1
|
Le Bon-Jégo M, Cabirol MJ, Cattaert D. Activity-dependent decline and recovery of synaptic transmission in central parts of surviving primary afferents after their peripheral cut in crayfish. J Exp Biol 2022; 225:278605. [PMID: 36305634 DOI: 10.1242/jeb.244736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/21/2022] [Indexed: 12/14/2022]
Abstract
Axons deprived of their nucleus degenerate within a few days in mammals but survive for several months in crustaceans. However, it is not known whether central synapses from sensory axons may preserve their molecular machinery in the absence of spiking activity. To assess this, we used peripheral axotomy, which removes their nuclei combined with electrophysiology techniques and electron microscopy imaging. We report the following. (1) Electron microscopy analysis confirms previous observations that glial cell nuclei present in the sensory nerve proliferate and migrate to axon tubes, where they form close contacts with surviving axons. (2) After peripheral axotomy performed in vivo on the coxo-basipodite chordotonal organ (CBCO), the sensory nerve does not convey any sensory message, but antidromic volleys are observed. (3) Central synaptic transmission from the CBCO to motoneurons (MNs) progressively declines over 200 days (90% of monosynaptic excitatory transmission is lost after 3 weeks, whereas 60% of disynaptic inhibitory transmission persists up to 6 months). After 200 days, no transmission is observed. (4) However, this total loss is apparent only because repetitive electrical stimulation of the sensory nerve in vitro progressively restores first inhibitory post-synaptic potentials and then excitatory post-synaptic potentials. (5) The loss of synaptic transmission can be prevented by in vivo chronic sensory nerve stimulation. (6) Using simulations based on the geometric arrangements of synapses of the monosynaptic excitatory transmission and disynaptic inhibitory pathways, we show that antidromic activity in the CBCO nerve could play a role in the maintenance of synaptic function of inhibitory pathways to MNs, but not monosynaptic excitatory transmission to MNs. Our study confirms the deep changes in glial nuclei observed in axons deprived of their nucleus. We further show that the machinery for spike conduction and synaptic release persists for several months, even if there is no longer any activity. Indeed, we were able to restore, with electrical activity, spike conduction and synaptic function after long silent periods (>6 months).
Collapse
Affiliation(s)
- Morgane Le Bon-Jégo
- University of Bordeaux, CNRS, IMN, UMR5293, 146 rue Léo-Saignat CS 61292 - Case 28, 33076 Bordeaux cedex, France
| | - Marie-Jeanne Cabirol
- University of Bordeaux, CNRS, EPHE, INCIA, UMR5287, 146 rue Léo-Saignat CS 61292 - Case 28, 33076 Bordeaux cedex, France
| | - Daniel Cattaert
- University of Bordeaux, CNRS, EPHE, INCIA, UMR5287, 146 rue Léo-Saignat CS 61292 - Case 28, 33076 Bordeaux cedex, France
| |
Collapse
|
2
|
Vargas SA, Bittner GD. Natural mechanisms and artificial PEG-induced mechanism that repair traumatic damage to the plasmalemma in eukaryotes. CURRENT TOPICS IN MEMBRANES 2019; 84:129-167. [PMID: 31610860 DOI: 10.1016/bs.ctm.2019.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Eukaryotic tissues are composed of individual cells surrounded by a plasmalemma that consists of a phospholipid bilayer with hydrophobic heads that bind cell water. Bound-water creates a thermodynamic barrier that impedes the fusion of a plasmalemma with other membrane-bound intracellular structures or with the plasmalemma of adjacent cells. Plasmalemmal damage consisting of small or large holes or complete transections of a cell or axon results in calcium influx at the lesion site. Calcium activates fusogenic pathways that have been phylogenetically conserved and that lower thermodynamic barriers for fusion of membrane-bound structures. Calcium influx also activates phylogenetically conserved sealing mechanisms that mobilize the gradual accumulation and fusion of vesicles/membrane-bound structures that seal the damaged membrane. These naturally occurring sealing mechanisms for different cells vary based on the type of lesion, the type of cell, the proximity of intracellular membranous structures to the lesion and the relation to adjacent cells. The reliability of different measures to assess plasmalemmal sealing need be carefully considered for each cell type. Polyethylene glycol (PEG) bypasses calcium and naturally occurring fusogenic pathways to artificially fuse adjacent cells (PEG-fusion) or artificially seal transected axons (PEG-sealing). PEG-fusion techniques can also be used to rapidly rejoin the closely apposed, open ends of severed axons. PEG-fused axons do not (Wallerian) degenerate and PEG-fused nerve allografts are not immune-rejected, and enable behavioral recoveries not observed for any other clinical treatment. A better understanding of natural and artificial mechanisms that induce membrane fusion should provide better clinical treatment for many disorders involving plasmalemmal damage.
Collapse
Affiliation(s)
- Sara A Vargas
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United states
| | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United states.
| |
Collapse
|
3
|
Bittner GD, Schallert T, Peduzzi JD. Degeneration, Trophic Interactions, and Repair of Severed Axons: A Reconsideration of Some Common Assumptions. Neuroscientist 2016. [DOI: 10.1177/107385840000600207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We suggest that several interrelated properties of severed axons (degeneration, trophic dependencies, initial repair, and eventual repair) differ in important ways from commonly held assumptions about those properties. Specifically, (1) axotomy does not necessarily produce rapid degeneration of distal axonal segments because (2) the trophic maintenance of nerve axons does not necessarily depend entirely on proteins transported from the perikaryon—but instead axonal proteins can be trophically maintained by slowing their degradation and/or by acquiring new proteins via axonal synthesis or transfer from adjacent cells (e.g., glia). (3) The initial repair of severed distal or proximal segments occurs by barriers (seals) formed amid accumulations of vesicles and/or myelin delaminations induced by calcium influx at cut axonal ends—rather than by collapse and fusion of cut axolemmal leaflets. (4) The eventual repair of severed mammalian CNS axons does not necessarily have to occur by neuritic outgrowths, which slowly extend from cut proximal ends to possibly reestablish lost functions weeks to years after axotomy—but instead complete repair can be induced within minutes by polyethylene glycol to rejoin (fuse) the cut ends of surviving proximal and distal stumps. Strategies to repair CNS lesions based on fusion techniques combined with rehabilitative training and induced axonal outgrowth may soon provide therapies that can at least partially restore lost CNS functions.
Collapse
Affiliation(s)
- George D. Bittner
- School of Biological Sciences (Neurobiology Section) and Institute of Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Timothy Schallert
- School of Biological Sciences (Neurobiology Section) and Institute of Neuroscience, Department of Pyschology, The University of Texas at Austin, Austin, Texas
| | - Jean D. Peduzzi
- School of Optometry, Department of Physiological Optics, Injury Control and Vision Science Research Centers, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
4
|
Sahly I, Khoutorsky A, Erez H, Prager-Khoutorsky M, Spira ME. On-line confocal imaging of the events leading to structural dedifferentiation of an axonal segment into a growth cone after axotomy. J Comp Neurol 2005; 494:705-20. [PMID: 16374810 DOI: 10.1002/cne.20690] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The transformation of a transected axonal tip into a growth cone (GC) after axotomy is a critical step in the cascade of events leading to regeneration. However, the mechanisms underlying it are largely unknown. In earlier studies we reported that axotomy of cultured Aplysia neurons leads to a transient and local increase in the free intracellular Ca2+ concentration, calpain activation, and localized proteolysis of the submembranal spectrin. In a recent ultrastructural study, we reported that calpain activation is critical for the restructuring of the microtubules and neurofilaments at the cut axonal end to form a compartment in which vesicles accumulate. By using on-line confocal imaging of microtubules (MTs), actin, and vesicles in cultured Aplysia neurons, we studied the kinetics of the transformation and examined some of the mechanisms that orchestrate it. We report that perturbation of the MTs' polymerization by nocodazole inhibits the formation of an MT-based compartment in which the vesicles accumulate, yet actin repolymerization proceeds normally to form a nascent GC's lamellipodium. Nevertheless, under these conditions, the lamellipodium fails to expand and form neurites. When actin filament polymerization is inhibited by cytochalasin D or jasplakinolide, the MT-based compartment is formed and vesicles accumulate at the cut axonal end. However, a GC's lamellipodium is not formed, and the cut axonal end fails to regenerate. A growth-competent GC is formed only when MT restructuring, the accumulation of vesicles, and actin polymerization properly converge in time and space.
Collapse
Affiliation(s)
- Iman Sahly
- Department of Neurobiology, Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
5
|
Spira ME, Oren R, Dormann A, Gitler D. Critical calpain-dependent ultrastructural alterations underlie the transformation of an axonal segment into a growth cone after axotomy of cultured Aplysia neurons. J Comp Neurol 2003; 457:293-312. [PMID: 12541311 DOI: 10.1002/cne.10569] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The transformation of a stable axonal segment into a motile growth cone is a critical step in the regeneration of amputated axons. In earlier studies we found that axotomy of cultured Aplysia neurons leads to a transient and local elevation of the free intracellular Ca2+ concentration, resulting in calpain activation, localized proteolysis of submembranal spectrin, and, eventually, growth cone formation. Moreover, inhibition of calpain by calpeptin prior to axotomy inhibits growth cone formation. Here we investigated the mechanisms by which calpain activation participates in the transformation of an axonal segment into a growth cone. To that end we compared the ultrastructural alterations induced by axotomy performed under control conditions with those caused by axotomy performed in the presence of calpeptin, using cultured Aplysia neurons as a model. We identified the critical calpain-dependent cytoarchitectural alterations that underlie the formation of a growth cone after axotomy. Calpain-dependent processes lead to restructuring of the neurofilaments and microtubules to form an altered cytoskeletal region 50-150 microm proximal to the tip of the transected axon in which vesicles accumulate. The dense pool of vesicles forms in close proximity to a segment of the plasma membrane along which the spectrin membrane skeleton has been proteolyzed by calpain. We suggest that the rearrangement of the cytoskeleton forms a transient cellular compartment that traps transported vesicles and serves as a locus for microtubule polymerization. We propose that this cytoskeletal configuration facilitates the fusion of vesicles with the plasma membrane, promoting the extension of the growth cone's lamellipodium. The growth process is further supported by the radial polymerization of microtubules from the growth cone's center.
Collapse
Affiliation(s)
- Micha E Spira
- Department of Neurobiology, Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | | | |
Collapse
|
6
|
Abstract
In many invertebrates, distal stumps of severed axons degenerate slowly and survive for long periods of time; this lengthy process allows the study of the physiological and structural changes involved in axonal degeneration processes. The following experiments demonstrate a reduction in EPSP amplitude, an increase in the distance between neighboring release sites, an extended duration of transmitter release, and a doubling in the average number of quanta released per stimulus at each release site. Ultrastructural examination of those stumps revealed various degrees of glial cell invasion. In the same distal stump, some axons were partially filled with glial cells, but adjacent axons could be completely filled by them. Glial cell invasion was greater at regions closer to the site of axotomy and increased as time progressed. The glia engulfing the stumps exhibited hypertrophy and changes in nuclear morphology. The nuclei of some of those glia cells were unusually close to the axonal membrane in the distal stumps. In spite of these severe morphological changes, the stumps were still capable of conducted action potentials and releasing transmitter at their synapses.
Collapse
Affiliation(s)
- O Zohar
- Inter-University Red Sea Research Center at Eilat, Eilat, Israel.
| |
Collapse
|
7
|
Eddleman CS, Bittner GD, Fishman HM. Barrier permeability at cut axonal ends progressively decreases until an ionic seal is formed. Biophys J 2000; 79:1883-90. [PMID: 11023894 PMCID: PMC1301080 DOI: 10.1016/s0006-3495(00)76438-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
After axonal severance, a barrier forms at the cut ends to rapidly restrict bulk inflow and outflow. In severed crayfish axons we used the exclusion of hydrophilic, fluorescent dye molecules of different sizes (0.6-70 kDa) and the temporal decline of ionic injury current to levels in intact axons to determine the time course (0-120 min posttransection) of barrier formation and the posttransection time at which an axolemmal ionic seal had formed, as confirmed by the recovery of resting and action potentials. Confocal images showed that the posttransection time of dye exclusion was inversely related to dye molecular size. A barrier to the smallest dye molecule formed more rapidly (<60 min) than did the barrier to ionic entry (>60 min). These data show that axolemmal sealing lacks abrupt, large changes in barrier permeability that would be expected if a seal were to form suddenly, as previously assumed. Rather, these data suggest that a barrier forms gradually and slowly by restricting the movement of molecules of progressively smaller size amid injury-induced vesicles that accumulate, interact, and form junctional complexes with each other and the axolemma at the cut end. This process eventually culminates in an axolemmal ionic seal, and is not complete until ionic injury current returns to baseline levels measured in an undamaged axon.
Collapse
Affiliation(s)
- C S Eddleman
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0641, USA
| | | | | |
Collapse
|
8
|
Sheller RA, Smyers ME, Grossfeld RM, Ballinger ML, Bittner GD. Heat-shock proteins in axoplasm: high constitutive levels and transfer of inducible isoforms from glia. J Comp Neurol 1998; 396:1-11. [PMID: 9623883 DOI: 10.1002/(sici)1096-9861(19980622)396:1<1::aid-cne1>3.0.co;2-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To characterize heat-shock proteins (HSPs) of the 70-kDa family in the crayfish medial giant axon (MGA), we analyzed axoplasmic proteins separately from proteins of the glial sheath. Several different molecular weight isoforms of constitutive HSP 70s that were detected on immunoblots were approximately 1-3% of the total protein in the axoplasm of MGAs. To investigate inducible HSPs, MGAs were heat shocked in vitro or in vivo, then the axon was bathed in radiolabeled amino acid for 4 hours. After either heat-shock treatment, protein synthesis in the glial sheath was decreased compared with that of control axons, and newly synthesized proteins of 72 kDa, 84 kDa, and 87 kDa appeared in both the axoplasm and the sheath. Because these radiolabeled proteins were present in MGAs only after heat-shock treatments, we interpreted the newly synthesized proteins of 72 kDa, 84 kDa, and 87 kDa to be inducible HSPs. Furthermore, the 72-kDa radiolabeled band in heat-shocked axoplasm and glial sheath samples comigrated with a band possessing HSP 70 immunoreactivity. The amount of heat-induced proteins in axoplasm samples was greater after a 2-hour heat shock than after a 1-hour heat shock. These data indicate that MGA axoplasm contains relatively high levels of constitutive HSP 70s and that, after heat shock, MGA axoplasm obtains inducible HSPs of 72 kDa, 84 kDa, and 87 kDa from the glial sheath. These constitutive and inducible HSPs may help MGAs maintain essential structures and functions following acute heat shock.
Collapse
Affiliation(s)
- R A Sheller
- Department of Zoology, University of Texas at Austin, 78712, USA.
| | | | | | | | | |
Collapse
|
9
|
Endocytotic formation of vesicles and other membranous structures induced by Ca2+ and axolemmal injury. J Neurosci 1998. [PMID: 9592084 DOI: 10.1523/jneurosci.18-11-04029.1998] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vesicles and/or other membranous structures that form after axolemmal damage have recently been shown to repair (seal) the axolemma of various nerve axons. To determine the origin of such membranous structures, (1) we internally dialyzed isolated intact squid giant axons (GAs) and showed that elevation of intracellular Ca2+ >100 microM produced membranous structures similar to those in axons transected in Ca2+-containing physiological saline; (2) we exposed GA axoplasm to Ca2+-containing salines and observed that membranous structures did not form after removing the axolemma and glial sheath but did form in severed GAs after >99% of their axoplasm was removed by internal perfusion; (3) we examined transected GAs and crayfish medial giant axons (MGAs) with time-lapse confocal fluorescence microscopy and showed that many injury-induced vesicles formed by endocytosis of the axolemma; (4) we examined the cut ends of GAs and MGAs with electron microscopy and showed that most membranous structures were single-walled at short (5-15 min) post-transection times, whereas more were double- and multi-walled and of probable glial origin after longer (30-150 min) post-transection times; and (5) we examined differential interference contrast and confocal images and showed that large and small lesions evoked similar injury responses in which barriers to dye diffusion formed amid an accumulation of vesicles and other membranous structures. These and other data suggest that Ca2+ inflow at large or small axolemmal lesions induces various membranous structures (including endocytotic vesicles) of glial or axonal origin to form, accumulate, and interact with each other, preformed vesicles, and/or the axolemma to repair the axolemmal damage.
Collapse
|
10
|
Localized and transient elevations of intracellular Ca2+ induce the dedifferentiation of axonal segments into growth cones. J Neurosci 1997. [PMID: 9133380 DOI: 10.1523/jneurosci.17-10-03568.1997] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The formation of a growth cone at the tip of a severed axon is a key step in its successful regeneration. This process involves major structural and functional alterations in the formerly differentiated axonal segment. Here we examined the hypothesis that the large, localized, and transient elevation in the free intracellular calcium concentration ([Ca2+]i) that follows axotomy provides a signal sufficient to trigger the dedifferentiation of the axonal segment into a growth cone. Ratiometric fluorescence microscopy and electron microscopy were used to study the relations among spatiotemporal changes in [Ca2+]i, growth cone formation, and ultrastructural alterations in axotomized and intact Aplysia californica neurons in culture. We report that, in neurons primed to grow, a growth cone forms within 10 min of axotomy near the tip of the transected axon. The nascent growth cone extends initially from a region in which peak intracellular Ca2+ concentrations of 300-500 microM are recorded after axotomy. Similar [Ca2+]i transients, produced in intact axons by focal applications of ionomycin, induce the formation of ectopic growth cones and subsequent neuritogenesis. Electron microscopy analysis reveals that the ultrastructural alterations associated with axotomy and ionomycin-induced growth cone formation are practically identical. In both cases, growth cones extend from regions in which sharp transitions are observed between axoplasm with major ultrastructural alterations and axoplasm in which the ultrastructure is unaltered. These findings suggest that transient elevations of [Ca2+]i to 300-500 microM, such as those caused by mechanical injury, may be sufficient to induce the transformation of differentiated axonal segments into growth cones.
Collapse
|
11
|
Adelsberger H, von Beckerath N, Dudel J. Characterization and molecular reaction scheme of a chloride channel expressed after axotomy in crayfish. Pflugers Arch 1996; 432:867-75. [PMID: 8772138 DOI: 10.1007/s004240050210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The nerve to the deep extensor abdominal muscle (DEAM) in crayfish species Astacus astacus, containing four excitatory and one inhibitory motor axons, was cut in the third segment on one side of the animal. The distal axon stump was not subject to phagocytosis but was present for months after the axotomy. The two lateral bundles of the DEAM were prepared 4-6 weeks after the axotomy. The gamma-aminobutyric-acid-(GABA-) activated chloride channel of these bundles was characterized by applying pulses of GABA to outside-out patches of the muscle membrane and measuring the responses. Based on the dose/response relationship of the peak current and of the rise time as well as on single-channel kinetics, a detailed molecular scheme for the reaction of the channel with GABA was derived. This scheme contains four binding steps of the agonist to the receptor and two open states. Simulations of the dose/response relationships with this model resulted in a set of rate constants which generate proper fits. In comparison to the channels present in innervated muscles, the channels of denervated muscles have a higher affinity for GABA, a lower single-channel conductance, four versus five binding steps, and non-cooperative binding. The first three of these adaptations of denervated muscles correspond to similar changes in denervated vertebrate muscles.
Collapse
Affiliation(s)
- H Adelsberger
- Physiologisches Institut der Technischen Universtität München, Biedersteinerstrasse 29, D-80802 Munich, Germany
| | | | | |
Collapse
|
12
|
Spira ME, Benbassat D, Dormann A. Resealing of the proximal and distal cut ends of transected axons: electrophysiological and ultrastructural analysis. JOURNAL OF NEUROBIOLOGY 1993; 24:300-16. [PMID: 8492108 DOI: 10.1002/neu.480240304] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The fates of the proximal and distal segments of transected axons differ. Whereas the proximal segment usually recovers from injury and regenerates, the distal segment degenerates. In the present report we studied the kinetics of the recovery processes of both proximal and distal axonal segments following axotomy and its temporal relations to the alterations in the cytoarchitecture of the injured neuron. The experiments were performed on primary cultured metacerebral neurons (MCn) isolated from Aplysia. We transected axons while monitoring the changes in transmembrane potential and input resistance (Rn) by inserting intracellular microelectrodes into the soma and axon. Correlation between the electrophysiological status of the injured axon and its ultrastructure was provided by rapid fixation of the neuron at selected times postaxotomy. Axotomy leads to membrane depolarization from a mean of -55.7 S.D. 12.8 mV to -12.7 S.D. 3.3 mV and decreased Rn from tens of M omega to 1-3 M omega. The transected axons remained depolarized for a period of 10-260 s for as long as the axoplasm was in direct contact with the bathing solution. Rapid repolarization and partial recovery of Rn was associated with the formation of a membrane seal over the cut ends by the constriction and subsequent fusion of the axolema. Prior to the formation of a membraneous barrier, electron-dense deposits aggregate at the tip of the cut axon and appear to form an axoplasmic "plug." Electrophysiological analysis revealed that this "plug" does not provide resistance for current flow and that the axoplasmic resistance is homogenously distributed. The kinetics of injury and recovery processes as well as the ultrastructural changes of the proximal and distal segments are identical suggesting that the different fates of the segments cannot be attributed to differences in the immediate response of the segments to axotomy.
Collapse
Affiliation(s)
- M E Spira
- Department of Neurobiology, Hebrew University of Jerusalem
| | | | | |
Collapse
|
13
|
Abstract
The anucleate (distal) segment of a crayfish medial giant axon (MGA) remains intact for months in vivo after severing the axon from its cell body, a phenomenon referred to as long-term survival (LTS). We collected axoplasm from chronic anucleate MGAs by perfusing 2-cm lengths of axons with an intracellular saline. This axoperfusate was analyzed by SDS-PAGE and silver stained. Axoperfusate proteins from intact MGAs and from chronic anucleate MGAs exhibiting LTS for up to 6 months were the same. Furthermore, immunoreactive levels of actin and beta-tubulin were similar in axoperfusates from intact and chronic anucleate MGAs. This maintenance of proteins in chronic anucleate MGAs must be due to a lack of protein degradation and/or to local protein synthesis by a source other than the cell body. To investigate local protein synthesis in vitro, we added [35S]-methionine to the extracellular saline surrounding intact and chronic anucleate MGAs. After 4- to 6-h incubations, radiolabelled proteins were detected in axoperfusates analyzed by SDS-PAGE and fluorography. The similarity between radiolabelled proteins in axoperfusates and MGA glial sheaths indicated a glial origin for the radiolabelled axoperfusate proteins. Various observations and control experiments suggested that glial-axonal protein transfer occurred by a physiological process. Glial-axonal protein transfer may contribute to the maintenance of proteins during LTS of chronic anucleate MGAs.
Collapse
Affiliation(s)
- R A Sheller
- Department of Zoology, University of Texas, Austin 78712
| | | |
Collapse
|
14
|
Buchheit TE, Tytell M. Transfer of molecules from glia to axon in the squid may be mediated by glial vesicles. JOURNAL OF NEUROBIOLOGY 1992; 23:217-30. [PMID: 1378083 DOI: 10.1002/neu.480230303] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although the transfer of glial proteins into the squid giant axon is well documented, the mechanism of the transfer remains unknown. We examined the possibility that the transfer involved membrane-bound vesicles, by taking advantage of the fact that the fluorescent compound, 3,6-acridinediamine, N,N,N,',N'-tetramethylmonohydride [acridine orange (AO)], rapidly and selectively stains vesicular structures in glial cells surrounding the giant axon. We labeled cleaned axons (1-3 cm long) by incubation for 1 min in filtered seawater (FSW) containing AO. Because the AO was concentrated in glial vesicular organelles, these fluoresced bright orange when the axon was examined by epifluorescence microscopy. To look for vesicle transfer, axoplasm was extruded from such AO-treated axons at various times after labeling. During the initial 15 min, an increasing number of fluorescent vesicles were observed. No further increases were observed between 15 and 60 min post AO. The transfer of the fluorescent vesicles into the axoplasm seemed to be energy dependent, as it was inhibited in axons treated with 2 mM KCN. These results suggest that a special mode of exchange exists between the adaxonal glia and the axon, perhaps involving phagocytosis by the axon of small portions of the glial cells.
Collapse
Affiliation(s)
- T E Buchheit
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | | |
Collapse
|
15
|
Sheller RA, Ballinger ML, Bittner GD. Long-term survival of severed crayfish giant axons is not associated with an incorporation of glial nuclei into axoplasm. Neurosci Lett 1991; 133:113-6. [PMID: 1724309 DOI: 10.1016/0304-3940(91)90070-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glial nuclei have been reported to be incorporated into the axoplasm of surviving distal stumps (anucleate axons) weeks to months after lesioning abdominal motor axons in rock lobsters. We have not observed this phenomenon in crayfish medial giant axons (MGAs) which also survive for weeks to months after lesioning. Glial nuclei were not observed within MGAs perfused with a physiological intracellular saline. However, incorporation of glial nuclei was observed after MGAs were perfused with intracellular salines containing Fast green. From these and previously published data, we confirm that glial incorporation into axoplasm can occur, but we suggest that is is not a common mechanism used by crustaceans to provide for long-term survival of anucleate axons.
Collapse
Affiliation(s)
- R A Sheller
- Department of Zoology, University of Texas, Austin 78712
| | | | | |
Collapse
|
16
|
Abstract
Severed distal segments of nerve axons (anucleate axons) have now been reported to survive for weeks to years in representative organisms from most phyla, including the vertebrates. Among invertebrates (especially crustaceans), such long-term survival might involve transfer of proteins from adjacent intact cells to anucleate axons. In lower vertebrates and mammals, long-term survival of anucleate axons is more likely attributed to a slow turnover of axonal proteins and/or a lack of phagocytosis by macrophages or other cell types. Invertebrate anucleate axons that exhibit long-term survival are often reactivated by neurites that have grown from proximal nucleate segments. In mammals, induction of long-term survival in anucleate axons might allow more time to use artificial mechanisms to repair nerve axons by fusing the two severed halves with polyethylene glycol, a technique recently developed to fuse severed halves of myelinated axons in earthworms.
Collapse
Affiliation(s)
- G D Bittner
- Dept of Zoology, College of Pharmacy, University of Texas, Austin 78712
| |
Collapse
|
17
|
Seshan KR, Bittner GD. Developmental and other factors affecting regeneration of crayfish CNS axons. J Comp Neurol 1987; 262:535-45. [PMID: 3667963 DOI: 10.1002/cne.902620407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
According to histological and ultrastructural criteria, nongiant CNS axons in newly hatched crayfish regenerate more rapidly and with greater frequency than do similar axons in adult crayfish. Regenerative ability is greater in one species (Procambarus clarkii) than in another species (Procambarus simulans), is greater at 20-25 degrees C than at 15-16 degrees C, and is greater in nongiant axons than in giant axons. In contrast to axonal regeneration, nerve cell bodies do not regenerate in newly hatched or adult crayfish of either species. While the ability to regenerate CNS axons differs between newly hatched and adult crayfish, the ultrastructural appearance of the CNS is very similar at any age it is examined.
Collapse
Affiliation(s)
- K R Seshan
- Department of Zoology, University of Texas, Austin 78712
| | | |
Collapse
|
18
|
Zottoli SJ, Marek LE, Agostini MA, Strittmatter SL. Morphological and physiological survival of goldfish Mauthner axons isolated from their somata by spinal cord crush. J Comp Neurol 1987; 255:272-82. [PMID: 3819017 DOI: 10.1002/cne.902550210] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Axon segments isolated from their somata degenerate within days or months depending on species and neuronal type. To better understand the time course of morphological and physiological changes associated with degeneration of axon segments of vertebrate central neurons, we have studied the goldfish Mauthner axon (M-axon) when it has been separated from its soma by spinal cord crush. M-axon segments survive morphologically for at least 77 days at 14 degrees C. Cross-sectional areas of isolated M-axon segments (measured 25-30 mm caudal to the wound site at postoperative days 64 and 77) were greater than those of control axons at the same level. Sheath areas did not change. Electron microscopic observations at the same spinal cord location indicated no clear changes in the configuration or number of neurofilaments or any other organelle. M-axon segments studied morphologically after 87 postoperative days had all degenerated. Mauthner axon segments were capable of conducting action potentials and eliciting ipsilateral EMG responses. Repetitive firing of the M-axon segments elicited EMG responses that fatigued more easily and remained fatigued over a longer interval than did those of control axons. The long duration of M-axon segment survival is unusual in a vertebrate and may be due to the low temperature at which the experiments were conducted (14 degrees C) and/or temperature-independent factors. The increased susceptibility to synaptic depression, which has not reported previously, may represent an early sign of the degenerative process.
Collapse
|
19
|
Abstract
Severed medial giant axons in crayfish can be rejoined in vitro with polyethylene glycol (PEG) to produce axoplasmic continuity and through transmission of action potentials. Severed axon-like processes of a mammalian neuroblastoma/glioma cell line seem to be rejoined to the cell body using PEG in tissue culture. Our data suggest that PEG might be used to rejoin severed axons in vivo in various organisms.
Collapse
|
20
|
van Mier P, van der Molen L, van der Starre H. The innervation of some proboscis structures involved in feeding behavior of the blowfly (Calliphora vicina). J Morphol 1985; 186:279-287. [DOI: 10.1002/jmor.1051860305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Abstract
The influence of the glial cell layer on effective external ion concentrations has been studied in crayfish giant axons. Excess K ions accumulate in the periaxonal space during outward K+ current flow, but at a rate far below that expected from the total ionic flux and the measured thickness of the space. At the conclusion of outward current flow, the external K+ concentration returns to normal in an exponential fashion, with a time constant of approximately 2 ms. This process is about 25 times faster than is the case in squid axons. K+ repolarization (tail) currents are generally biphasic at potentials below about -40 mV and pass through a maximum before approaching a final asymptotic level. The initial rapid phase may in part reflect depletion of excess K+. After block of inactivation and reversal of the Na+ concentration gradient, we could demonstrate accumulation and washout of excess Na ions in the periaxonal space. Characteristics of these processes appeared similar to those of K+. Crayfish glial cell ultrastructure has been examined both in thin sections and after freeze fracture. Layers of connective tissue and extracellular fluid alternate with thin layers of glial cytoplasm. A membranous tubular lattice, spanning the innermost glial layers, may provide a pathway allowing rapid diffusion of excess ions from the axon surface.
Collapse
|
22
|
Grossfeld RM, Bittner GD, Raymond MA. Inter- and intra-axonal variations in morphology and metabolic activity of the crayfish medial giant axon. JOURNAL OF NEUROBIOLOGY 1982; 13:191-7. [PMID: 7062023 DOI: 10.1002/neu.480130211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Viancour TA, Bittner GD, Ballinger ML. Selective transfer of Lucifer yellow CH from axoplasm to adaxonal glia. Nature 1981; 293:65-7. [PMID: 7266661 DOI: 10.1038/293065a0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
|