1
|
Vulchi R, Bagavathiannan M, Nolte SA. History of Herbicide-Resistant Traits in Cotton in the U.S. and the Importance of Integrated Weed Management for Technology Stewardship. PLANTS 2022; 11:plants11091189. [PMID: 35567190 PMCID: PMC9104934 DOI: 10.3390/plants11091189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
Abstract
This paper reviews the history of herbicide-resistant (HR) traits in U.S. cotton since the beginning, highlighting the shortcomings of each trait over time that has led to the development of their successor and emphasizing the importance of integrated weed management (IWM) going forward to ensure their long-term sustainability. Introduction of glyphosate-resistant cropping systems has allowed for expansion of no-till systems more reliant on herbicides, favored less diverse crop rotations, and heavily relied on a single herbicide mode of action (MOA). With repeated applications of glyphosate over the years, biotypes of glyphosate-resistant (GR) A. palmeri and other weeds became economically damaging pests in cotton production systems throughout the U.S. Moreover, the reported cases of weeds resistant to different MOA across various parts of the United States has increased. The dicamba- (XtendFlex®) and 2,4-D-resistant (Enlist®) cotton traits (with stacks of glyphosate and glufosinate resistance) were introduced and have been highly adopted in the U.S. to manage HR weeds. Given the current rate of novel herbicide MOA discovery and increase in new HR weed cases, the future of sustainable weed management relies on an integrated approach that includes non-herbicidal methods with herbicides to ensure long-term success.
Collapse
Affiliation(s)
- Rohith Vulchi
- AgriLife Extension, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Muthukumar Bagavathiannan
- AgriLife Research, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Scott A. Nolte
- AgriLife Extension, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA;
- Correspondence:
| |
Collapse
|
2
|
A Roadmap to Modulated Anthocyanin Compositions in Carrots. PLANTS 2021; 10:plants10030472. [PMID: 33801499 PMCID: PMC7999315 DOI: 10.3390/plants10030472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022]
Abstract
Anthocyanins extracted from black carrots have received increased interest as natural colorants in recent years. The reason is mainly their high content of acylated anthocyanins that stabilizes the color and thereby increases the shelf-life of products colored with black carrot anthocyanins. Still, the main type of anthocyanins synthesized in all black carrot cultivars is cyanidin limiting their use as colorants due to the narrow color variation. Additionally, in order to be competitive against synthetic colors, a higher percentage of acylated anthocyanins and an increased anthocyanin content in black carrots are needed. However, along with the increased interest in black carrots there has also been an interest in identifying the structural and regulatory genes associated with anthocyanin biosynthesis in black carrots. Thus, huge progress in the identification of genes involved in anthocyanin biosynthesis has recently been achieved. Given this information it is now possible to attempt to modulate anthocyanin compositions in black carrots through genetic modifications. In this review we look into genetic modification opportunities for generating taproots of black carrots with extended color palettes, with a higher percentage of acylated anthocyanins or a higher total content of anthocyanins.
Collapse
|
3
|
Suzukawa AK, Bobadilla LK, Mallory-Smith C, Brunharo CACG. Non-target-Site Resistance in Lolium spp. Globally: A Review. FRONTIERS IN PLANT SCIENCE 2021; 11:609209. [PMID: 33552102 PMCID: PMC7862324 DOI: 10.3389/fpls.2020.609209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/07/2020] [Indexed: 05/10/2023]
Abstract
The Lolium genus encompasses many species that colonize a variety of disturbed and non-disturbed environments. Lolium perenne L. spp. perenne, L. perenne L. spp. multiflorum, and L. rigidum are of particular interest to weed scientists because of their ability to thrive in agricultural and non-agricultural areas. Herbicides are the main tool to control these weeds; however, Lolium spp. populations have evolved multiple- and cross-resistance to at least 14 herbicide mechanisms of action in more than 21 countries, with reports of multiple herbicide resistance to at least seven mechanisms of action in a single population. In this review, we summarize what is currently known about non-target-site resistance in Lolium spp. to acetyl CoA carboxylase, acetohydroxyacid synthase, microtubule assembly, photosystem II, 5-enolpyruvylshikimate-3-phosphate synthase, glutamine synthetase, very-long chain fatty acids, and photosystem I inhibitors. We suggest research topics that need to be addressed, as well as strategies to further our knowledge and uncover the mechanisms of non-target-site resistance in Lolium spp.
Collapse
Affiliation(s)
- Andréia K. Suzukawa
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - Lucas K. Bobadilla
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Carol Mallory-Smith
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - Caio A. C. G. Brunharo
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
4
|
Meyer CJ, Peter F, Norsworthy JK, Beffa R. Uptake, translocation, and metabolism of glyphosate, glufosinate, and dicamba mixtures in Echinochloa crus-galli and Amaranthus palmeri. PEST MANAGEMENT SCIENCE 2020; 76:3078-3087. [PMID: 32281195 DOI: 10.1002/ps.5859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/02/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Echinochloa crus-galli (L.) Beauv. and Amaranthus palmeri S. Wats are two common and problematic weeds prevalent across the Midsouth of the USA. Herbicide absorption, translocation, and metabolism were investigated as potential sources of herbicide antagonism on A. palmeri and E. crus-galli using 14 C-labeled herbicides. Three 14 C-labeled herbicides, glyphosate, glufosinate, and dicamba, were utilized individually in separate experiments. RESULTS Uptake of 14 C-glyphosate in E. crus-galli was 15% of the total applied radioactivity for glyphosate/glufosinate (897 + 595 g a.i./a.e. ha-1 ) compared to 25% for glyphosate alone. Similarly, uptake of 14 C-glyphosate in A. palmeri reduced by 10% when applied with glufosinate. Applying glyphosate/dicamba (897/560 g a.e. ha-1 ) reduced 14 C-glyphosate uptake in both species. In the 14 C-glufosinate experiment, both species absorbed less 14 C-glufosinate when mixed with glyphosate compared to glufosinate alone. No metabolic degradation of glyphosate was observed in either species. E. crus-galli metabolized dicamba 23 times faster than A. palmeri. When glufosinate was applied with dicamba, metabolic degradation of 14 C-dicamba was limited in both species. For example, 99.9% of the applied radioactivity was recovered in A. palmeri as the parent compound when 14 C-glufosinate dicamba was applied with glufosinate, compared to 95.7% for dicamba alone. CONCLUSION These findings demonstrate absorption, translocation, or metabolism of dicamba, glufosinate, and glyphosate can be affected by mixing with another herbicide. As mixing two herbicides is often a critical component of resistance management, careful investigation into the performance of these mixtures in the field is needed. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chris J Meyer
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Falco Peter
- Bayer AG, Division CropScience, Weed Resistance Research, Frankfurt am Main, Germany
| | - Jason K Norsworthy
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Roland Beffa
- Bayer AG, Division CropScience, Weed Resistance Research, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Brunharo CACG, Takano HK, Mallory-Smith CA, Dayan FE, Hanson BD. Role of Glutamine Synthetase Isogenes and Herbicide Metabolism in the Mechanism of Resistance to Glufosinate in Lolium perenne L. spp. multiflorum Biotypes from Oregon. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8431-8440. [PMID: 31067047 DOI: 10.1021/acs.jafc.9b01392] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Glufosinate-resistant Lolium perenne L. spp. multiflorum biotypes from Oregon exhibited resistance levels up to 2.8-fold the field rate. One resistant biotype (MG) had an amino acid substitution in glutamine synthetase 2 (GS2), whereas the other (OR) exhibited the wild-type genotype. We hypothesized that the amino acid substitution in GS2 is involved in the resistance mechanism in MG and that non-target site resistance mechanisms are present in OR. OR metabolized glufosinate faster than the other two biotypes, with >75% of the herbicide metabolized in comparison to 50% in MG and the susceptible biotype. A mutation in GS2 co-segregating with resistance in MG did not reduce the enzyme activity, with results further supported by our enzyme homology models. This research supports the conclusion that a metabolism mechanism of glufosinate resistance is present in OR and that glufosinate resistance in MG is not due to an altered target site.
Collapse
Affiliation(s)
- Caio A C G Brunharo
- Department of Crop and Soil Science , Oregon State University , 3050 Southwest Campus Way , Crop Sciences Building Corvallis , Oregon 97331 , United States
| | - Hudson K Takano
- Department of Bioagricultural Sciences and Pest Management , Colorado State University , 1777 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - Carol A Mallory-Smith
- Department of Crop and Soil Science , Oregon State University , 3050 Southwest Campus Way , Crop Sciences Building Corvallis , Oregon 97331 , United States
| | - Franck E Dayan
- Department of Bioagricultural Sciences and Pest Management , Colorado State University , 1777 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - Bradley D Hanson
- Department of Plant Science , University of California, Davis , One Shields Avenue , MS-4, Davis , California 95616 , United States
| |
Collapse
|
6
|
Nadar VS, Chen J, Dheeman DS, Galván AE, Yoshinaga-Sakurai K, Kandavelu P, Sankaran B, Kuramata M, Ishikawa S, Rosen BP, Yoshinaga M. Arsinothricin, an arsenic-containing non-proteinogenic amino acid analog of glutamate, is a broad-spectrum antibiotic. Commun Biol 2019; 2:131. [PMID: 30993215 PMCID: PMC6465285 DOI: 10.1038/s42003-019-0365-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/01/2019] [Indexed: 01/07/2023] Open
Abstract
The emergence and spread of antimicrobial resistance highlights the urgent need for new antibiotics. Organoarsenicals have been used as antimicrobials since Paul Ehrlich's salvarsan. Recently a soil bacterium was shown to produce the organoarsenical arsinothricin. We demonstrate that arsinothricin, a non-proteinogenic analog of glutamate that inhibits glutamine synthetase, is an effective broad-spectrum antibiotic against both Gram-positive and Gram-negative bacteria, suggesting that bacteria have evolved the ability to utilize the pervasive environmental toxic metalloid arsenic to produce a potent antimicrobial. With every new antibiotic, resistance inevitably arises. The arsN1 gene, widely distributed in bacterial arsenic resistance (ars) operons, selectively confers resistance to arsinothricin by acetylation of the α-amino group. Crystal structures of ArsN1 N-acetyltransferase, with or without arsinothricin, shed light on the mechanism of its substrate selectivity. These findings have the potential for development of a new class of organoarsenical antimicrobials and ArsN1 inhibitors.
Collapse
Affiliation(s)
- Venkadesh Sarkarai Nadar
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| | - Dharmendra S. Dheeman
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
- Present Address: Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Adriana Emilce Galván
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán, T4001MVB Argentina
| | - Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| | - Palani Kandavelu
- SER-CAT and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley Laboratory, Berkeley, CA 94720 USA
| | - Masato Kuramata
- Division of Hazardous Chemicals, National Institute for Agro-Environmental Sciences, NARO, Tsukuba, Ibaraki, 305-8604 Japan
| | - Satoru Ishikawa
- Division of Hazardous Chemicals, National Institute for Agro-Environmental Sciences, NARO, Tsukuba, Ibaraki, 305-8604 Japan
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| |
Collapse
|
7
|
Krenchinski FH, Carbonari CA, S Cesco VJ, P Albrecht AJ, Campos Arcuri MDL, de Godoy Maia I, Velini ED. Glufosinate Resistance Level is Proportional to Phosphinothricin Acetyltransferase Gene Expression in Glufosinate-Resistant Maize. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12641-12650. [PMID: 30418770 DOI: 10.1021/acs.jafc.8b04823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phosphinothricin acetyltransferase ( pat) gene confers resistance to glufosinate by transforming this herbicide into N-acetyl-l-glufosinate (NAG). The pat gene was inserted in six maize hybrids (Herculex, Agrisure TL, Herculex Yieldgard, Leptra, Viptera 3, Power Core) as a selectable marker, and its expression was evaluated by qPCR in comparison with the maize glufosinate-susceptible cultivar VTPRO. In addition, the levels of NAG, glufosinate degradation, ammonia accumulation, electron transport rate (ETR), visual injury, and biomass were also investigated. The VTPRO, Herculex, Agrisure, and Viptera showed lower pat gene expression, and consequently lower NAG contents and glufosinate degradation, as well as reduced ETR and biomass accumulation. In contrast, greater ammonia accumulation and higher visual injury were observed. The ranking of pat gene expression was Leptra > Power Core > Herculex Yieldgard ≫ Herculex > Agrisure TL = Viptera 3 > VTPRO. This gene expression was proportional to the glufosinate resistance level observed in each maize hybrid.
Collapse
Affiliation(s)
- Fabio H Krenchinski
- School of Agriculture , São Paulo State University (Unesp) , 18610-034 Botucatu , São Paulo Brazil
| | - Caio A Carbonari
- School of Agriculture , São Paulo State University (Unesp) , 18610-034 Botucatu , São Paulo Brazil
| | - Victor J S Cesco
- School of Agriculture , São Paulo State University (Unesp) , 18610-034 Botucatu , São Paulo Brazil
| | - Alfredo J P Albrecht
- Federal University of Paraná (UFPR) , Campus Palotina, 85950-000 Palotina , Paraná Brasil
| | | | - Ivan de Godoy Maia
- Institute of Biosciences , São Paulo State University (Unesp) , 18618-689 Botucatu , São Paulo Brazil
| | - Edivaldo D Velini
- School of Agriculture , São Paulo State University (Unesp) , 18610-034 Botucatu , São Paulo Brazil
| |
Collapse
|
8
|
Jalaludin A, Yu Q, Zoellner P, Beffa R, Powles SB. Characterisation of glufosinate resistance mechanisms in Eleusine indica. PEST MANAGEMENT SCIENCE 2017; 73:1091-1100. [PMID: 28094896 DOI: 10.1002/ps.4528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND An Eleusine indica population has evolved resistance to glufosinate, a major post-emergence herbicide of global agriculture. This population was analysed for target-site (glutamine synthetase) and non-target-site (glufosinate uptake, translocation and metabolism) resistance mechanisms. RESULTS Glutamine synthetase (GS) activity extracted from susceptible (S) and resistant (R*) plants was equally sensitive to glufosinate inhibition, with IC50 values of 0.85 mm and 0.99 mm, respectively. The extractable GS activity was also similar in S and R* samples. Foliar uptake of [14 C]-glufosinate did not differ in S and R* plants, nor did glufosinate net uptake in leaf discs. Translocation of [14 C]-glufosinate into untreated shoots and roots was also similar in both populations, with 44% to 47% of the herbicide translocated out from the treated leaf 24 h after treatment. The HPLC and LC-MS analysis of glufosinate metabolism revealed no major metabolites in S or R* leaf tissue. CONCLUSIONS Glufosinate resistance in this resistant population is not due to an insensitive GS, or increased activity, or altered glufosinate uptake and translocation, or enhanced glufosinate metabolism. Thus, target-site resistance is likely excluded and the exact resistance mechanism(s) remain to be determined. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Adam Jalaludin
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, WA, Australia
| | - Qin Yu
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, WA, Australia
| | - Peter Zoellner
- Research Technologies Bayer AG, Industriepark Hoechst, Frankfurt, Germany
| | - Roland Beffa
- Weed Resistance Research Centre, Bayer AG, Industriepark Hoechst, Frankfurt, Germany
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, WA, Australia
| |
Collapse
|
9
|
Rao GS, Tyagi AK, Rao KV. Development of an inducible male-sterility system in rice through pollen-specific expression of l-ornithinase (argE) gene of E. coli. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:139-147. [PMID: 28167027 DOI: 10.1016/j.plantsci.2016.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/01/2016] [Accepted: 12/03/2016] [Indexed: 05/22/2023]
Abstract
In the present investigation, an inducible male-sterility system has been developed in the rice. In order to introduce inducible male-sterility, the coding region of l-ornithinase (argE) gene of E. coli was fused to the Oryza sativa indica pollen allergen (OSIPA) promoter sequence which is known to function specifically in the pollen grains. Transgenic plants were obtained with argE gene and the transgenic status of plants was confirmed by PCR and Southern blot analyses. RT-PCR analysis confirmed the tissue-specific expression of argE in the anthers of transgenic rice plants. Transgenic rice plants expressing argE, after application of N-acetyl-phosphinothricin (N-ac-PPT), became completely male-sterile owing to the pollen-specific expression of argE. However, argE-transgenic plants were found to be self fertile when N-ac-PPT was not applied. Normal fertile seeds were obtained from the cross pollination between male-sterile argE transgenics and untransformed control plants, indicating that the female fertility is not affected by the N-ac-PPT treatment. These results clearly suggest that the expression of argE gene affects only the male gametophyte but not the gynoecium development. Induction of complete male-sterility in the rice is a first of its kind, and moreover this male- sterility system does not require the deployment of any specific restorer line.
Collapse
Affiliation(s)
| | - Akhilesh Kumar Tyagi
- Department of Plant Molecular Biology, Delhi University, South Campus, New Delhi, 110021, India
| | | |
Collapse
|
10
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
11
|
Jiménez JP, Chaparro Giraldo A. Diseño in silico y evaluación funcional de genes semisintéticos que confieran tolerancia a fosfinotricina. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2016. [DOI: 10.15446/rev.colomb.biote.v18n2.52206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La tolerancia a herbicidas es una de las características más usadas en los cultivos GM, con resultados positivos para los agricultores y el ambiente. El punto de partida, es el desarrollo de casetes de expresión que expresen la característica de interés, inicialmente construidos mediante técnicas de biología molecular convencionales. Actualmente, con herramientas de bioinformática y biología sintética, es posible diseñar y probar el constructo in silico, para luego contratar su síntesis. Esta aproximación, permite optimizar la expresión mediante la modificación del uso codónico. En este trabajo se diseñaron y evaluaron en Nicotiana benthamiana versiones semisintéticas de genes que confieren tolerancia al herbicida fosfinotricina. Se realizó un análisis de libertad de operación, con el fin de asegurar que los constructos diseñados no violen derechos de propiedad intelectual en Colombia. Se obtuvieron dos casetes de expresión con libertad de operación, que expresan versiones del gen bar. Palabras clave: cultivos GM, libertad de operación, tolerancia a herbicidas, uso codónico.
Collapse
|
12
|
Carbonari CA, Latorre DO, Gomes GLGC, Velini ED, Owens DK, Pan Z, Dayan FE. Resistance to glufosinate is proportional to phosphinothricin acetyltransferase expression and activity in LibertyLink(®) and WideStrike(®) cotton. PLANTA 2016; 243:925-33. [PMID: 26733464 PMCID: PMC4819749 DOI: 10.1007/s00425-015-2457-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/21/2015] [Indexed: 05/26/2023]
Abstract
Insertion of the gene encoding phosphinothricin acetyltransferase (PAT) has resulted in cotton plants resistant to the herbicide glufosinate. However, the lower expression and commensurate reduction in PAT activity is a key factor in the low level of injury observed in the WideStrike(®) cotton and relatively high level of resistance observed in LibertyLink(®) cotton. LibertyLink(®) cotton cultivars are engineered for glufosinate resistance by overexpressing the bar gene that encodes phosphinothricin acetyltransferase (PAT), whereas the insect-resistant WideStrike(®) cultivars were obtained using the similar pat gene as a selectable marker. The latter cultivars carry some level of resistance to glufosinate which enticed certain farmers to select this herbicide for weed control with WideStrike(®) cotton. The potency of glufosinate on conventional FM 993, insect-resistant FM 975WS, and glufosinate-resistant IMACD 6001LL cotton cultivars was evaluated and contrasted to the relative levels of PAT expression and activity. Conventional cotton was sensitive to glufosinate. The single copy of the pat gene present in the insect-resistant cultivar resulted in very low RNA expression of the gene and undetectable PAT activity in in vitro assays. Nonetheless, the presence of this gene provided a good level of resistance to glufosinate in terms of visual injury and effect on photosynthetic electron transport. The injury is proportional to the amount of ammonia accumulation. The strong promoter associated with bar expression in the glufosinate-resistant cultivar led to high RNA expression levels and PAT activity which protected this cultivar from glufosinate injury. While the insect-resistant cultivar demonstrated a good level of resistance to glufosinate, its safety margin is lower than that of the glufosinate-resistant cultivar. Therefore, farmers should be extremely careful in using glufosinate on cultivars not expressly designed and commercialized as resistant to this herbicide.
Collapse
Affiliation(s)
- Caio A Carbonari
- Faculty of Agronomic Sciences, São Paulo State University, Botucatu, SP, Brazil
| | - Débora O Latorre
- Faculty of Agronomic Sciences, São Paulo State University, Botucatu, SP, Brazil
| | | | - Edivaldo D Velini
- Faculty of Agronomic Sciences, São Paulo State University, Botucatu, SP, Brazil
| | - Daniel K Owens
- USDA-ARS Natural Products Utilization Research Unit, University, MS, 38677, USA
| | - Zhiqiang Pan
- USDA-ARS Natural Products Utilization Research Unit, University, MS, 38677, USA
| | - Franck E Dayan
- USDA-ARS Natural Products Utilization Research Unit, University, MS, 38677, USA.
- Colorado State University, Bioagricultural Sciences and Pest Management, Fort Collins, CO, 80523, USA.
| |
Collapse
|
13
|
Fast BJ, Schafer AC, Johnson TY, Potts BL, Herman RA. Insect-protected event DAS-81419-2 soybean (Glycine max L.) grown in the United States and Brazil is compositionally equivalent to nontransgenic soybean. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2063-73. [PMID: 25641393 PMCID: PMC4342727 DOI: 10.1021/jf505015y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/28/2015] [Accepted: 01/31/2015] [Indexed: 05/12/2023]
Abstract
The transgenic soybean event DAS-81419-2 contains genes that encode the Cry1F, Cry1Ac, and PAT proteins. Cry1F and Cry1Ac provide protection against key lepidopteran insect pests, while PAT confers tolerance to the herbicide glufosinate. To satisfy regulatory requirements for the safety evaluation of transgenic crops, studies were conducted in the United States and Brazil to evaluate the nutrient and antinutrient composition of event DAS-81419-2 soybean. On the basis of the results of these studies, event DAS-81419-2 soybean is compositionally equivalent to nontransgenic soybean. This conclusion concurs with numerous other published studies in soybean and other crops where compositional equivalence between the transgenic crop and its nontransgenic comparator has been demonstrated.
Collapse
Affiliation(s)
- Brandon J. Fast
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Ariane C. Schafer
- Dow AgroSciences Industrial Ltda., Rod. Anhanguera Km 296, Cravinhos, SP 14140-000, Brazil
| | - Tempest Y. Johnson
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Brian L. Potts
- Covance
Laboratories Inc., 3301
Kinsman Boulevard, Madison, Wisconsin 53704, United States
| | - Rod A. Herman
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| |
Collapse
|
14
|
Rojano-Delgado AM, Priego-Capote F, Barro F, de Castro MDL, De Prado R. Liquid chromatography-diode array detection to study the metabolism of glufosinate in Triticum aestivum T-590 and influence of the genetic modification on its resistance. PHYTOCHEMISTRY 2013; 96:117-122. [PMID: 24189348 DOI: 10.1016/j.phytochem.2013.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 10/10/2013] [Indexed: 06/02/2023]
Abstract
The resistance to glufosinate of two lines-genetically modified (GM) and unmodified (T-590 and T-549, respectively)-of Triticum aestivum has been studied. In the GM line, the bar gene was introduced to increase the resistance to glufosinate. Experiments in a controlled growth chamber showed that line T-590 presented a high resistance to glufosinate with an ED50 value of 478.59 g active ingredient per hectare (g ai ha(-1)) versus 32.65 g ai ha(-1) for line T-549. The activity of glutamine synthetase (GS) in leaf extracts from both lines was investigated. The I50 for line T-590 was 694.10 μM glufosinate versus 55.46 μM for line T-549, with a resistance factor of 12.51. Metabolism studies showed a higher and faster penetration of glufosinate in line T-549 than in line T-590. LC-TOF/MS analysis of glufosinate metabolism at 48 h after herbicide treatment (300 g ai ha(-1)) revealed an 83.4% conversion of the herbicide (66.5% in N-acetyl-glufosinate metabolite), while in line T-549 conversion of the herbicide was about 40% (0% to N-acetyl-glufosinate). These results suggest that metabolism of glufosinate by the bar gene is a key mechanism of resistance in line T-590 that explains such high levels of herbicide tolerated by the plant, together with other mechanisms due to unmodified pathway, absorption and loss of glufosinate affinity for its target site.
Collapse
Affiliation(s)
- Antonia María Rojano-Delgado
- Department of Agricultural Chemistry, C-3 Building, Campus of Rabanales, and Agroalimentary Excellence Campus, ceiA3, University of Córdoba, E-14071 Córdoba, Spain.
| | | | | | | | | |
Collapse
|
15
|
Rojano-Delgado AM, Priego-Capote F, De Prado R, Luque de Castro MD. Qualitative/quantitative strategy for the determination of glufosinate and metabolites in plants. Anal Bioanal Chem 2013; 406:611-20. [DOI: 10.1007/s00216-013-7484-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/22/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
|
16
|
An efficient method for organic acetylation and use of dl-phosphinothricin as a negative selection agent in argE transgenic rice. Biochem Biophys Res Commun 2013; 441:243-8. [DOI: 10.1016/j.bbrc.2013.10.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/10/2013] [Indexed: 11/21/2022]
|
17
|
Hawkes T, Pline-Srnic W, Dale R, Friend E, Hollinshead T, Howe P, Thompson P, Viner R, Greenland A. D-glufosinate as a male sterility agent for hybrid seed production. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:301-14. [PMID: 20678098 DOI: 10.1111/j.1467-7652.2010.00549.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A chemical male sterility system based on anther-localized conversion of the inactive D-enantiomer of the herbicide, glufosinate (2-amino-4-(methylphosphinyl)-butanoate) to the phytotoxic L is described. Highly pure D-glufosinate was isolated in >98% enantiomeric excess from the racemate via fermentation with a strain of Escherichia coli expressing the PAT (L-glufosinate N-acetyl transferase) gene and purification of the unreacted D-enantiomer from the broth by ion exchange. A modified (F58K, M213S) form of the D-amino acid oxidase (DAAO) (EC 1.4.3.3) from Rhodosporidium toruloides was designed, tested in vitro and found to efficiently oxidize D-glufosinate to its 2-oxo derivative [2-oxo-4-(methylphosphinyl)-butanoic acid]. Tobacco (Nicotiana tabacum) plants were transformed to express this modified oxidase under control of the TAP1 tapetum-specific promoter. A number of the resultant transgenic lines exhibited complete male sterility that persisted for two or more weeks immediately following foliar treatment with 75 or 200 g/ha of D-glufosinate without exhibiting obvious phytotoxic symptoms or any measurable decline in female fertility. Similarly, plants containing the same construct and, additionally, a PAT gene expressed from a plastocyanin promoter exhibited significantly reduced male fertility and no reduction in female fertility following foliar application of racemic glufosinate. Thus, foliar application of d-glufosinate either purified or as the commercial herbicide, combined with anther expression of a modified DAAO promises to provide a cost-effective conditional chemical male sterility system with the characteristics necessary for practical F₁ hybrid seed production.
Collapse
Affiliation(s)
- Tim Hawkes
- Syngenta, Jealott's Hill Research Centre, Bracknell, Berks, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vegetables. BIOTECHNOLOGY IN AGRICULTURE AND FORESTRY 2010. [PMCID: PMC7121345 DOI: 10.1007/978-3-642-02391-0_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The conscious promotion of health by an appropriate, balanced diet has become an important social request. Vegetable thereby possesses a special importance due to its high vitamin, mineral and dietary fibre content. Major progress has been made over the past few years in the transformation of vegetables. The expression of several genes has been inhibited by sense gene suppression, and new traits caused by new gene constructs are stably inherited. This chapter reviews advances in various traits such as disease resistance, abiotic stress tolerance, quality improvement, pharmaceutical and industrial application. Results are presented from most important vegetable families, like Solanaceae, Brassicaceae, Fabaceae, Cucurbitaceae, Asteraceae, Apiaceae, Chenopodiaceae and Liliaceae. Although many research trends in this report are positive, only a few transgenic vegetables have been released from confined into precommercial testing or into use.
Collapse
|
19
|
Peterson JM. Herbicide resistance screening assay. Methods Mol Biol 2009; 526:137-146. [PMID: 19378008 DOI: 10.1007/978-1-59745-494-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Herbicide resistance screening is a method that can be used not only to determine presence of the enzyme, phosphinothricin acetyltransferase, encoded by either the Bar or the Pat gene in transgenic maize, but also to assess the inheritance ratio of those genes in a segregating population. Herbicide screening can also be used to study linkage of a transgene of interest that was cotransformed with the herbicide resistance marker gene. By combining the herbicide screen assay with a PCR-based screen of leaf tissue DNA for the presence of both the Bar or the Pat gene marker and a cotransformed transgene of interest from the same seedling tissue and maintaining that seedling identity, the researcher can identify linkage or the possible breakdown in linkage of the marker gene and the transgene of interest. Further, the occurrence of "DNA silencing" can be evaluated if an individual seedling that was susceptible to the applied herbicide nonetheless gave PCR data that indicated presence of the gene responsible for herbicide resistance. Similarly, "DNA silencing" of the gene of interest may be investigated if the seeds can be screened and scored for that phenotypic trait in a nondestructive manner prior to planting.
Collapse
|
20
|
|
21
|
Barsch A, Carvalho HG, Cullimore JV, Niehaus K. GC-MS based metabolite profiling implies three interdependent ways of ammonium assimilation in Medicago truncatula root nodules. J Biotechnol 2006; 127:79-83. [PMID: 16870293 DOI: 10.1016/j.jbiotec.2006.06.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 06/02/2006] [Accepted: 06/14/2006] [Indexed: 11/24/2022]
Abstract
In symbiotic interaction with legume plants, bacteria termed Rhizobia can fix massive amounts of atmospheric nitrogen which is primarily provided in the form of ammonium to the host plants. Therefore, legume root nodules that house the symbiotic bacteria are ideally suited to study the process of primary ammonium assimilation. Here, we present a GC-MS based metabolite profiling analysis of Medicago truncatula root nodules (induced by the bacterium Sinorhizobium meliloti) before and after inhibition of glutamine synthetase (GS) by the chemical herbicide phosphinotricine. The primary role of GS in ammonium assimilation was revealed by drastically reduced levels of glutamine in phosphinotricine treated root nodules. In comparison to previous results of increased asparagine synthetase transcript and protein abundances in GS inhibited nodules the metabolic data revealed that decreased amounts of aspartate might preclude taking advantage of this elevated enzymatic activity. A potential role of glutamate dehydrogenase in ammonium assimilation was metabolically indicated 24 and 48 h after GS inhibition. Therefore, nodule ammonium assimilation might in principle involve three interdependent metabolic pathways which are adjusted to control basic nitrogen metabolism.
Collapse
Affiliation(s)
- Aiko Barsch
- Proteom und Metabolomforschung, Fakultät für Biologie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany.
| | | | | | | |
Collapse
|
22
|
Tan S, Evans R, Singh B. Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids 2006; 30:195-204. [PMID: 16547651 DOI: 10.1007/s00726-005-0254-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 07/05/2005] [Indexed: 11/26/2022]
Abstract
Acetohydroxyacid synthase (AHAS) inhibitors interfere with branched-chain amino acid biosynthesis by inhibiting AHAS. Glyphosate affects aromatic amino acid biosynthesis by inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Glufosinate inhibits glutamine synthetase and blocks biosynthesis of glutamine. AHAS gene variants that confer tolerance to AHAS inhibitors have been discovered in plants through selection or mutagenesis. Imidazolinone-tolerant crops have been commercialized based on these AHAS gene variants. A modified maize EPSPS gene and CP4-EPSPS gene from Agrobacterium sp. have been used to transform plants for target-based tolerance to glyphosate. A gox gene isolated from Ochrobactrum anthropi has also been employed to encode glyphosate oxidoreductase to detoxify glyphosate in plants. Glyphosate-tolerant crops with EPSPS transgene alone or both EPSPS and gox transgenes have been commercialized. Similarly, bar and pat genes isolated from Streptomyces hygroscopicus and S. viridochromogenes, respectively, have been inserted into plants to encode phosphinothricin N-acetyltransferase to detoxify glufosinate. Glufosinate-tolerant crops have been commercialized using one of these two transgenes.
Collapse
Affiliation(s)
- S Tan
- BASF Corporation, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
23
|
Weller MG, Diemer M, Wersching C, Niessner R, Sochor H. Development of antibodies for the detection of N-acetyl-glufosinate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:6668-6675. [PMID: 14582958 DOI: 10.1021/jf0344183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Glufosinate is a widely used herbicide, which is difficult to detect by conventional analytical techniques. For many other herbicides, suitable antibodies have been raised for immunoassay development. Unfortunately, glufosinate is a very small molecule and difficult to immunize with. Thus, a derivatization-assisted immunoassay (DAIA) using the target analyte N-acetyl-glufosinate (NAG) was constructed. The activated hapten was synthesized by a new approach, using a homobifunctional cross-linker suberic acid bis(N-hydroxysuccinimide ester). The preparation of a suitable conjugate, the immunization, and the characterization of polyclonal antibodies are shown. The determination of the conjugation density (hapten density) of the immunogens was performed by four different methods (high-performance liquid chromatography with a refractive index detector, total reflection X-ray fluorescence, inductively coupled plasma mass spectrometry, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry), which gave similar results. The limit of detection was 17 mug/L NAG in water for the direct competitive enzyme immunoassay. NAG is also a main metabolite of glufosinate in resistant transgenic plants. The antibodies might be useful for the selective detection of NAG in the presence of the parent compound glufosinate (cross-reactivity 0.13%) and other metabolites.
Collapse
Affiliation(s)
- Michael G Weller
- Institute of Hydrochemistry, Technische Universität München, Marchioninistrasse 17, D-81377 München, Germany.
| | | | | | | | | |
Collapse
|
24
|
Ruhland M, Engelhardt G, Pawlizki K. A comparative investigation of the metabolism of the herbicide glufosinate in cell cultures of transgenic glufosinate-resistant and non-transgenic oilseed rape (Brassica napus) and corn (Zea mays). ACTA ACUST UNITED AC 2002; 1:29-37. [PMID: 15612254 DOI: 10.1051/ebr:2002003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
To obtain information on differences between the metabolic pathways of the herbicide glufosinate (trade names: BASTA, LIBERTY) in non-transgenic, glufosinate-sensitive plants and in transgenic, glufosinate-resistant plants, the metabolism of 14C-labeled glufosinate and its enantiomers L- and D-glufosinate was studied using cell cultures of oilseed rape and corn. Transformation of glufosinate in both sensitive and transgenic rape cells remained at a low rate of about 3-10% in contrast to corn cells, where 20% was transformed in sensitive and 43% in transgenic cells after 14 days of incubation, the rest remaining as unchanged glufosinate. In sensitive rape and corn cells the main metabolite was 4-methylphosphinico-2-oxo-butanoic acid (PPO) with 7.3 and 16.4%, respectively, together with low amounts of 3-methylphosphinicopropionic acid (MPP), 4-methylphosphinico-2-hydroxybutanoic acid (MHB), 4-methylphosphinicobutanoic acid (MPB) and 2-methylphosphinicoacetic acid (MPA). An additional metabolite formed in transgenic cell cultures was 2-acetamido-4-methylbutanoic acid (N-acetyl-L-glufosinate, NGA), which was formed at rates of 3.2% in rape and 16.1% in corn. A further minor metabolite, not yet identified, was detected in both cell types. The liberation of 0.2% 14CO2 indicates further metabolic steps prior to a limited mineralization in plant cell cultures. L-glufosinate was transformed into the same metabolites as the glufosinate racemate. D-glufosinate was not metabolized.
Collapse
Affiliation(s)
- Monika Ruhland
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Aussenstelle München, Menzinger Strasse 54, 80638 München, Germany
| | | | | |
Collapse
|
25
|
Alarcon CM, Umthun AR, Register JC. Use of epitope tags for routine analysis of transgene expression. Transgenic Res 2001; 10:183-92. [PMID: 11437275 DOI: 10.1023/a:1016633208182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peptide and RNA epitope tags as tools for routine analysis of transgene expression and protein accumulation in transformed plant cell cultures was evaluated using three genes that encode very structurally and functionally different proteins. A T7 peptide was introduced at the amino- and carboxyl-termini of phosphinothricin-N-acetyl transferase and avidin and at the carboxyl-terminus of galactose oxidase. An RNA sequence that forms a higher order structure that is recognized by antibodies raised against the FLAG peptide was separately introduced into the 3' nontranslated region of these genes. Constructs were introduced into maize cell cultures using particle bombardment and transgene expression, protein accumulation, protein function and presence of the tags in RNA and/or protein as appropriate were evaluated in up to approximately 25 culture lines per construct. Results indicate that, while there will likely always be a need for some empirical evaluation of any tag-protein combination, introduction of the peptide tag at the amino-terminus was generally more successful than was incorporation at the carboxyl-terminus. RNA tags show promise for this purpose, but routine application will require development of a very sensitive immunoassay.
Collapse
Affiliation(s)
- C M Alarcon
- Trait and Technology Development, Pioneer Hi-Bred International, Johnston, IA 50131, USA
| | | | | |
Collapse
|
26
|
Beriault JN, Horsman GP, Devine MD. Phloem transport of D,L-glufosinate and acetyl-L-glufosinate in glufosinate-resistant and -susceptible brassica napus. PLANT PHYSIOLOGY 1999; 121:619-28. [PMID: 10517854 PMCID: PMC59425 DOI: 10.1104/pp.121.2.619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phloem transport of D,L-[(14)C]glufosinate, D-[(14)C]glufosinate, and acetyl-L-[(14)C]glufosinate was examined in the susceptible Brassica napus cv Excel and a glufosinate-resistant genotype (HCN27) derived by transformation of cv Excel with the phosphinothricin-N-acetyltransferase (pat) gene. Considerably more (14)C was exported from an expanded leaf in HCN27 than in cv Excel following application of D,L-[(14)C]glufosinate (25% versus 6.3% of applied, respectively, 72 h after treatment). The inactive isomer, D-glufosinate, was much more phloem mobile in cv Excel than racemic D,L-glufosinate. Foliar or root supplementation with 1 mM glutamine increased D,L-[(14)C]glufosinate translocation in cv Excel but only transiently, suggesting that glutamine depletion is not the major cause of the limited phloem transport. Acetyl-L-[(14)C]glufosinate (applied as such or derived from L-glufosinate in pat transformants) was translocated extensively in the phloem of both genotypes. Acetyl-L-[(14)C]glufosinate was readily transported into the floral buds and flowers, and accumulated in the anthers in both genotypes. These results suggest that phloem transport of D,L-glufosinate is limited by rapid physiological effects of the L-isomer in source leaf tissue. The accumulation of acetyl-L-glufosinate in the anthers indicates that it is sufficiently phloem mobile to act as a foliar-applied chemical inducer of male sterility in plants expressing a deacetylase gene in the tapetum, generating toxic concentrations of L-glufosinate in pollen-producing tissues.
Collapse
Affiliation(s)
- JN Beriault
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5A8
| | | | | |
Collapse
|
27
|
Broer I, Dröge-Laser W, Barker RF, Neumann K, Klipp W, Pühler A. Identification of the Agrobacterium tumefaciens C58 T-DNA genes e and f and their impact on crown gall tumour formation. PLANT MOLECULAR BIOLOGY 1995; 27:41-57. [PMID: 7865795 DOI: 10.1007/bf00019177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
DNA sequence analysis of the 4.4 kilobases (kb) Eco RI fragment 14 from T-DNA of Agrobacterium tumefaciens C58 revealed three open reading frames. One of them (945 bp) was supposed to encode the transcript e, the function of which has not been identified to date. Furthermore, a so far undescribed open reading frame (1035 bp) was identified, located in the centre of the Eco RI fragment 14 and termed gene f. The third open reading frame encoded the carboxy-terminal part of the agrocinopine synthase (Acs). The gene e-encoded protein showed significant homologies to the gene products of the Agrobacterium rhizogenes rolB gene and the Agrobacterium tumefaciens gene 5. Both gene products are supposed to regulate the plant's reaction on auxin. Depending on the plant species tested, Agrobacterium strains carrying mutations in gene e induced only small or almost no detectable crown gall tumours. According to these mutational studies and the protein homologies observed, the gene e product is suggested to be involved in tumour formation. Infection of several plant species with Agrobacterium carrying a mutated gene f, as well as expression of the gene f in transgenic tobacco plants did not lead to visible morphological changes. Therefore, in contrast to gene e, the gene f seems not to be essential for tumour formation. In order to study whether gene f is an active gene, its expression in agrobacteria and plants was monitored by translational lacZ fusion. In planta, the putative gene f-promoter mediates a tissue-specific expression pattern. Although gene f was expressed in free-living agrobacteria as well as in transgenic plants, the function of the f locus remained unclear. DNA homology studies with the f gene region revealed a mosaic-like DNA structure, indicating that this locus might be the result of genetic exchanges between different Agrobacterium strains during evolution.
Collapse
Affiliation(s)
- I Broer
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Kok EJ, Noteborn HP, Kuiper HA. Food safety assessment of marker genes in transgenic crops. Trends Food Sci Technol 1994. [DOI: 10.1016/0924-2244(94)90138-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Walter C, Broer I, Hillemann D, Pühler A. High frequency, heat treatment-induced inactivation of the phosphinothricin resistance gene in transgenic single cell suspension cultures of Medicago sativa. MOLECULAR & GENERAL GENETICS : MGG 1992; 235:189-96. [PMID: 1465092 DOI: 10.1007/bf00279360] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One descendant of the Medicago sativa Ra-3 transformant T304 was analysed with respect to the somatic stability of the synthetic phosphinothricin-N-acetyltransferase (pat) gene which was used as a selective marker and was under the control of the 5'/3' expression signals of the cauliflower mosaic virus (CaMV) gene VI. In order to quantify gene instability, we developed a system for culturing and regenerating individual cells. Single cell suspension cultures derived from T304 and the ancestral non-transgenic M. sativa cultivar Ra-3, were established. The cells were regenerated into monoclonal calli. In transgenic calli, the phosphinothricin (Pt)-resistance phenotype was retained after more than 2 months of non-selective growth. In contrast, up to 12% of the suspension culture cells grown under nonselective conditions and at constant temperature (25 degrees C) lost the herbicide-resistance phenotype within 150 days. Surprisingly, a heat treatment (37 degrees C), lasting for 10 days, during the culture period resulted in an almost complete (95%) loss of the Pt resistance of the suspension culture cells. However, the frequency of cell division was identical in cultures grown under normal and heat treatment conditions. A biochemical test revealed that no phosphinothricin-N-acetyltransferase activity was present in heat treated, Pt-sensitive cells. The resistance level of the Pt-sensitive transgenic cells was equivalent to that of the wild-type cells. A PCR analysis confirmed the presence of the pat gene in heat treated, Pt-sensitive cells. From these results it is concluded that the Pt resistance gene was heat-inactivated at a high frequency in the M. sativa suspension cultures.
Collapse
Affiliation(s)
- C Walter
- Universität Bielefeld, Fakultät für Biologie, Lehrstuhl für Genetik, FRG
| | | | | | | |
Collapse
|