1
|
Das A, Franco JA, Mulcahy B, Wang L, Chapman D, Jaisinghani C, Pruitt BL, Zhen M, Goodman MB. C. elegans touch receptor neurons direct mechanosensory complex organization via repurposing conserved basal lamina proteins. Curr Biol 2024; 34:3133-3151.e10. [PMID: 38964319 PMCID: PMC11283674 DOI: 10.1016/j.cub.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
The sense of touch is conferred by the conjoint function of somatosensory neurons and skin cells. These cells meet across a gap filled by a basal lamina, an ancient structure found in metazoans. Using Caenorhabditis elegans, we investigate the composition and ultrastructure of the extracellular matrix at the epidermis and touch receptor neuron (TRN) interface. We show that membrane-matrix complexes containing laminin, nidogen, and the MEC-4 mechano-electrical transduction channel reside at this interface and are central to proper touch sensation. Interestingly, the dimensions and spacing of these complexes correspond with the discontinuous beam-like extracellular matrix structures observed in serial-section transmission electron micrographs. These complexes fail to coalesce in touch-insensitive extracellular matrix mutants and in dissociated neurons. Loss of nidogen reduces the density of mechanoreceptor complexes and the amplitude of the touch-evoked currents they carry. Thus, neuron-epithelium cell interfaces are instrumental in mechanosensory complex assembly and function. Unlike the basal lamina ensheathing the pharynx and body wall muscle, nidogen recruitment to the puncta along TRNs is not dependent upon laminin binding. MEC-4, but not laminin or nidogen, is destabilized by point mutations in the C-terminal Kunitz domain of the extracellular matrix component, MEC-1. These findings imply that somatosensory neurons secrete proteins that actively repurpose the basal lamina to generate special-purpose mechanosensory complexes responsible for vibrotactile sensing.
Collapse
Affiliation(s)
- Alakananda Das
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Joy A Franco
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Lingxin Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Dail Chapman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Chandni Jaisinghani
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Beth L Pruitt
- Departments of Mechanical Engineering and Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Differences between finger and toe Meissner corpuscles: Searching for the optimal place to analyze meissner corpuscles in cutaneous biopsy. TRANSLATIONAL RESEARCH IN ANATOMY 2023. [DOI: 10.1016/j.tria.2023.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
3
|
IWANAGA T, TAKAHASHI-IWANAGA H, NIO-KOBAYASHI J, EBARA S. Structure and barrier functions of the perineurium and its relationship with associated sensory corpuscles: A review. Biomed Res 2022; 43:145-159. [DOI: 10.2220/biomedres.43.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Toshihiko IWANAGA
- Department of Anatomy, Hokkaido University Graduate School of Medicine
| | | | | | | |
Collapse
|
4
|
Suazo I, Vega JA, García-Mesa Y, García-Piqueras J, García-Suárez O, Cobo T. The Lamellar Cells of Vertebrate Meissner and Pacinian Corpuscles: Development, Characterization, and Functions. Front Neurosci 2022; 16:790130. [PMID: 35356056 PMCID: PMC8959428 DOI: 10.3389/fnins.2022.790130] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Sensory corpuscles, or cutaneous end-organ complexes, are complex structures localized at the periphery of Aβ-axon terminals from primary sensory neurons that primarily work as low-threshold mechanoreceptors. Structurally, they consist, in addition to the axons, of non-myelinating Schwann-like cells (terminal glial cells) and endoneurial- and perineurial-related cells. The terminal glial cells are the so-called lamellar cells in Meissner and Pacinian corpuscles. Lamellar cells are variably arranged in sensory corpuscles as a “coin stack” in the Meissner corpuscles or as an “onion bulb” in the Pacinian ones. Nevertheless, the origin and protein profile of the lamellar cells in both morphotypes of sensory corpuscles is quite similar, although it differs in the expression of mechano-gated ion channels as well as in the composition of the extracellular matrix between the cells. The lamellar cells have been regarded as supportive cells playing a passive role in the process of genesis of the action potential, i.e., the mechanotransduction process. However, they express ion channels related to the mechano–electric transduction and show a synapse-like mechanism that suggest neurotransmission at the genesis of the electrical action potential. This review updates the current knowledge about the embryonic origin, development modifications, spatial arrangement, ultrastructural characteristics, and protein profile of the lamellar cells of cutaneous end-organ complexes focusing on Meissner and Pacinian morphotypes.
Collapse
Affiliation(s)
- Iván Suazo
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
- Faculcultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - José A. Vega
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
- Faculcultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- *Correspondence: José A. Vega,
| | - Yolanda García-Mesa
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | - Jorge García-Piqueras
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | - Olivia García-Suárez
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
5
|
Zhu HJ, Fan M, Gao W. Identification of potential hub genes associated with skin wound healing based on time course bioinformatic analyses. BMC Surg 2021; 21:303. [PMID: 34193119 PMCID: PMC8243612 DOI: 10.1186/s12893-021-01298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/04/2021] [Indexed: 12/02/2022] Open
Abstract
Background The skin is the largest organ of the body and has multiple functions. Wounds remain a significant healthcare problem due to the large number of traumatic and pathophysiological conditions patients suffer. Methods Gene expression profiles of 37 biopsies collected from patients undergoing split-thickness skin grafts at five different time points were downloaded from two datasets (GSE28914 and GSE50425) in the Gene Expression Omnibus (GEO) database. Principal component analysis (PCA) was applied to classify samples into different phases. Subsequently, differentially expressed genes (DEGs) analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway functional enrichment analyses were performed, and protein–protein interaction (PPI) networks created for each phase. Furthermore, based on the results of the PPI, hub genes in each phase were identified by molecular complex detection combined with the ClueGO algorithm. Results Using principal component analysis, the collected samples were divided into four phases, namely intact phase, acute wound phase, inflammatory and proliferation phase, and remodeling phase. Intact samples were used as control group. In the acute wound phase, a total of 1 upregulated and 100 downregulated DEGs were identified. Tyrosinase (TYR), tyrosinase Related Protein 1 (TYRP1) and dopachrome tautomerase (DCT) were considered as hub genes and enriched in tyrosine metabolism which dominate the process of melanogenesis. In the inflammatory and proliferation phase, a total of 85 upregulated and 164 downregulated DEGs were identified. CHEK1, CCNB1 and CDK1 were considered as hub genes and enriched in cell cycle and P53 signaling pathway. In the remodeling phase, a total of 121 upregulated and 49 downregulated DEGs were identified. COL4A1, COL4A2, and COL6A1 were considered as hub genes and enriched in protein digestion and absorption, and ECM-receptor interaction. Conclusion This comprehensive bioinformatic re-analysis of GEO data provides new insights into the molecular pathogenesis of wound healing and the potential identification of therapeutic targets for the treatment of wounds. Supplementary Information The online version contains supplementary material available at 10.1186/s12893-021-01298-w.
Collapse
Affiliation(s)
- Hai-Jun Zhu
- The 4th People's Hospital of Shenyang, No. 20 Huanghenan Street, Huanggu District, Shenyang, 110031, China
| | - Meng Fan
- The 4th People's Hospital of Shenyang, No. 20 Huanghenan Street, Huanggu District, Shenyang, 110031, China
| | - Wei Gao
- The 4th People's Hospital of Shenyang, No. 20 Huanghenan Street, Huanggu District, Shenyang, 110031, China.
| |
Collapse
|
6
|
The Human Cutaneous Sensory Corpuscles: An Update. J Clin Med 2021; 10:jcm10020227. [PMID: 33435193 PMCID: PMC7827880 DOI: 10.3390/jcm10020227] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
Sensory corpuscles of human skin are terminals of primary mechanoreceptive neurons associated with non-neuronal cells that function as low-threshold mechanoreceptors. Structurally, they consist of an extreme tip of a mechanosensory axon and nonmyelinating peripheral glial cells variably arranged according to the morphotype of the sensory corpuscle, all covered for connective cells of endoneurial and/or perineurial origin. Although the pathologies of sensitive corpuscles are scarce and almost never severe, adequate knowledge of the structure and immunohistochemical profile of these formations is essential for dermatologists and pathologists. In fact, since sensory corpuscles and nerves share a basic structure and protein composition, a cutaneous biopsy may be a complementary method for the analysis of nerve involvement in peripheral neuropathies, systemic diseases, and several pathologies of the central nervous system. Thus, a biopsy of cutaneous sensory corpuscles can provide information for the diagnosis, evolution, and effectiveness of treatments of some pathologies in which they are involved. Here, we updated and summarized the current knowledge about the immunohistochemistry of human sensory corpuscles with the aim to provide information to dermatologists and skin pathologists.
Collapse
|
7
|
Cobo R, García-Mesa Y, García-Piqueras J, Feito J, Martín-Cruces J, García-Suárez O, A. Vega J. The Glial Cell of Human Cutaneous Sensory Corpuscles: Origin, Characterization, and Putative Roles. Somatosens Mot Res 2020. [DOI: 10.5772/intechopen.91815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
García-Piqueras J, García-Suárez O, García-Mesa Y, García-Fernandez B, Quirós LM, Cobo R, Martín-Biedma B, Feito J, Vega JA. Heparan sulfate in human cutaneous Meissner's and Pacinian corpuscles. Anat Rec (Hoboken) 2019; 303:2262-2273. [PMID: 31815364 DOI: 10.1002/ar.24328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 01/05/2023]
Abstract
Heparan sulfate proteoglycans are pericellular/cell surface molecules involved in somatosensory axon guidance in the peripheral nervous system. However, the distribution of heparan sulfate proteoglycans in the extracellular matrix of human cutaneous sensory corpuscles is unknown. Immunohistochemistry and immunofluorescence assays were performed to define the localization of heparan sulfate proteoglycans in human cutaneous Meissner's and Pacinian corpuscles using two anti-heparan sulfate antibodies together with anti-S100 protein, anti-PGP9.5, anti-CD34 (to immunolabel basement membranes, Schwann cells, axon and the intermediate endoneurial layer of Pacinian corpuscles, respectively), anti-Type IV collagen, and anti-chondroitin sulfate antibodies. Heparan sulfate proteoglycans were colocalized with Type IV collagen in Meissner's corpuscles and were located in the outer core lamellae and capsule, but not in the inner core or the intermediate layer, in Pacinian corpuscles. Chondroitin sulfate was observed in the intermediate layer of Pacinian corpuscles but was never colocalized with heparan sulfate proteoglycans. The present results strongly suggest that heparan sulfate proteoglycans are associated with the basement membranes of the lamellar cells in Meissner's corpuscles and with the complex outer core capsule in Pacinian corpuscles. The functional significance of these results, if any, remains to be elucidated.
Collapse
Affiliation(s)
- Jorge García-Piqueras
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Yolanda García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | | | - Luis M Quirós
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
| | - Ramón Cobo
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Benjamin Martín-Biedma
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jorge Feito
- Servicio de Anatomía Patológica, Hospital Universitario de Salamanca, Salamanca, Spain
| | - José A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
9
|
García-Piqueras J, García-Mesa Y, Feito J, García B, Quiros LM, Martín-Biedma B, Cobo T, Vega JA, García-Suárez O. Class I and Class II small leucine-rich proteoglycans in human cutaneous pacinian corpuscles. Ann Anat 2019; 224:62-72. [PMID: 31005573 DOI: 10.1016/j.aanat.2019.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 01/14/2023]
Abstract
Pacinian corpuscles are onion bulb-like multilayered mechanoreceptors that consist of a complicated structure of axon terminals, Schwann related cells (inner core), endoneural related cells (intermediate layer) and perineurial related cells (outer core-capsule). The cells forming those compartments are continuous and share the properties of that covering the nerve fibers. Small leucine-rich proteoglycans are major proteoglycans of the extracellular matrix and regulate collagen fibrillogenesis, cell signalling pathways and extracellular matrix assembly. Here we used immunohistochemistry to investigate the distribution of class I (biglycan, decorin, asporin, ECM2 and ECMX) and class II (fibromodulin, lumican, prolargin, keratocan and osteoadherin) small leucine-rich proteoglycans in human cutaneous Pacinian corpuscles. The distribution of these compounds was: the inner core express decorin, biglycan, lumican, fibromodulin, osteoadherin; the intermediate layer display immunoreactivity for osteoadherin; the outer core biglycan, decorin, lumican, fibromodulin and osteoadherin; and the capsule contains biglycan, decorin, fibromodulin, and lumican. Asporin, prolargin and keratocan were undetectable. These results complement our knowledge about the distribution of small leucine-rich proteoglycans in human Pacinian corpuscles, and help to understand the composition of the extracellular matrix in these sensory formations.
Collapse
Affiliation(s)
- J García-Piqueras
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Spain
| | - Y García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Spain
| | - J Feito
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Spain; Servicio de Anatomía Patológica, Hospital Universitario de Salamanca, Salamanca, Spain
| | - B García
- Instituto Universitario Fernández-Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain
| | - L M Quiros
- Instituto Universitario Fernández-Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain; Departmento de Biología Funcional, Universidad de Oviedo, Spain
| | - B Martín-Biedma
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Santiago de Compostela, Spain
| | - T Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Instituto Asturiano de Odontología, Oviedo, Spain
| | - J A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile.
| | - O García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Spain
| |
Collapse
|
10
|
García‐Piqueras J, Carcaba L, García‐Mesa Y, Feito J, García B, Viña E, Suárez‐Quintanilla J, Cobo J, Vega JA, García‐Suárez O. Chondroitin Sulfate in Human Cutaneous Meissner and Pacinian Sensory Corpuscles. Anat Rec (Hoboken) 2018; 302:325-331. [DOI: 10.1002/ar.23951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/29/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Jorge García‐Piqueras
- Departamento de Morfología y Biología CelularGrupo SINPOS Universidad de Oviedo Oviedo Spain
| | - Lucia Carcaba
- Departamento de Morfología y Biología CelularGrupo SINPOS Universidad de Oviedo Oviedo Spain
| | - Yolanda García‐Mesa
- Departamento de Morfología y Biología CelularGrupo SINPOS Universidad de Oviedo Oviedo Spain
| | - Jorge Feito
- Departamento de Morfología y Biología CelularGrupo SINPOS Universidad de Oviedo Oviedo Spain
- Servicio de Anatomía PatológicaHospital Universitario de Salamanca Salamanca Spain
| | - Beatriz García
- Departamento de Biología FuncionalUniversidad de Oviedo Oviedo Spain
- Instituto Universitario Fernández‐VegaUniversidad de Oviedo, Fundación de Investigación Oftalmológica Oviedo Spain
| | - E. Viña
- Departamento de Morfología y Biología CelularGrupo SINPOS Universidad de Oviedo Oviedo Spain
- Servicio de Cuidados IntensivosHospital de Cabueñes Gijón Spain
| | - Juan Suárez‐Quintanilla
- Departamento de Ciencias MorfológicasUniversidad de Santiago de Compostela Santiago de Compostela Spain
| | - Juan Cobo
- Instituto Asturiano de Odontología Oviedo Spain
- Departamento de Cirugía y Especialidades Médico‐QuirúrgicasUniversidad de Oviedo Oviedo Spain
| | - Jose A. Vega
- Departamento de Morfología y Biología CelularGrupo SINPOS Universidad de Oviedo Oviedo Spain
- Facultad de Ciencias de la SaludUniversidad Autónoma de Chile Chile
| | - Olivia García‐Suárez
- Departamento de Morfología y Biología CelularGrupo SINPOS Universidad de Oviedo Oviedo Spain
- Instituto Universitario Fernández‐VegaUniversidad de Oviedo, Fundación de Investigación Oftalmológica Oviedo Spain
| |
Collapse
|
11
|
Feito J, García-Suárez O, García-Piqueras J, García-Mesa Y, Pérez-Sánchez A, Suazo I, Cabo R, Suárez-Quintanilla J, Cobo J, Vega JA. The development of human digital Meissner's and Pacinian corpuscles. Ann Anat 2018; 219:8-24. [PMID: 29842990 DOI: 10.1016/j.aanat.2018.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/12/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Meissner's and Pacinian corpuscles are cutaneous mechanoreceptors responsible for different modalities of touch. The development of these sensory formations in humans is poorly known, especially regarding the acquisition of the typical immunohistochemical profile related to their full functional maturity. Here we used a panel of antibodies (to specifically label the main corpuscular components: axon, Schwann-related cells and endoneurial-perineurial-related cells) to investigate the development of digital Meissner's and Pacinian corpuscles in a representative sample covering from 11 weeks of estimated gestational age (wega) to adulthood. Development of Pacinian corpuscles starts at 13 wega, and it is completed at 4 months of life, although their basic structure and immunohistochemical characteristics are reached at 36 wega. During development, around the axon, a complex network of S100 positive Schwann-related processes is progressively compacted to form the inner core, while the surrounding mesenchyme is organized and forms the outer core and the capsule. Meissner's corpuscles start to develop at 22 wega and complete their typical morphology and immunohistochemical profile at 8 months of life. In developing Meissner's corpuscles, the axons establish complex relationships with the epidermis and are progressively covered by Schwann-like cells until they complete the mature arrangement late in postnatal life. The present results demonstrate an asynchronous development of the Meissner's and Pacini's corpuscles and show that there is not a total correlation between morphological and immunohistochemical maturation. The correlation of the present results with touch-induced cortical activity in developing humans is discussed.
Collapse
Affiliation(s)
- J Feito
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain; Servicio de Anatomía Patológica, Complejo Hospitalario Universitario de Salamanca, Spain
| | - O García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain
| | - J García-Piqueras
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain
| | - Y García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain
| | - A Pérez-Sánchez
- Servicio de Anatomía Patológica, Complejo Hospitalario Universitario de Salamanca, Spain
| | - I Suazo
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - R Cabo
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain
| | - J Suárez-Quintanilla
- Departamento de Ciencias Morfológicas, Universidad de Santiago de Compostela, Spain
| | - J Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Instituto Asturiano de Odontología, Oviedo, Spain
| | - J A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile.
| |
Collapse
|
12
|
Summers IR, Pitts-Yushchenko S, Winlove CP. Structure of the Pacinian Corpuscle: Insights Provided by Improved Mechanical Modeling. IEEE TRANSACTIONS ON HAPTICS 2018; 11:146-150. [PMID: 29611813 DOI: 10.1109/toh.2017.2769648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An improved model of the Pacinian corpuscle includes corrections for lamellar curvature. Results suggest that outer-zone lamellae produce a focusing effect whereby stimuli are channeled radially inwards. The requirements for this effect (large outer-surface area and thin, closely spaced lamellae) provide a rationale for the complexity of the outer-zone structure.
Collapse
|
13
|
Abreu-Velez AM, Howard MS. Collagen IV in Normal Skin and in Pathological Processes. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2012; 4:1-8. [PMID: 22393540 PMCID: PMC3289483 DOI: 10.4103/1947-2714.92892] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
CONTEXT Type IV collagen is a type of collagen found primarily in the skin within the basement membrane zone. The type IV collagen C4 domain at the C-terminus is not removed in post-translational processing, and the fibers are thus link head-to-head, rather than in a parallel fashion. Also, type IV collagen lacks a glycine in every third amino-acid residue necessary for the tight collagen helix. Thus, the overall collagen-IV conformation is structurally more pliable and kinked, relative to other collagen subtypes. These structural features allow collagen IV to form sheets, which is the primary structural form found in the cutaneous basal lamina. There are six human genes associated with collagen IV, specifically COL4A1, COL4A2, COL4A3, COL4A4, COL4A5 and COL4A6. The aim of this review is to highlight the significance of this protein in normal skin, and in selected diseases. RESULTS The alpha 3 protein constituent of type IV collagen is thought to be the antigen implicated in Goodpasture's syndrome, wherein the immune system attacks the basement membranes of the renal glomeruli and pulmonary alveoli. In addition, mutations to the genes coding for type IV collagen lead to the Alport syndrome. Furthermore, autoantibodies directed against denatured human type IV collagen have been described in rheumatoid arthritis, scleroderma, and SLE. Structural studies of collagen IV have been utilized to differentiate between subepidermal blistering diseases, including bullous pemphigoid, acquired epidermolysis bullosa, anti-epiligrin cicatricial pemphigoid, and bullous lupus erythematosus. Collagen IV is also of importance in wound healing and in embryogenesis. CONCLUSIONS Pathological studies have demonstrated that minor structural differences in collagen IV can lead to distinct, clinically different diseases.
Collapse
|
14
|
Del Valle ME, Cobo T, Cobo JL, Vega JA. Mechanosensory neurons, cutaneous mechanoreceptors, and putative mechanoproteins. Microsc Res Tech 2012; 75:1033-43. [PMID: 22461425 DOI: 10.1002/jemt.22028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/31/2012] [Indexed: 01/16/2023]
Abstract
The mammalian skin has developed sensory structures (mechanoreceptors) that are responsible for different modalities of mechanosensitivity like touch, vibration, and pressure sensation. These specialized sensory organs are anatomically and functionally connected to a special subset of sensory neurons called mechanosensory neurons, which electrophysiologically correspond with Aβ fibers. Although mechanosensory neurons and cutaneous mechanoreceptors are rather well known, the biology of the sense of touch still remains poorly understood. Basically, the process of mechanosensitivity requires the conversion of a mechanical stimulus into an electrical signal through the activation of ion channels that gate in response to mechanical stimuli. These ion channels belong primarily to the family of the degenerin/epithelium sodium channels, especially the subfamily acid-sensing ion channels, and to the family of transient receptor potential channels. This review compiles the current knowledge on the occurrence of putative mechanoproteins in mechanosensory neurons and mechanoreceptors, as well as the involvement of these proteins on the biology of touch. Furthermore, we include a section about what the knock-out mice for mechanoproteins are teaching us. Finally, the possibilities for mechanotransduction in mechanoreceptors, and the common involvement of the ion channels, extracellular membrane, and cytoskeleton, are revisited.
Collapse
Affiliation(s)
- M E Del Valle
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | | | | | | |
Collapse
|
15
|
Chikenji T, Suzuki D, Fujimiya M, Moriya T, Tsubota S. Distribution of nerve endings in the human proximal interphalangeal joint and surrounding structures. J Hand Surg Am 2010; 35:1286-93. [PMID: 20630670 DOI: 10.1016/j.jhsa.2010.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/18/2010] [Accepted: 04/22/2010] [Indexed: 02/02/2023]
Abstract
PURPOSE To examine the distribution of encapsulated nerve endings called mechanoreceptors in the human proximal interphalangeal (PIP) joint and surrounding structures. METHODS We processed 12 right index finger PIP joints and surrounding structures from fresh and dissecting-room cadavers for immunohistochemistry of the anti-protein gene product 9.5 and silver staining to detect encapsulated nerve endings. Serial transverse sections were cut throughout the whole specimen and divided into 3 regions along the longitudinal axis: distal, middle, and proximal. Each of the transverse sections was partitioned into dorsal capsule (DC), radial capsule (RC), ulnar capsule (UC), volar plate (VP), radial assemblage nuclei (RAN), and ulnar assemblage nuclei (UAN); the RAN and UAN are located on the radial and ulnar side of the VP. The C1 pulley contained the proximal region of the RAN and UAN, whereas the A3 pulley contained the middle and distal regions. The accessory collateral ligament contained all the regions of the RAN and UAN. The densities of encapsulated nerve endings in these 18 different regions were analyzed and compared. RESULTS According to the modified Freeman and Wyke classification, type I (Ruffini-like endings) and type II (Pacini-like endings) nerve endings were identified. The density of type I nerve endings in the proximal region of the VP was substantially higher than that in the proximal region of the RAN, UAN, RC, UC, and DC. The density of type II nerve endings in the proximal region of the RAN and UAN was substantially higher than that in the proximal region of the VP, RC, UC and DC, and that in the proximal region of the VP and DC, respectively. CONCLUSIONS Our examination of the distribution of type I and type II nerve endings provides information on the sensory systems of the PIP joints and surrounding structures.
Collapse
Affiliation(s)
- Takako Chikenji
- Graduate School of Health Science, Department of Anatomy, Sapporo Medical University, Hokkaido, Japan.
| | | | | | | | | |
Collapse
|
16
|
Abstract
OBJECTIVES The pathogenesis of pancreatic carcinoma is driven by the tumor cells ability to migrate causing invasion and metastases. The correlation between the aberrant expression of basement membrane proteins and the process of tumor invasion and metastasis has not been fully determined. METHODS In the present study, the influence of laminin, fibronectin, and collagen type IV on migratory activity of 5 different cell lines has been investigated at the level of a single tumor cell using 3-dimensional time-lapse microscopy. RESULTS All investigated cell lines have shown a high baseline migration that varied between 6.2 +/- 3.6 and 20.6 +/- 6.8 microm/h. The addition of laminin, fibronectin, and collagen type IV to collagen type I matrix has significantly increased tumor cell migration. Tumor cell migration was strongly inhibited after treating the tumor cells with anti-beta1 monoclonal antibodies. An abundant and continuous expression of laminin, fibronectin, and collagen type IV was found on the basement membrane of perineurium, which sharply promoted tumor cell invasion. CONCLUSIONS The continuous presentation of the basement membrane proteins by perineurium contributes to the affinity of pancreatic cancer cells for the perineural tumor invasion. Blockade of integrins could represent a possible approach to control the basement membrane-guided tumor spread.
Collapse
|
17
|
Vega JA, García-Suárez O, Montaño JA, Pardo B, Cobo JM. The Meissner and Pacinian sensory corpuscles revisited new data from the last decade. Microsc Res Tech 2009; 72:299-309. [PMID: 19012318 DOI: 10.1002/jemt.20651] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This article reviews the biochemical, physiological, and experimental data cumulated during the last decade on the Meissner and Pacinian corpuscles. It includes information about (i) the localization of molecules recently detected in sensory corpuscles; (ii) the unsolved problem of the accessory fibers in sensory corpuscles and the occurrence of myelin within them; (iii) the development of sensory corpuscles, especially their neuronal and growth factor dependency; (iv) the composition and functional significance of the extracellular matrix as an essential part of the mechanisms involved in the genesis of the stimuli generated in sensory corpuscles; (v) the molecular basis of mechanotransduction; (vi) a miscellaneous section containing sparse new data on the protein composition of sensory corpuscles, as well as in the proteins involved in live-death cell decisions; (vii) the changes in sensory corpuscles as a consequence of aging, the central, or peripheral nervous system injury; and finally, (viii) the special interest of Meissner corpuscles and Pacinian corpuscles for pathologists for the diagnosis of some peripheral neuropathies and neurodegenerative diseases.
Collapse
Affiliation(s)
- José A Vega
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain.
| | | | | | | | | |
Collapse
|
18
|
Sames K, Halata Z, Jojovic M, van Damme EJ, Peumans WJ, Delpech B, Asmus B, Schumacher U. Lectin and proteoglycan histochemistry of feline pacinian corpuscles. J Histochem Cytochem 2001; 49:19-28. [PMID: 11118475 DOI: 10.1177/002215540104900103] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We studied carbohydrate residues of glycoproteins and proteoglycans (PGs) in peritoneal Pacinian corpuscles of five adult cats. Terminal monosaccharides of glycoproteins and related polysaccharides were identified by lectin histochemistry and the PGs and glycosaminoglycans (GAGs) by specific antibodies. The most intensive lectin staining reactions indicated an abundance of glycoconjugates with terminal mannose (Man) or sialic acid residues, but no complex-type oligosaccharides were detected within the corpuscles. Terminal fucose (Fuc) and galactose (Gal) residues typical for O-linked mucin-type glycoproteins generally associated with high water binding capacity were also absent. Antibodies against unsulfated chondroitin (C-0-S), chondroitin-4-sulfate (C-4-S), and decorin showed positive reactions in the interfibrillar spaces between the lamellae, around collagen fibers, and around the lamellae of the perineural capsule, especially in the outer parts known to contain Type II collagen. Biglycan showed a preference for the innermost part of the perineural capsule (intermediate layer), known to contain Type V collagen. Collagen V and biglycan are both linked to growth processes. Hyaluronic acid (HA), chondroitin-6-sulfate (C-6-S) chains, and a chondroitin sulfate proteoglycan (CSPG) were co-localized in the terminal glia. The study of carbohydrates with high water binding capacity may contribute to our understanding of the high viscoelasticity of Pacinian corpuscles.
Collapse
Affiliation(s)
- K Sames
- Institute for Anatomy, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Vega JA, Llamosas MM, Huerta JJ, García-Fernández JM. Study of human cutaneous sensory corpuscles using double immunolabelling and confocal laser scanning microscopy. Anat Rec (Hoboken) 1996; 246:557-60. [PMID: 8955795 DOI: 10.1002/(sici)1097-0185(199612)246:4<557::aid-ar15>3.0.co;2-n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The main constituents of sensory corpuscles, i.e., the central axon, the periaxonic Schwann-related, cells, and the perineurial-related cells, can be identified light microscopically by simple immunohistochemistry using specific antibodies. This paper demonstrates the usefulness of double immunolabelling for light and confocal laser-scanning microscopy (CLSM) in the study of human cutaneous sensory corpuscles. MATERIALS AND METHODS Antibodies directed against neurofilament proteins (NFPs) and S-100 protein were used to label the central axon and the lamellar cells of Meissner corpuscles or the inner-core lamellae of digital cutaneous Pacinian corpuscles, respectively. Samples were obtained from subjects with normal sensitivity and from patients with paresthesia or absence of clinical sensitivity. Single and double immunolabelling was performed, and the sections were studied by light or CLSM microscopy. RESULTS Double immunolabelling was effective for simultaneous observation of the central axon (NFP-positive) and periaxonic Schwann-related (S-100 protein-positive) cells in sensory corpuscles from normal human digital skin. The images that were obtained with both methods were comparable, but the axonic profiles were sharper with diaminobenzidine (DAB) used as a chromogen rather than with Texas-red used as a fluorochrome. Nevertheless, the ability to manipulate the focal plane by using CLSM permits one to better analyze the intracorpuscular relationships of the axon. Double immunolabelling in sensory corpuscles from the skin of patients with nerve compression showed the presence of a central axon in the corpuscles, whereas it was absent in the sensory corpuscles of clinically denervated skin. CONCLUSIONS Double immunolabelling is a useful method with which to analyze simultaneously two of the corpuscular constituents, and it may be used in the study of denervated and reinnervated sensory corpuscles.
Collapse
Affiliation(s)
- J A Vega
- Departamento de Morfología y Biología Celular, Facultad de Medicina, C/Julián Clavería, Oviedo, Spain
| | | | | | | |
Collapse
|
20
|
Abstract
This paper reviews the immunohistochemical characteristics of two kinds of human cutaneous sensory nerve formations (SNFs), the Meissner and Pacinian corpuscles. In both kinds of SNF the central axon might be easily identifiable because it displays immunoreactivity (IR) for the neuroendocrine markers neuron-specific enolase and protein gene product 9.5, as well as for neuron-specific intermediate filament proteins, i.e., neurofilaments. Other intermediate filament proteins such as vimentin are localized in the lamellar cells of Meissner corpuscles, and in the inner core, outer core and capsule of Pacinian corpuscles. However, they lack cytokeratins or glial fibrillary acidic protein IR. On the other hand, and in agreement with ultrastructural data, IR for basement membrane constituents laminin and type IV collagen is found underlying all SNF constituents, with the exception of the axon. One of the mechanisms involved in the maintenance of intracellular calcium ions (Ca2+) homeostasis is the calcium binding proteins. Ca2+ play a key role in the mechanoelectric transduction and have been localized in SNFs. In this way IR for the Ca(2+)-binding proteins calbindin D28K, parvalbumin and calretinin, is present and colocalized in both Meissner and Pacinian corpuscles; furthermore, S-100 protein is exclusively localized in the lamellar cells and the inner core. On the other hand, the skin is a main source of neurotrophins for a subset of neural crest sensory neurons, some of which end forming SNF. These factors are conveyed via retrograde axonal transport from the skin to the cell body of the responsive neurons. Interestingly, Meissner and Pacinian corpuscles also display IR for the pan-neurotrophin low-affinity receptor (p75), and for the trkA receptor protein, a basic constituent of the high-affinity receptor for some neurotrophins. Moreover, they express IR for the epidermal growth factor receptor. Finally, other antigens not proper to the cells forming human cutaneous SNF, such as the epithelial membrane antigen and the leucocytary antigen-7, have also been detected.
Collapse
Affiliation(s)
- J A Vega
- Department of Morphology and Cell Biology, Medical Faculty, Central Hospital of Asturias, University of Oviedo, Spain
| | | | | |
Collapse
|
21
|
Vega JA, Diaz-Trelles R, Haro JJ, del Valle ME, Naves FJ, Fernández-Sánchez MT. Beta-amyloid precursor protein in human digital skin. Neurosci Lett 1995; 192:132-6. [PMID: 7675321 DOI: 10.1016/0304-3940(95)11618-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The occurrence and distribution of beta-amyloid precursor protein (beta APP) and of beta-amyloid peptide (beta/A4) was investigated using immunoblotting and immunohistochemical techniques in the digital skin of healthy adult subjects. beta APP-like proteic bands with apparent molecular masses between 55-60 kDa, 100-125 kDa (corresponding to the full-length beta APP isoforms), 145-150 kDa, and 200 kDa were found in pellets and supernatants of whole skin and dermis. The same proteins, except that of approximately 200 kDa, were also found in pellets from the epidermis, whereas epidermic supernatants were unreactive. beta/A4 was not found by immunoblotting. Light microscope immunohistochemistry showed beta APP immunoreactivity (IR) in: (a) dermal nerves; (b) lamellar cells of Meissner, as well as inner-core, outer-core and capsule of Pacinian corpuscles; and (c) dermal blood vessels, sweat glands and, occasionally, epidermis. The distribution of beta/A4 IR matched that of beta APP, and no evidence of extracellular beta/A4 IR was encountered. Present results demonstrate that beta APP, but not beta/A4, is normally present in human glabrous (digital) skin. The potential clinical relevance of these findings is discussed.
Collapse
Affiliation(s)
- J A Vega
- Department of Morphology and Cell Biology, Medical Faculty, University of Oviedo, Spain
| | | | | | | | | | | |
Collapse
|