1
|
Le Page L, Gillespie A, Schwartz JC, Prawits LM, Schlerka A, Farrell CP, Hammond JA, Baldwin CL, Telfer JC, Hammer SE. Subpopulations of swine γδ T cells defined by TCRγ and WC1 gene expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104214. [PMID: 34329647 DOI: 10.1016/j.dci.2021.104214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
γδ T cells constitute a major portion of lymphocytes in the blood of both ruminants and swine. Subpopulations of swine γδ T cells have been distinguished by CD2 and CD8α expression. However, it was not clear if they have distinct expression profiles of their T-cell receptor (TCR) or WC1 genes. Identifying receptor expression will contribute to understanding the functional differences between these subpopulations and their contributions to immune protection. Here, we annotated three genomic assemblies of the swine TCRγ gene locus finding four gene cassettes containing C, J and V genes, although some haplotypes carried a null TRGC gene (TRGC4). Genes in the TRGC1 cassette were homologs of bovine TRGC5 cassette while the others were not homologous to bovine genes. Here we evaluated three principal populations of γδ T cells (CD2+/SWC5-, CD2-/SWC5+, and CD2-/SWC5-). Both CD2- subpopulations transcribed WC1 co-receptor genes, albeit with different patterns of gene expression but CD2+ cells did not. All subpopulations transcribed TCR genes from all four cassettes, although there were differences in expression levels. Finally, the CD2+ and CD2- γδ T-cell populations differed in their representation in various organs and tissues, presumably at least partially reflective of different ligand specificities for their receptors.
Collapse
Affiliation(s)
- Lauren Le Page
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Alexandria Gillespie
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Lisa-Maria Prawits
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Angela Schlerka
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Colin P Farrell
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Cynthia L Baldwin
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Janice C Telfer
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sabine E Hammer
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
2
|
Giannico F, Massari S, Caputi Jambrenghi A, Soriano A, Pala A, Linguiti G, Ciccarese S, Antonacci R. The expansion of the TRB and TRG genes in domestic goats (Capra hircus) is characteristic of the ruminant species. BMC Genomics 2020; 21:623. [PMID: 32912163 PMCID: PMC7488459 DOI: 10.1186/s12864-020-07022-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Goats (Capra hircus), one of the first domesticated species, are economically important for milk and meat production, and their broad geographical distribution reflects their successful adaptation to diverse environmental conditions. Despite the relevance of this species, the genetic research on the goat traits is limited compared to other domestic species. Thanks to the latest goat reference genomic sequence (ARS1), which is considered to be one of the most continuous assemblies in livestock, we deduced the genomic structure of the T cell receptor beta (TRB) and gamma (TRG) loci in this ruminant species. RESULTS Our analyses revealed that although the organization of the goat TRB locus is broadly similar to that of the other artiodactyl species, with three in-tandem D-J-C clusters located at the 3' end, a complex and extensive series of duplications have occurred in the V genes at the 5' end, leading to a marked expansion in the number of the TRBV genes. This phenomenon appears to be a feature of the ruminant lineage since similar gene expansions have also occurred in sheep and cattle. Likewise, the general organization of the goat TRG genes is typical of ruminant species studied so far, with two paralogous TRG loci, TRG1 and TRG2, located in two distinct and distant positions on the same chromosome as result of a split in the ancestral locus. Each TRG locus consists of reiterated V-J-J-C cassettes, with the goat TRG2 containing an additional cassette relative to the corresponding sheep and cattle loci. CONCLUSIONS Taken together, these findings demonstrate that strong evolutionary pressures in the ruminant lineage have selected for the development of enlarged sets of TRB and TRG genes that contribute to a diverse T cell receptor repertoire. However, differences observed among the goat, sheep and cattle TRB and TRG genes indicate that distinct evolutionary histories, with independent expansions and/or contractions, have also affected each ruminant species.
Collapse
Affiliation(s)
- Francesco Giannico
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | - Anna Caputi Jambrenghi
- Department of Agricultural and Environmental Science, University of Bari "Aldo Moro", Bari, Italy
| | - Adriano Soriano
- Department of Biology, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Angela Pala
- Department of Biology, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Giovanna Linguiti
- Department of Biology, University of Bari "Aldo Moro", 70124, Bari, Italy
| | | | - Rachele Antonacci
- Department of Biology, University of Bari "Aldo Moro", 70124, Bari, Italy.
| |
Collapse
|
3
|
Antonacci R, Massari S, Linguiti G, Caputi Jambrenghi A, Giannico F, Lefranc MP, Ciccarese S. Evolution of the T-Cell Receptor (TR) Loci in the Adaptive Immune Response: The Tale of the TRG Locus in Mammals. Genes (Basel) 2020; 11:E624. [PMID: 32517024 PMCID: PMC7349638 DOI: 10.3390/genes11060624] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
T lymphocytes are the principal actors of vertebrates' cell-mediated immunity. Like B cells, they can recognize an unlimited number of foreign molecules through their antigen-specific heterodimer receptors (TRs), which consist of αβ or γδ chains. The diversity of the TRs is mainly due to the unique organization of the genes encoding the α, β, γ, and δ chains. For each chain, multi-gene families are arranged in a TR locus, and their expression is guaranteed by the somatic recombination process. A great plasticity of the gene organization within the TR loci exists among species. Marked structural differences affect the TR γ (TRG) locus. The recent sequencing of multiple whole genome provides an opportunity to examine the TR gene repertoire in a systematic and consistent fashion. In this review, we report the most recent findings on the genomic organization of TRG loci in mammalian species in order to show differences and similarities. The comparison revealed remarkable diversification of both the genomic organization and gene repertoire across species, but also unexpected evolutionary conservation, which highlights the important role of the T cells in the immune response.
Collapse
Affiliation(s)
- Rachele Antonacci
- Department of Biology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (S.C.)
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Giovanna Linguiti
- Department of Biology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (S.C.)
| | - Anna Caputi Jambrenghi
- Department of Agricultural and Environmental Science, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.C.J.); (F.G.)
| | - Francesco Giannico
- Department of Agricultural and Environmental Science, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.C.J.); (F.G.)
| | - Marie-Paule Lefranc
- IMGT, the International ImMunoGeneTics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR9002 CNRS, Université de Montpellier, CEDEX 5, 34396 Montpellier, France;
| | - Salvatrice Ciccarese
- Department of Biology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (S.C.)
| |
Collapse
|
4
|
Abstract
The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest that these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages.
Collapse
Affiliation(s)
- Caitlin C. Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Adrienne M. Luoma
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Drbalova J, Musilova P, Kubickova S, Sebestova H, Vahala J, Rubes J. Impact of karyotype organization on interlocus recombination between T cell receptor genes in Equidae. Cytogenet Genome Res 2015; 144:306-14. [PMID: 25765057 DOI: 10.1159/000377712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
Abstract
The T cell receptor (TCR) genes (TRA, TRB, TRD and TRG) reside in 3 different chromosomal regions. During the maturation of T lymphocytes, the TCR genes are rearranged by site-specific recombination, a process that also predisposes T cells to aberrant rearrangements. Illegitimate recombination between the TCR genes occurs at a low level in healthy individuals, but this frequency may correlate with the risk of lymphoma. The aim of this work was to investigate interlocus recombination in equids. Illegitimate rearrangements were studied in peripheral blood lymphocytes by FISH with painting and BAC probes and by sequencing of PCR products, and the frequencies of recombination were assessed in horses and 4 other equids. The presence of several trans-rearrangement products between the TRA and TRG genes was verified by PCR in all investigated equids. Frequencies of trans-rearrangements in horses are higher than in humans, and colocalization of the TCR genes on the same chromosome increases the incidence of trans-rearrangements between them. The orientation of the TCR genes does not impact interlocus recombination itself but does affect the viability of cells carrying its products and consequently the number of trans-rearrangements observed in lymphocytes.
Collapse
Affiliation(s)
- Jitka Drbalova
- Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
6
|
The equine immune responses to infectious and allergic disease: a model for humans? Mol Immunol 2014; 66:89-96. [PMID: 25457878 DOI: 10.1016/j.molimm.2014.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 01/01/2023]
Abstract
The modern horse, Equus caballus has historically made important contributions to the field of immunology, dating back to Emil von Behring's description of curative antibodies in equine serum over a century ago. While the horse continues to play an important role in human serotherapy, the mouse has replaced the horse as the predominant experimental animal in immunology research. Nevertheless, continuing efforts have led to an improved understanding of the equine immune response in a variety of infectious and non-infectious diseases. Based on this information, we can begin to identify specific situations where the horse may provide a unique immunological model for certain human diseases.
Collapse
|
7
|
Vaccarelli G, Antonacci R, Tasco G, Yang F, Giordano L, El Ashmaoui HM, Hassanane MS, Massari S, Casadio R, Ciccarese S. Generation of diversity by somatic mutation in theCamelus dromedariusT-cell receptor gamma variable domains. Eur J Immunol 2012; 42:3416-28. [DOI: 10.1002/eji.201142176] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 08/20/2012] [Accepted: 09/03/2012] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Gianluca Tasco
- Biocomputing Group; CIRI-Health Science and Technologies/Department of Biology; University of Bologna; Bologna Italy
| | - Fengtang Yang
- Cytogenetics Core Facility,; Wellcome Trust Sanger Institute; Hinxton Cambridge UK
| | - Luca Giordano
- Department of Biosciences,; Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| | - Hassan M. El Ashmaoui
- Cell Biology Department National Research Center; Dokki Giza Egypt
- King Abdulaziz University; Biological Sciences; Jeddah Saudi Arabia
| | | | - Serafina Massari
- Department of Biological and Environmental Science e Technologies; University of Salento; Lecce Italy
| | - Rita Casadio
- Biocomputing Group; CIRI-Health Science and Technologies/Department of Biology; University of Bologna; Bologna Italy
| | | |
Collapse
|
8
|
Siewerdt F, Eisen EJ, Conrad-Brink JS, Murray JD. Gene action of the oMt1a-oGH transgene in two lines of mice with distinct selection backgrounds*. J Anim Breed Genet 2011. [DOI: 10.1111/j.1439-0388.1998.tb00344.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Platt R, Sponseller BA, Chiang YW, Roth JA. Cell-mediated immunity evaluation in foals infected with virulent equine herpesvirus-1 by multi-parameter flow cytometry. Vet Immunol Immunopathol 2010; 135:275-81. [PMID: 20116862 DOI: 10.1016/j.vetimm.2009.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/20/2009] [Accepted: 12/30/2009] [Indexed: 11/15/2022]
Abstract
The cell-mediated immune (CMI) response of foals to virulent equine herpesvirus-1 (EHV-1) infection was evaluated by multi-parameter flow cytometry (FCM). Ten 7-8-month-old EHV-1 seronegative foals were infected intranasally with virulent EHV-1 and 10 foals served as uninfected controls. Blood samples were collected 6 and 7 weeks after infection to test for specific CMI responses to live heterologous EHV-1 recall antigen. The activation markers included major histocompatibility complex class II (MHC II), intracellular interferon gamma (IFN-gamma) and interleukin 4 (IL-4). The results from both tests were averaged before statistical analysis. Following EHV-1 stimulation, the MHC II expression index (EI) increased significantly in CD2+CD4+CD8- and CD2+CD4-CD8+ subsets of the infected group. At 4 days after incubation, the non-antigen stimulated CD2+CD4-CD8- subset of the infected group expressed a high percentage (61.1%) of MHC II. When stimulated with EHV-1, the MHC II expression declined significantly but remained at a relatively high percentage (34.4%). The IFN-gamma EI was significantly higher in infected foals in all major T cell subsets (CD2+) while only the CD2+CD4+CD8- subset showed a significant increase in intracellular IL-4 EI. The FCM results showed strong specific CMI responses to EHV-1 by all three tested parameters compared to the control group (p<0.01). The high MHC II expression in the CD2+CD4-CD8- subset suggests that this T cell subset may represent a gammadelta TCR repertoire and thereby plays an important role as antigen presenting cells in the horse, as reported in other species. Being able to simultaneously quantify the frequency of specific lymphocyte subsets and the expression of cytokines that characterize activation of lymphocytes and protective CMI by multi-parameter FCM enables evaluation of subset-specific CMI responses to EHV-1 infection. This system can be applied to measure CMI responses to other equine vaccines and pathogens.
Collapse
Affiliation(s)
- Ratree Platt
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, United States
| | | | | | | |
Collapse
|
10
|
Parra ZE, Arnold T, Nowak MA, Hellman L, Miller RD. TCR gamma chain diversity in the spleen of the duckbill platypus (Ornithorhynchus anatinus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:699-710. [PMID: 16303181 DOI: 10.1016/j.dci.2005.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 10/03/2005] [Accepted: 10/05/2005] [Indexed: 05/05/2023]
Abstract
TCR gamma (TRG) chain diversity in splenic gammadelta T cells was determined for an egg-laying mammal (or monotreme), the duckbill platypus. Three distinct V subgroups were found in the expressed TRG chains and these three subgroups are members of a clade not found so far in eutherian mammals or birds. Each subgroup contains approximately five V gene segments, and their overall divergence is much less than is found in eutherians and birds, consistent with their recent evolution from an ancestral V gene segment. The platypus TRG locus also contains three C region genes and many of the residues involved in TCR function, such as interactions with CD3, were conserved in the monotreme C regions. All non-eutherian mammals (monotremes and marsupials) lacked the second cysteine residue necessary to form the intradomain disulfide bond in the C region, a loss apparently due to independent mutations in marsupials and monotremes. Monotreme TRGC regions also had among the most variation in the length of the connecting peptide region described for any species due to repeated motifs.
Collapse
Affiliation(s)
- Zuly E Parra
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
11
|
Yamamoto R, Uenishi H, Hatsuse H, Sato E, Awata T, Yasue H, Takagaki Y. TRAV gene usage in pig T-cell receptor alpha cDNA. Immunogenetics 2005; 57:219-25. [PMID: 15900493 DOI: 10.1007/s00251-005-0779-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2004] [Revised: 12/23/2004] [Indexed: 11/28/2022]
Abstract
Pig (Sus scrofa) TRA clones were isolated from cDNA libraries of total RNA from two different sources, the thymus of a 1-month-old LW strain pig and the peripheral blood lymphocytes of a 5-month-old Clawn strain pig. Among 103 complete TRA cDNA clones from both sources, 33 different TRAV genes were identified. By comparing their sequence identities against one another, these pig TRAV genes were grouped into 20 subgroups, including 13 subgroups, each containing only a single member. All of these pig subgroups gave corresponding human and mouse functional counterparts, suggesting their functional commonality. An exception was the Va01 gene segment, which lacked a functional human counterpart. The present report provides groundwork for studies on pig TRA expression.
Collapse
Affiliation(s)
- Ryuji Yamamoto
- Genome Research Department, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, 305-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Tschetter JR, Davis WC, Perryman LE, McGuire TC. CD8 dimer usage on alpha beta and gama delta T lymphocytes from equine lymphoid tissues. Immunobiology 1998; 198:424-38. [PMID: 9562867 DOI: 10.1016/s0171-2985(98)80050-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eight murine monoclonal antibodies (mAb) were used to identify the equine CD8 alpha or CD8 beta chains and to define the expression of these chains on lymphocytes from various lymphoid tissues. CD8 alpha was a 39 kDa protein and CD8 beta was a 32 kDa protein. Both chains were expressed on most of the CD8+ T lymphocytes in the peripheral blood, spleen, thymus, mesenteric lymph nodes and ileal intraepithelial lymphocytes (IEL), however, in each lymphoid compartment a percentage of lymphocytes expressed only the CD8 alpha chain. The largest percentage of CD8 alpha alpha expressing T lymphocytes was 37.7% of the IELs. Purified T lymphocytes from the ileum expressing CD8 alpha beta co-expressed the alpha beta T cell receptor (TCR). In contrast, purified CD8+ T lymphocytes from the PBMC co-expressed either the alpha beta or gamma delta TCR by RT-PCR. Use of pooled anti-CD8 alpha mAb of the murine IgG2a isotype and rabbit complement resulted in lysis of the entire CD8 expressing population in peripheral blood mononuclear cells (PBMC). These results indicated that CD8 dimer usage by equine T lymphocytes is similar to other species and that the mAb described can be further used to separate equine CD8+ T lymphocyte subsets from the lymphoid tissues to define their function in protection against viral and other infections.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- CD8 Antigens/immunology
- CD8 Antigens/isolation & purification
- Dimerization
- Female
- Horses
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- Mice
- Mice, Inbred BALB C
- Rabbits
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- J R Tschetter
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, USA
| | | | | | | |
Collapse
|