1
|
Barrett P, Quick TJ, Mudera V, Player DJ. Neuregulin 1 Drives Morphological and Phenotypical Changes in C2C12 Myotubes: Towards De Novo Formation of Intrafusal Fibres In Vitro. Front Cell Dev Biol 2022; 9:760260. [PMID: 35087826 PMCID: PMC8787273 DOI: 10.3389/fcell.2021.760260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Muscle spindles are sensory organs that detect and mediate both static and dynamic muscle stretch and monitor muscle position, through a specialised cell population, termed intrafusal fibres. It is these fibres that provide a key contribution to proprioception and muscle spindle dysfunction is associated with multiple neuromuscular diseases, aging and nerve injuries. To date, there are few publications focussed on de novo generation and characterisation of intrafusal muscle fibres in vitro. To this end, current models of skeletal muscle focus on extrafusal fibres and lack an appreciation for the afferent functions of the muscle spindle. The goal of this study was to produce and define intrafusal bag and chain myotubes from differentiated C2C12 myoblasts, utilising the addition of the developmentally associated protein, Neuregulin 1 (Nrg-1). Intrafusal bag myotubes have a fusiform shape and were assigned using statistical morphological parameters. The model was further validated using immunofluorescent microscopy and western blot analysis, directed against an extensive list of putative intrafusal specific markers, as identified in vivo. The addition of Nrg-1 treatment resulted in a 5-fold increase in intrafusal bag myotubes (as assessed by morphology) and increased protein and gene expression of the intrafusal specific transcription factor, Egr3. Surprisingly, Nrg-1 treated myotubes had significantly reduced gene and protein expression of many intrafusal specific markers and showed no specificity towards intrafusal bag morphology. Another novel finding highlights a proliferative effect for Nrg-1 during the serum starvation-initiated differentiation phase, leading to increased nuclei counts, paired with less myotube area per myonuclei. Therefore, despite no clear collective evidence for specific intrafusal development, Nrg-1 treated myotubes share two inherent characteristics of intrafusal fibres, which contain increased satellite cell numbers and smaller myonuclear domains compared with their extrafusal neighbours. This research represents a minimalistic, monocellular C2C12 model for progression towards de novo intrafusal skeletal muscle generation, with the most extensive characterisation to date. Integration of intrafusal myotubes, characteristic of native, in vivo intrafusal skeletal muscle into future biomimetic tissue engineered models could provide platforms for developmental or disease state studies, pre-clinical screening, or clinical applications.
Collapse
Affiliation(s)
- Philip Barrett
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Tom J Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, London, United Kingdom.,UCL Centre for Nerve Engineering, University College London, London, United Kingdom
| | - Vivek Mudera
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Darren J Player
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| |
Collapse
|
2
|
Kröger S, Watkins B. Muscle spindle function in healthy and diseased muscle. Skelet Muscle 2021; 11:3. [PMID: 33407830 PMCID: PMC7788844 DOI: 10.1186/s13395-020-00258-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
Almost every muscle contains muscle spindles. These delicate sensory receptors inform the central nervous system (CNS) about changes in the length of individual muscles and the speed of stretching. With this information, the CNS computes the position and movement of our extremities in space, which is a requirement for motor control, for maintaining posture and for a stable gait. Many neuromuscular diseases affect muscle spindle function contributing, among others, to an unstable gait, frequent falls and ataxic behavior in the affected patients. Nevertheless, muscle spindles are usually ignored during examination and analysis of muscle function and when designing therapeutic strategies for neuromuscular diseases. This review summarizes the development and function of muscle spindles and the changes observed under pathological conditions, in particular in the various forms of muscular dystrophies.
Collapse
Affiliation(s)
- Stephan Kröger
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany.
| | - Bridgette Watkins
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
3
|
Colón A, Badu-Mensah A, Guo X, Goswami A, Hickman JJ. Differentiation of Intrafusal Fibers from Human Induced Pluripotent Stem Cells. ACS Chem Neurosci 2020; 11:1085-1092. [PMID: 32159941 DOI: 10.1021/acschemneuro.0c00055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Human-based "body-on-a-chip" technology provides powerful platforms in developing models for drug evaluation and disease evaluations in phenotypic models. Induced pluripotent stem cells (iPSCs) are ideal cell sources for generating different cell types for these in vitro functional systems and recapitulation of the neuromuscular reflex arc would allow for the study of patient specific neuromuscular diseases. Regarding relevant afferent (intrafusal fibers, sensory neurons) and efferent (extrafusal fibers, motoneurons) cells, in vitro differentiation of intrafusal fiber from human iPSCs has not been established. This work demonstrates a protocol for inducing an enrichment of intrafusal bag fibers from iPSCs using morphological analysis and immunocytochemistry. Phosphorylation of the ErbB2 receptors and S46 staining indicated a 3-fold increase of total intrafusal fibers further confirming the efficiency of the protocol. Integration of induced intrafusal fibers would enable more accurate reflex arc models and application of this protocol on patient iPSCs would allow for patient-specific disease modeling.
Collapse
Affiliation(s)
- Alisha Colón
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Agnes Badu-Mensah
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Xiufang Guo
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Arindom Goswami
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - James J. Hickman
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| |
Collapse
|
4
|
Egr3-dependent muscle spindle stretch receptor intrafusal muscle fiber differentiation and fusimotor innervation homeostasis. J Neurosci 2015; 35:5566-78. [PMID: 25855173 DOI: 10.1523/jneurosci.0241-15.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Muscle stretch proprioceptors (muscle spindles) are required for stretch reflexes and locomotor control. Proprioception abnormalities are observed in many human neuropathies, but the mechanisms involved in establishing and maintaining muscle spindle innervation and function are still poorly understood. During skeletal muscle development, sensory (Ia-afferent) innervation induces contacted myotubes to transform into intrafusal muscle fibers that form the stretch receptor core. The transcriptional regulator Egr3 is induced in Ia-afferent contacted myotubes by Neuregulin1 (Nrg1)/ErbB receptor signaling and it has an essential role in spindle morphogenesis and function. Because Egr3 is widely expressed during development and has a pleiotropic function, whether Egr3 functions primarily in skeletal muscle, Ia-afferent neurons, or in Schwann cells that myelinate Ia-afferent axons remains unresolved. In the present studies, cell-specific ablation of Egr3 in mice showed that it has a skeletal muscle autonomous function in stretch receptor development. Moreover, using genetic tracing, we found that Ia-afferent contacted Egr3-deficient myotubes were induced in normal numbers, but their development was blocked to generate one to two shortened fibers that failed to express some characteristic myosin heavy chain (MyHC) proteins. These "spindle remnants" persisted into adulthood, remained innervated by Ia-afferents, and expressed neurotrophin3 (NT3), which is required for Ia-afferent neuron survival. However, they were not innervated by fusimotor axons and they did not express glial derived neurotrophic factor (GDNF), which is essential for fusimotor neuron survival. These results demonstrate that Egr3 has an essential role in regulating gene expression that promotes normal intrafusal muscle fiber differentiation and fusimotor innervation homeostasis.
Collapse
|
5
|
Sokoloff AJ, Li H, Burkholder TJ. Limited expression of slow tonic myosin heavy chain in human cranial muscles. Muscle Nerve 2007; 36:183-9. [PMID: 17486578 PMCID: PMC3816747 DOI: 10.1002/mus.20797] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent reports of slow tonic myosin heavy chain (MHCst) in human masticatory and laryngeal muscles suggest that MHCst may have a wider distribution in humans than previously thought. Because of the novelty of this finding, we sought to confirm the presence of MHCst in human masticatory and laryngeal muscles by reacting tissue from these muscles and controls from extraocular, intrafusal, cardiac, appendicular, and developmental muscle with antibodies (Abs) ALD-58 and S46, considered highly specific for MHCst. At Ab dilutions producing minimal reaction to muscle fibers positive for MHCI, only extraocular, intrafusal, and fetal tongue tissue reacted with Ab S46 had strong immunoreaction in an appreciable number of muscle fibers. In immunoblots, Ab S46, but not Ab ALD-58, labeled adult extraocular muscles; no other muscles were labeled with either Ab. We conclude that, in humans, Ab S46 has greater specificity for MHCst than does Ab ALD-58. We suggest that reports of MHCst in human masticatory and laryngeal muscles reflect false-positive identification of MHCst due to cross-reactivity of Ab ALD-58 with another MHC isoform.
Collapse
Affiliation(s)
- Alan J Sokoloff
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
6
|
Biressi S, Molinaro M, Cossu G. Cellular heterogeneity during vertebrate skeletal muscle development. Dev Biol 2007; 308:281-93. [PMID: 17612520 DOI: 10.1016/j.ydbio.2007.06.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/03/2007] [Accepted: 06/08/2007] [Indexed: 12/29/2022]
Abstract
Although skeletal muscles appear superficially alike at different anatomical locations, in reality there is considerably more diversity than previously anticipated. Heterogeneity is not only restricted to completely developed fibers, but is clearly apparent during development at the molecular, cellular and anatomical level. Multiple waves of muscle precursors with different features appear before birth and contribute to muscular diversification. Recent cell lineage and gene expression studies have expanded our knowledge on how skeletal muscle is formed and how its heterogeneity is generated. This review will present a comprehensive view of relevant findings in this field.
Collapse
Affiliation(s)
- Stefano Biressi
- Stem Cell Research Institute, DiBiT, San Raffaele Scientific Institute, 58 via Olgettina, 20132 Milan, Italy.
| | | | | |
Collapse
|
7
|
Whitehead J, Keller-Peck C, Kucera J, Tourtellotte WG. Glial cell-line derived neurotrophic factor-dependent fusimotor neuron survival during development. Mech Dev 2005; 122:27-41. [PMID: 15582775 DOI: 10.1016/j.mod.2004.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 09/13/2004] [Accepted: 09/14/2004] [Indexed: 11/24/2022]
Abstract
Glial cell-line derived neurotrophic factor (GDNF) is a potent survival factor for motor neurons. Previous studies have shown that some motor neurons depend upon GDNF during development but this GDNF-dependent motor neuron subpopulation has not been characterized. We examined GDNF expression patterns in muscle and the impact of altered GDNF expression on the development of subtypes of motor neurons. In GDNF hemizygous mice, motor neuron innervation to muscle spindle stretch receptors (fusimotor neuron innervation) was decreased, whereas in transgenic mice that overexpress GDNF in muscle, fusimotor innervation to muscle spindles was increased. Facial motor neurons, which do not contain fusimotor neurons, were not changed in number when GDNF was over expressed by facial muscles during their development. Taken together, these data indicate that fusimotor neurons depend upon GDNF for survival during development. Since the fraction of cervical and lumbar motor neurons lost in GDNF-deficient mice at birth closely approximates the size of the fusimotor neuron pool, these data suggest that motor neuron loss in GDNF-deficient mice may be primarily of fusimotor neuron origin.
Collapse
Affiliation(s)
- Jennifer Whitehead
- Department of Pathology (Neuropathology), Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
8
|
Jacobson C, Duggan D, Fischbach G. Neuregulin induces the expression of transcription factors and myosin heavy chains typical of muscle spindles in cultured human muscle. Proc Natl Acad Sci U S A 2004; 101:12218-23. [PMID: 15302938 PMCID: PMC514402 DOI: 10.1073/pnas.0404240101] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuregulin (NRG) (also known as ARIA, GGF, and other names) is a heparin sulfate proteoglycan secreted into the neuromuscular junction by innervating motor and sensory neurons. An integral part of synapse formation, we have analyzed NRG-induced changes in gene expression over 48 h in primary human myotubes. We show that in addition to increasing the expression of acetylcholine receptors on the myotube surface, NRG treatment results in a transient increase of several members of the early growth response (Egr) family of transcription factors. Three Egrs, Egr1, -2, and -3, are induced within the first hour of NRG treatment, with Egr1 and -3 RNA levels showing the most significant increases of approximately 9- and 16-fold, respectively. Also noted was a corresponding increase in protein levels for both of these transcription factors. Previous literature indicates that Egr3 expression is required for the formation of muscle spindle fibers, sensory organs that are distinct from skeletal muscle contractile fibers. At the molecular level, muscle spindle fibers express a unique subset of myosin heavy chains. Two isoforms of the myosin heavy chain, the slow development and neonatal, were found to be increased in our myotube cultures after 48 h of treatment with NRG. Taken together, these results indicate that not only can NRG induce the expression of a transcription factor key to spindle fiber development (Egr3), but that a portion of this developmental process can be replicated in vitro.
Collapse
Affiliation(s)
- Christian Jacobson
- Microarray Unit, Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
9
|
Leu M, Bellmunt E, Schwander M, Fariñas I, Brenner HR, Müller U. Erbb2 regulates neuromuscular synapse formation and is essential for muscle spindle development. Development 2003; 130:2291-301. [PMID: 12702645 DOI: 10.1242/dev.00447] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuregulins and their Erbb receptors have been implicated in neuromuscular synapse formation by regulating gene expression in subsynaptic nuclei. To analyze the function of Erbb2 in this process, we have inactivated the Erbb2 gene in developing muscle fibers by Cre/Lox-mediated gene ablation. Neuromuscular synapses form in the mutant mice, but the synapses are less efficient and contain reduced levels of acetylcholine receptors. Surprisingly, the mutant mice also show proprioceptive defects caused by abnormal muscle spindle development. Sensory Ia afferent neurons establish initial contact with Erbb2-deficient myotubes. However, functional spindles never develop. Taken together, our data suggest that Erbb2 signaling regulates the formation of both neuromuscular synapses and muscle spindles.
Collapse
MESH Headings
- Actins/genetics
- Afferent Pathways/growth & development
- Animals
- Genes, erbB-2
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mice, Transgenic
- Muscle Spindles/growth & development
- Muscle Spindles/physiology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/innervation
- Neuromuscular Junction/growth & development
- Neuromuscular Junction/physiology
- Promoter Regions, Genetic
- Receptor, ErbB-2/deficiency
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/physiology
- Signal Transduction
- Synaptic Transmission
Collapse
Affiliation(s)
- Marco Leu
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
10
|
Tourtellotte WG, Keller-Peck C, Milbrandt J, Kucera J. The transcription factor Egr3 modulates sensory axon-myotube interactions during muscle spindle morphogenesis. Dev Biol 2001; 232:388-99. [PMID: 11401400 DOI: 10.1006/dbio.2001.0202] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Egr family of zinc-finger transcription factors, consisting of Egr1, Egr2, Egr3, and Egr4, are involved in cellular growth and differentiation. Adult Egr3-deficient mice are ataxic and lack muscle spindle proprioceptors that normally develop at the sites of Ia afferent-myotube contacts during embryogenesis. To resolve whether spindles form and then degenerate, or whether they never form in the absence of Egr3, we examined the spatiotemporal expression of Egr3 relative to spindle development. In wild type mice, Egr3 was expressed in developing myotubes shortly after they were innervated by Ia afferents and its expression was controlled by innervation because it dissipated following nerve transection. In Egr3-deficient mice, myotubes received Ia afferent innervation and assembled normally into spindles during embryogenesis. However, newborn Egr3-deficient spindles had few internal myonuclei in intrafusal fibers and thin capsules. Moreover, slow-developmental myosin heavy chain was not induced in embryonic Egr3-deficient spindles suggesting that impairments in differentiation were present before they could be detected morphologically. After birth, sensory and motor innervation withdrew from the Egr3-deficient spindles, and the spindles disassembled. In spite of the spindle disassembly and retraction of afferents from muscles, the cell bodies of proprioceptive neurons within dorsal root ganglia were retained. We conclude that Egr3 has an essential role in regulating genes required for the transformation of undifferentiated myotubes into intrafusal fibers, and hence for the phenotypic differentiation of spindles.
Collapse
Affiliation(s)
- W G Tourtellotte
- Department of Pathology, Northwestern University School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
11
|
Wright DE, Zhou L, Kucera J, Snider WD. Introduction of a neurotrophin-3 transgene into muscle selectively rescues proprioceptive neurons in mice lacking endogenous neurotrophin-3. Neuron 1997; 19:503-17. [PMID: 9331344 DOI: 10.1016/s0896-6273(00)80367-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To clarify the role of muscle-derived neurotrophin-3 (NT-3) in the development of sensory neurons, we generated transgenic mice selectively overexpressing NT-3 in skeletal muscles under the control of a myogenin promoter (myo-NT-3 mice). The myo-NT-3 transgene was then bred into an NT-3 null mutant (-/-) line to generate myo-NT-3, NT-3(-/-) mice in which NT-3 was expressed in muscles, but not elsewhere. Transient overexpression of NT-3 in developing muscles increased the number of proprioceptive neurons as well as the density of both their central and peripheral projections, resulting in more Ia afferents in spinal cord and more spindles (end organs of Ia afferents) in muscles. NT-3 expression restricted to muscles was sufficient to secure the development of proprioceptive neurons and their central and peripheral projections in myo-NT-3, NT-3(-/-) mice. The loss of nonproprioceptive neurons observed in NT-3(-/-) mice was not reversed by the transgene, suggesting that these neurons are regulated by NT-3 from sources other than muscle. We conclude that target-derived rather than intraganglionic NT-3 is preeminent in supporting the development of proprioceptive neurons. The level of NT-3 in developing muscles may be the principal factor determining the number of proprioceptive neurons in dorsal root ganglions and spindles in skeletal muscles of adults.
Collapse
Affiliation(s)
- D E Wright
- Center for the Study of Nervous System Injury, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
12
|
Kucera J, Walro JM. An immunocytochemical marker for early type I muscle fibers in the developing rat hindlimb. ANATOMY AND EMBRYOLOGY 1995; 192:137-47. [PMID: 7486010 DOI: 10.1007/bf00186002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Muscle fibers develop sequentially from several generations of myotubes that express specific isoforms of myosin heavy chain (MHC). We observed that the chicken-derived monoclonal antibody (mAb) S46 binds to myotubes of the fetal rat hindlimb in a specific temporal and spatial pattern. To determine the type and fate of the S46-reactive myotubes, we immunoreacted sections of fetal, neonatal and postnatal hindlimb muscles to this antibody. The mAb S46 bound to a subpopulation of primary myotubes in the tibialis anterior, and to all primary and slow/fast secondary myotubes in the soleus muscle. The S46-reactive primary myotubes represented the oldest set of myotubes in the muscles. Reactivity to S46 was present from the earliest stages of muscle development, peaked in the late fetal period, and dissipated in the first postnatal week, suggesting that mAb S46 binds to a developmental form of slow myosin. The regional distribution of myotubes that bound S46 in fetal muscles was identical to the distribution of type I (slow-twitch) fibers in the adult, indicating that S46-reactive myotubes ultimately develop into type I extrafusal fibers. Thus, mAb S46 can be used as a marker for prospective type I extrafusal fibers in the rat hindlimb.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibodies, Monoclonal
- Biomarkers/analysis
- Female
- Fetus
- Hindlimb/embryology
- Hindlimb/growth & development
- Immunohistochemistry
- Male
- Muscle Denervation
- Muscle Development
- Muscle Fibers, Fast-Twitch/chemistry
- Muscle Fibers, Skeletal/chemistry
- Muscle Fibers, Slow-Twitch/chemistry
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/embryology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/innervation
- Myosin Heavy Chains/analysis
- Myosin Heavy Chains/immunology
- Pregnancy
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- J Kucera
- Department of Neurology, Boston University Medical Center, MA 02118-2394, USA
| | | |
Collapse
|