in Na,K-ATPase, and together with the effects of L6/7 mutations on phosphate interactions with the enzyme suggests that L6/7 is important in stabilizing the phosphorylation domain and its relationship to the ion binding sites of the protein.
Collapse
Affiliation(s)
- Guiyan Xu
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
47
|
Stokes DL, Green NM. Structure and function of the calcium pump. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:445-68. [PMID: 12598367 DOI: 10.1146/annurev.biophys.32.110601.142433] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Active transport of cations is achieved by a large family of ATP-dependent ion pumps, known as P-type ATPases. Various members of this family have been targets of structural and functional investigations for over four decades. Recently, atomic structures have been determined for Ca2+-ATPase by X-ray crystallography, which not only reveal the architecture of these molecules but also offer the opportunity to understand the structural mechanisms by which the energy of ATP is coupled to calcium transport across the membrane. This energy coupling is accomplished by large-scale conformational changes. The transmembrane domain undergoes plastic deformations under the influence of calcium binding at the transport site. Cytoplasmic domains undergo dramatic rigid-body movements that deliver substrates to the catalytic site and that establish new domain interfaces. By comparing various structures and correlating functional data, we can now begin to associate the chemical changes constituting the reaction cycle with structural changes in these domains.
Collapse
Affiliation(s)
- David L Stokes
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10012, USA.
| | | |
Collapse
|
48
|
Legatzki A, Grass G, Anton A, Rensing C, Nies DH. Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J Bacteriol 2003; 185:4354-61. [PMID: 12867443 PMCID: PMC165768 DOI: 10.1128/jb.185.15.4354-4361.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cadmium and zinc are removed from cells of Ralstonia metallidurans by the CzcCBA efflux pump and by two soft-metal-transporting P-type ATPases, CadA and ZntA. The czcCBA genes are located on plasmid pMOL30, and the cadA and zntA genes are on the bacterial chromosome. Expression of zntA from R. metallidurans in Escherichia coli predominantly mediated resistance to zinc, and expression of cadA predominantly mediated resistance to cadmium. Both transporters decreased the cellular content of zinc or cadmium in this host. In the plasmid-free R. metallidurans strain AE104, single gene deletions of cadA or zntA had only a moderate effect on cadmium and zinc resistance, but zinc resistance decreased 6-fold and cadmium resistance decreased 350-fold in double deletion strains. Neither single nor double gene deletions affected zinc resistance in the presence of czcCBA. In contrast, cadmium resistance of the cadA zntA double mutant could be elevated only partially by the presence of CzcCBA. lacZ reporter gene fusions indicated that expression of cadA was induced by cadmium but not by zinc in R. metallidurans strain AE104. In the absence of the zntA gene, expression of cadA occurred at lower cadmium concentrations and zinc now served as an inducer. In contrast, expression of zntA was induced by both zinc and cadmium, and the induction pattern did not change in the presence or absence of CadA. However, expression of both genes, zntA and cadA, was diminished in the presence of CzcCBA. This indicated that CzcCBA efficiently decreased cytoplasmic cadmium and zinc concentrations. It is discussed whether these data favor a model in which the cations are removed either from the cytoplasm or the periplasm by CzcCBA.
Collapse
|
49
|
Okorokova-Façanha AL, Okorokov LA, Ekwall K. An inventory of the P-type ATPases in the fission yeast Schizosaccharomyces pombe. Curr Genet 2003; 43:273-80. [PMID: 12707717 DOI: 10.1007/s00294-003-0395-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2002] [Revised: 03/14/2003] [Accepted: 03/15/2003] [Indexed: 10/26/2022]
Abstract
The analysis of the Schizosaccharomyces pombe genome revealed the presence of 14 putative P-type ATPases. The clustering of ATPases resembles that of Saccharomyces cerevisiae, indicating that the main classes of pumps were already present before the split of the Archiascomycetes from the other Ascomycota. The overall amino acid identity between fission and budding yeast P-type ATPases is generally low (30-50%). This is similar to the fungus-plant and fungus-animal comparisons, suggesting that fungal ATPases underwent an extensive process of diversification. Unlike Sac. cerevisiae, fission yeast lacks Na(+)-ATPases, has a single heavy-metal ATPase and three ATPases of unknown specificity. The observed divergence within these fungi might reflect physiological differences, including adaptation to environmental stresses.
Collapse
Affiliation(s)
- Anna L Okorokova-Façanha
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Parque California, RJ 28013-600, Campos dos Goytacazes, Brazil.
| | | | | |
Collapse
|
50
|
Stiles JK, Kucerova Z, Sarfo B, Meade CA, Thompson W, Shah P, Xue L, Meade JC. Identification of surface-membrane P-type ATPases resembling fungal K(+)- and Na(+)-ATPases, in Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2003; 97:351-66. [PMID: 12831521 DOI: 10.1179/000349803235002362] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Genomic DNA fragments encoding nine, novel, P-type ATPases in trypanosomatid organisms were amplified in PCR, using degenerate oligonucleotide primers that recognize the ATP-binding and -phosphorylation sites present in all P-type ATPases. Subsequent phylogenetic analysis, based on the presence of conserved motifs in predicted peptide sequences for six Trypanosoma brucei, T. cruzi or Leishmania donovani PCR fragments, identified calcium-, proton- and phospholipid-translocating ATPases. DNA fragments that predict proteins homologous to the fungal, type-IID, P-type, ATPase pumps that transport Na(+) or K(+) ions were also present in T. brucei (TBCA1; 1022 nucleotides representing 340 amino acids), T. cruzi (TCNA1; 1022 nucleotides representing 340 amino acids) and L. donovani (LDCA1; 1031 nucleotides representing 343 amino acids). Southern blots showed that the Na(+)-ATPases were each present as a single-copy gene. The LDCA1 fragment was used to clone the complete LDCA1 gene from an L. donovani genomic-DNA library. The LDCA1 gene encodes a protein, of 1047 amino acids, with a predicted molecular mass of 115,501 Da. The results of analyses based on northern blots and the rapid amplification of cDNA ends (RACE) indicated that LDCA1 was expressed in promastigotes and amastigotes from axenic cultures and in animal-derived amastigotes. TBCA1 was expressed, as a 5.0-kb transcript, in procyclic culture stages and bloodstream trypomastigotes, with the 5.0-kb message up-regulated six-fold in the trypomastigote stage. Western blots probed with an antibody to the partial TBCA1 peptide identified a 150-kDa protein that was detected, by immunofluorescence, on the surface membrane of procyclic T. brucei.
Collapse
Affiliation(s)
- J K Stiles
- Department of Microbiology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 303010, USA.
| | | | | | | | | | | | | | | |
Collapse
|