1
|
Yamada H, Yaguchi H, Tomatsu S, Takei T, Oya T, Seki K. Representation of Afferent Signals from Forearm Muscle and Cutaneous Nerves in the Primary Somatosensory Cortex of the Macaque Monkey. PLoS One 2016; 11:e0163948. [PMID: 27701434 PMCID: PMC5049845 DOI: 10.1371/journal.pone.0163948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/16/2016] [Indexed: 11/18/2022] Open
Abstract
Proprioception is one's overall sense of the relative positions and movements of the various parts of one's body. The primary somatosensory cortex (SI) is involved in generating the proprioception by receiving peripheral sensory inputs from both cutaneous and muscle afferents. In particular, area 3a receives input from muscle afferents and areas 3b and 1 from cutaneous afferents. However, segregation of two sensory inputs to these cortical areas has not been evaluated quantitatively because of methodological difficulties in distinguishing the incoming signals. To overcome this, we applied electrical stimulation separately to two forearm nerves innervating muscle (deep radial nerve) and skin (superficial radial nerve), and examined the spatiotemporal distribution of sensory evoked potentials (SEPs) in SI of anaesthetized macaques. The SEPs arising from the deep radial nerve were observed exclusively at the bottom of central sulcus (CS), which was identified as area 3a using histological reconstruction. In contrast, SEPs evoked by stimulation of the superficial radial nerve were observed in the superficial part of SI, identified as areas 3b and 1. In addition to these earlier, larger potentials, we also found small and slightly delayed SEPs evoked by cutaneous nerve stimulation in area 3a. Coexistence of the SEPs from both deep and superficial radial nerves suggests that area 3a could integrate muscle and cutaneous signals to shape proprioception.
Collapse
Affiliation(s)
- Hiroshi Yamada
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Hiroaki Yaguchi
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | - Saeka Tomatsu
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | - Tomohiko Takei
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | - Tomomichi Oya
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
- * E-mail:
| |
Collapse
|
2
|
Leiras R, Velo P, Martín-Cora F, Canedo A. Processing afferent proprioceptive information at the main cuneate nucleus of anesthetized cats. J Neurosci 2010; 30:15383-99. [PMID: 21084595 PMCID: PMC6633671 DOI: 10.1523/jneurosci.2193-10.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/20/2010] [Accepted: 08/28/2010] [Indexed: 11/21/2022] Open
Abstract
Medial lemniscal activity decreases before and during movement, suggesting prethalamic modulation, but the underlying mechanisms are largely unknown. Here we studied the mechanisms underlying proprioceptive transmission at the midventral cuneate nucleus (mvCN) of anesthetized cats using standard extracellular recordings combined with electrical stimulation and microiontophoresis. Dual simultaneous recordings from mvCN and rostroventral cuneate (rvCN) proprioceptive neurons demonstrated that microstimulation through the rvCN recording electrode induced dual effects on mvCN projection cells: potentiation when both neurons had excitatory receptive fields in muscles acting at the same joint, and inhibition when rvCN and mvCN cells had receptive fields located in different joints. GABA and/or glycine consistently abolished mvCN spontaneous and sensory-evoked activity, an effect reversed by bicuculline and strychnine, respectively; and immunohistochemistry data revealed that cells possessing strychnine-sensitive glycine receptors were uniformly distributed throughout the cuneate nucleus. It was also found that proprioceptive mvCN projection cells sent ipsilateral collaterals to the nucleus reticularis gigantocellularis and the mesencephalic locomotor region, and had slower antidromic conduction speeds than cutaneous fibers from the more dorsally located cluster region. The data suggest that (1) the rvCN-mvCM network is functionally related to joints rather than to single muscles producing an overall potentiation of proprioceptive feedback from a moving forelimb joint while inhibiting, through GABAergic and glycinergic interneurons, deep muscular feedback from other forelimb joints; and (2) mvCN projection cells collateralizing to or through the ipsilateral reticular formation allow for bilateral spreading of ascending proprioceptive feedback information.
Collapse
Affiliation(s)
- Roberto Leiras
- Health Research Institute, Department of Physiology, Faculty of Medicine, University of Santiago de Compostela, 15704 Santiago de Compostela, Spain
| | - Patricia Velo
- Health Research Institute, Department of Physiology, Faculty of Medicine, University of Santiago de Compostela, 15704 Santiago de Compostela, Spain
| | - Francisco Martín-Cora
- Health Research Institute, Department of Physiology, Faculty of Medicine, University of Santiago de Compostela, 15704 Santiago de Compostela, Spain
| | - Antonio Canedo
- Health Research Institute, Department of Physiology, Faculty of Medicine, University of Santiago de Compostela, 15704 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Padberg J, Cerkevich C, Engle J, Rajan AT, Recanzone G, Kaas J, Krubitzer L. Thalamocortical connections of parietal somatosensory cortical fields in macaque monkeys are highly divergent and convergent. Cereb Cortex 2009; 19:2038-64. [PMID: 19221145 DOI: 10.1093/cercor/bhn229] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We examined the organization and cortical projections of the somatosensory thalamus using multiunit microelectrode recording techniques in anesthetized monkeys combined with neuroanatomical tracings techniques and architectonic analysis. Different portions of the hand representation in area 3b were injected with different anatomical tracers in the same animal, or matched body part representations in parietal areas 3a, 3b, 1, 2, and areas 2 and 5 were injected with different anatomical tracers in the same animal to directly compare their thalamocortical connections. We found that the somatosensory thalamus is composed of several representations of cutaneous and deep receptors of the contralateral body. These nuclei include the ventral posterior nucleus, the ventral posterior superior nucleus, the ventral posterior inferior nucleus, and the ventral lateral nucleus. Each nucleus projects to several different cortical fields, and each cortical field receives projections from multiple thalamic nuclei. In contrast to other sensory systems, each of these somatosensory cortical fields is uniquely innervated by multiple thalamic nuclei. These data indicate that multiple inputs are processed simultaneously within and across several, "hierarchically connected" cortical fields.
Collapse
Affiliation(s)
- Jeffrey Padberg
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Torquati K, Franciotti R, Della Penna S, Babiloni C, Rossini PM, Romani GL, Pizzella V. Conditioning transcutaneous electrical nerve stimulation induces delayed gating effects on cortical response: A magnetoencephalographic study. Neuroimage 2007; 35:1578-85. [PMID: 17382562 DOI: 10.1016/j.neuroimage.2006.12.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 12/15/2006] [Accepted: 12/21/2006] [Indexed: 11/29/2022] Open
Abstract
The present study was undertaken to investigate after-effects of 7 Hz non-painful prolonged stimulation of the median nerve on somatosensory-evoked fields (SEFs). The working hypothesis that conditioning peripheral stimulations might produce delayed interfering ("gating") effects on the response of somatosensory cortex to test stimuli was evaluated. In the control condition, electrical thumb stimulation induced SEFs in ten subjects. In the experimental protocol, a conditioning median nerve stimulation at wrist preceded 6 electrical thumb stimulations. Equivalent current dipoles fitting SEFs modeled responses of contralateral primary area (SI) and bilateral secondary somatosensory areas (SII) following control and experimental conditions. Compared to the control condition, conditioning stimulation induced no amplitude modulation of SI response at the initial stimulus-related peak (20 ms). In contrast, later response from SI (35 ms) and response from SII were significantly weakened in amplitude. Gradual but fast recovery towards control amplitude levels was observed for the response from SI-P35, while a slightly slower cycle was featured from SII. These findings point to a delayed "gating" effect on the synchronization of somatosensory cortex after peripheral conditioning stimulations. This effect was found to be more lasting in SII area, as a possible reflection of its integrative role in sensory processing.
Collapse
Affiliation(s)
- K Torquati
- Dipartimento di Scienze Cliniche e Bioimmagini and ITAB, Istituto di Tecnologie Avanzate Biomediche, Università G. D'Annunzio, Chieti - Italy.
| | | | | | | | | | | | | |
Collapse
|
5
|
Tsuboya H, Tani T, Ishida K, Ushida T, Taniguchi S, Kimura J. Quantitative sensory testing of cold and vibration perception during compression of median nerve at the wrist. Muscle Nerve 2007; 35:458-64. [PMID: 17195168 DOI: 10.1002/mus.20711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We conducted a sequential study of quantitative sensory testing (QST) during compression-induced conduction block of the median nerve to determine relative vulnerability of the small and large myelinated nerve fibers. We tested cold (CPT) and vibratory perception thresholds (VPT) of the third digit in 15 healthy subjects during constant, localized compression for 30 min of the median nerve at the wrist. The orthodromic sensory nerve action potentials (SNAPs) recorded at wrist and elbow served to monitor the degree of associated conduction block. After the onset of nerve compression, it took 16 min for CPT to show the first change; VPT remained normal for 26 min. CPT recovered 2 min later than VPT after release of compression. The SNAP amplitude at the wrist diminished immediately at the start of compression and declined progressively, whereas the response at the elbow remained the same initially, showing no latency change for 20 min. A nearly identical time course of SNAP changes in the two experiments justified the comparison of separately tested CPT and VPT as a measure of modality-specific vulnerability. Contrary to the common belief, a focal compression sufficient to produce rapidly reversible conduction abnormalities affects the slow-conducting small myelinated fibers mediating cold perception before the fast-conducting large myelinated fibers transmitting vibration perception. The data document the order of modality-specific vulnerability of sensory nerve fibers to mild compression. The finding suggests that testing CPT, rather than VPT, provides a better QST to delineate rapidly reversible symptoms induced by compression.
Collapse
Affiliation(s)
- Hideshi Tsuboya
- Department of Orthopaedic Surgery, Kochi Medical School, Kohasu Oko-cho, Nankoku City, Kochi 783-8505, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Güçlü B, Bolanowski SJ. Probability of Stimulus Detection in a Model Population of Rapidly Adapting Fibers. Neural Comput 2004; 16:39-58. [PMID: 15006022 DOI: 10.1162/08997660460733985] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The goal of this study is to establish a link between somatosensory physiology and psychophysics at the probabilistic level. The model for a population of monkey rapidly adapting (RA) mechanoreceptive fibers by Güçlü and Bolanowski (2002) was used to study the probability of stimulus detection when a 40 Hz sinusoidal stimulation is applied with a constant contactor size (2 mm radius) on the terminal phalanx. In the model, the detection was assumed to be mediated by one or more active fibers. Two hypothetical receptive field organizations (uniformly random and gaussian) with varying average innervation densities were considered. At a given stimulus-contactor location, changing the stimulus amplitude generates sigmoid probability-of-detection curves for both receptive field organizations. The psychophysical results superimposed on these probability curves suggest that 5 to 10 active fibers may be required for detection. The effects of the contactor location on the probability of detection reflect the pattern of innervation in the model. However, the psychophysical data do not match with the predictions from the populations with uniform or gaussian distributed receptive field centers. This result may be due to some unknown mechanical factors along the terminal phalanx, or simply because a different receptive field organization is present. It has been reported that human observers can detect one single spike in an RA fiber. By considering the probability of stimulus detection across subjects and RA populations, this article proves that more than one active fiber is indeed required for detection.
Collapse
Affiliation(s)
- Burak Güçlü
- Institute for Sensory Research, Department of Bioengineering and Neuroscience, Syracuse University, Syracuse, NY 13244, USA.
| | | |
Collapse
|
7
|
Tinazzi M, Rosso T, Zanette G, Fiaschi A, Aglioti SM. Rapid modulation of cortical proprioceptive activity induced by transient cutaneous deafferentation: neurophysiological evidence of short-term plasticity across different somatosensory modalities in humans. Eur J Neurosci 2003; 18:3053-60. [PMID: 14656300 DOI: 10.1111/j.1460-9568.2003.03043.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single cell recording in non-human primates shows plastic changes of cortical somatic representations across different types of somatic inputs originating from the same peripheral territory. In humans, muscle afferents from first dorsal interosseus are supplied by the ulnar nerve while the cutaneous territory overlying this muscle is supplied by the radial nerve. This peculiar anatomical nervous distribution allowed us to devise an experimental model which provided a unique opportunity to assess, in humans with a non-invasive technique, the functional relationships between cutaneous and muscle afferent inputs originating from the same peripheral territory. We recorded spinal, brainstem and cortical somatosensory potentials evoked by stimulation of muscle afferents of the right first dorsal interosseus before, during and after anaesthetic block of the sensitive branch of the ipsilateral radial nerve. Amplitude of parietal N20 and P27 and frontal N30 somatosensory evoked potential components showed an increase of amplitudes with more profound anaesthesia. Amplitudes returned to pre-anaesthetic values several minutes after anaesthesia. By contrast, spinal N13 and brainstem P14 potentials did not change throughout the experiment. Results show, for the first time in humans, that a transient cutaneous deafferentation may induce rapid modulation of cortical activity evoked by stimulation of muscle afferents originating in the anaesthetic territory.
Collapse
Affiliation(s)
- Michele Tinazzi
- Dipartimento di Scienze Neurologiche e della Visione, Sezione di Neurologia Riabilitativa, Università di Verona, Italy
| | | | | | | | | |
Collapse
|
8
|
Rossi S, della Volpe R, Ginanneschi F, Ulivelli M, Bartalini S, Spidalieri R, Rossi A. Early somatosensory processing during tonic muscle pain in humans: relation to loss of proprioception and motor 'defensive' strategies. Clin Neurophysiol 2003; 114:1351-8. [PMID: 12842734 DOI: 10.1016/s1388-2457(03)00073-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE It is known that tonic muscle pain induced by a Levo-Ascorbic (L-AS) solution injected in a foot muscle can transiently modify both regional proprioception and stimulus perception. These findings are paralleled by changes of middle-latency lower-limb somatosensory evoked potentials (SEPs). However, little is known on the behaviourally relevant aspect whether eventual SEP pain-induced changes could be partly due to a sort of 'motor strategy' of subjects in the frame of a self-protective reaction towards the noxious stimulus. Movement and imagery of movements are in fact known to reduce mainly pre-central SEP amplitude (i.e. gating effect). METHODS Low-threshold afferents ulnar SEPs, psychophysical pain ratings and fingers' position sense were monitored in the time-course during L-AS injection in the right first dorsal interosseous muscle. Control experiments included SEPs (either following prevalent ulnar nerve low-threshold afferent stimulation or more conventional mixed nerve stimulation) during actual movements execution and imagery of movements of the right hand. RESULTS Tonic pain induced a significant reduction of the post-central N(20)-P(25)-N(33) complex and a significant increase of the N(18) wave. These changes, that were paralleled by distortion of the finger position sense, were delayed 2-5 min with respect to the maximal subjective pain sensation. Conversely, movement imagery tasks lead to a significant, selective, reduction of the pre-central N(30) complex. This wave was even more reduced during actual movements, in combination with a reduction of those post-central components peaking after the first activation of the primary sensory cortex. CONCLUSIONS Early sensory processing at cortical level is changed during tonic muscle pain, mainly for those components which may be theoretically involved in proprioceptive afferent elaboration. These changes are likely not due to subconscious or voluntary motor strategies of the subjects in the frame of a self-protective aversive reaction towards the noxious stimulus.
Collapse
Affiliation(s)
- Simone Rossi
- Dipartimento di Neuroscienze, Sezione Neurologia, U.O. Neurofisiopatologia, Università di Siena, Policlinico Le Scotte, Viale Bracci, I-53100 Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
9
|
Williams SR, Chapman CE. Time course and magnitude of movement-related gating of tactile detection in humans. III. Effect of motor tasks. J Neurophysiol 2002; 88:1968-79. [PMID: 12364522 DOI: 10.1152/jn.2002.88.4.1968] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated the relative importance of central and peripheral signals for movement-related gating by comparing the time course and magnitude of movement-related decreases in tactile detection during a reference motor task, active isotonic digit 2 (D2) abduction, with that seen during three test tasks: a comparison with active isometric D2 abduction (movement vs. no movement) evaluated the contribution of peripheral reafference generated by the movement to gating; a comparison with passive D2 abduction (motor command vs. no motor command; movement generated by an external agent) allowed us to evaluate the contribution of the central motor command to tactile gating; and finally, the inclusion of an active "no apparatus," or freehand, D2 abduction task allowed us to evaluate the potential contribution of incidental peripheral reafference generated by the position detecting apparatus to the results (apparatus vs. no apparatus). Weak electrical stimuli (2-ms pulse; intensity, 90% detected at rest) were applied to D2 at different delays before and after movement onset or electromyographic (EMG) activity onset. Significant time-dependent movement-related decreases in detection were obtained with all tasks. When the results obtained during the active isotonic movement task were compared with those obtained in the three test tasks, no significant differences in the functions describing detection performance over time were seen. The results obtained with the isometric D2 abduction task show that actual movement of a body part is not necessary to diminish detection of tactile stimuli in a manner similar to the decrease produced by isotonic, active movement. In the passive test task, the peak decrease in detection clearly preceded the onset of passive movement (by 38 ms) despite the lack of a motor command and, presumably, no movement-related peripheral reafference. A slightly but not significantly earlier decrease was obtained with active movement (49 ms before movement onset). Expectation of movement likely did not contribute to the results because stimulus detection during sham passive movement trials (subjects expected but did not receive a passive movement) was not different from performance at rest (no movement). The results obtained with passive movement are best explained by invoking backward masking of the test stimuli by movement-related reafference and demonstrate that movement-related reafference is sufficient to produce decreases in detection with a time course and amplitude not significantly different from that produced by active movement.
Collapse
Affiliation(s)
- Stephan R Williams
- Centre de Recherche en Sciences Neurologiques, Département de Physiologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | | |
Collapse
|
10
|
Restuccia D, Valeriani M, Insola A, Lo Monaco M, Grassi E, Barba C, Le Pera D, Mauguière F. Modality-related scalp responses after electrical stimulation of cutaneous and muscular upper limb afferents in humans. Muscle Nerve 2002; 26:44-54. [PMID: 12115948 DOI: 10.1002/mus.10163] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To elucidate whether the selective electrical stimulation of muscle as well as cutaneous afferents evokes modality-specific responses in somatosensory evoked potentials (SEPs) recorded on the scalp of humans, we compared scalp SEPs to electrical stimuli applied to the median nerve and to the abductor pollicis brevis (APB) motor point. In three subjects, we also recorded SEPs after stimulation of the distal phalanx of the thumb, which selectively involved cutaneous afferents. Motor point and median nerve SEPs showed the same scalp distribution; moreover, very similar dipole models, showing the same dipolar time courses, explained well the SEPs after both types of stimulation. Since the non-natural stimulation of muscle afferents evokes responses also in areas specifically devoted to cutaneous input processing, it is conceivable that, in physiological conditions, muscle afferents are differentially gated in somatosensory cortex. The frontocentral N30 response was absent after purely cutaneous stimulation; by contrast, it was relatively more represented in motor point rather than in mixed nerve SEPs. These data suggest that the N30 response is specifically evoked by proprioceptive inputs.
Collapse
Affiliation(s)
- Domenico Restuccia
- Department of Neurology, Catholic University, Policlinico A. Gemelli, Largo A. Gemelli 8, 00168 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Güçlü B, Bolanowski SJ. Modeling population responses of rapidly-adapting mechanoreceptive fibers. J Comput Neurosci 2002; 12:201-18. [PMID: 12142551 DOI: 10.1023/a:1016535413000] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The population response of rapidly-adapting (RA) fibers is one component of the physiological substrate of the sense of touch. Herein, we describe a computational scheme based on the population-response model by K.O. Johnson (J. Neurophysiol. 37: 48-72, 1974) which we extended by permitting the capability to include the spatial distributions of receptors in the glabrous skin linked to RA fibers. The hypothetical cases simulated were rectangular, uniformly random and proximo-distally Gaussian distributions. Each spatial organization produced qualitatively distinct population-response profiles that also varied due to stimulus parameters. The effects of stimulus amplitude, average innervation density and contactor-probe location were studied by considering various response measures: number of active fibers, summated firing rate and the average firing rate of a subset of the modeled population. The outcome of the measures were statistically compared among simulated anatomical distributions. The response is the same for rectangular and uniformly random distributions, both of which have a homogeneous innervation density. However, the Gaussian distribution produced statistically different responses when the measure was not averaged over the subset population which represented the receptive field of a higher-order neuron. These results indicate that, as well as stimulus parameters, the anatomical organization is a significant determinant of the population response. Therefore, reconstructing population activity for testing psychophysical hypotheses must presently be done with care until the organization of the receptors within the skin has been clarified.
Collapse
Affiliation(s)
- Burak Güçlü
- Institute for Sensory Research, Department of Bioengineering and Neuroscience, 621 Skytop Road, Syracuse, NY 13244-5290, USA
| | | |
Collapse
|
12
|
Hasegawa A, Yamada T, Saito T, Fuchigami T, Onishi H, Fujii M. The interaction of somatosensory evoked potentials between mixed-sensory nerves and sensory-sensory nerves. CLINICAL EEG (ELECTROENCEPHALOGRAPHY) 2001; 32:197-204. [PMID: 11682814 DOI: 10.1177/155005940103200407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interactions between two different nerves occur by occlusion or inhibition when two nerves share the synaptic connections. In our previous study, we have demonstrated that posterior tibial nerve and peroneal nerve sensory inputs interact with each other, i.e., preceding stimulus to one nerve suppresses the somatosensory evoked potential (SEP) of the other nerve when two stimuli are delivered in close sequence. The course of suppression follows two phases; the first one occurring at short interstimulus intervals (ISIs) of the two nerves less than 10 msec, and the second one being at around 30 msec ISI after partial recovery following the first suppression phase. In that study, we have postulated that the second phase suppression was equivalent for the movement induced "gating" mechanism. In this study, the interactions of mixed nerve (posterior tibial) and sensory nerve (sural), and also sensory (sural) and sensory (saphenous) nerves were examined. We found that the mixed nerve (posterior tibial) exerted similar dual phases of suppression (as was seen in posterior tibial--peroneal nerve study) on to the sural nerve SEP, but the reverse was not true. Also the sensory and sensory nerve interactions were not mutually equal; the sural nerve stimulation caused two phases suppression but the reverse condition did not show significant suppression. The above findings suggest (1) interference input from the sensory nerve to the mixed nerve is much weaker than the reverse condition, and (2) sensory and sensory nerves interactions occur but two nerves' interference inputs are not necessarily equal and one could dominant the other.
Collapse
Affiliation(s)
- A Hasegawa
- Division of Clinical Electrophysiology, Department of Neurology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
13
|
Hoechstetter K, Rupp A, Stancák A, Meinck HM, Stippich C, Berg P, Scherg M. Interaction of tactile input in the human primary and secondary somatosensory cortex--a magnetoencephalographic study. Neuroimage 2001; 14:759-67. [PMID: 11506548 DOI: 10.1006/nimg.2001.0855] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interaction of simultaneous tactile input at two finger sites in primary (SI) and secondary somatosensory cortex (SII) was studied by whole-head magnetoencephalography. Short pressure pulses were delivered to fingers of the right and left hand at an interstimulus interval of 1.6 s. The first phalanx of the left digit 1 and four other sites were stimulated either separately or simultaneously. We compared four sites with increasing distance: the second phalanx of left digit 1, left digit 5, and digits 1 and 5 of the right hand. The temporal evolution of source activity in the contralateral SI and bilateral SII was calculated using spatiotemporal source analysis. Interaction was assessed by comparing the source activity during simultaneous stimulation with the sum of the source activities elicited by separate stimulation. Significant suppressive interaction was observed in contralateral SI only for stimuli at the same hand, decreasing with distance. In SII, all digits of the same and the opposite hand interacted significantly with left digit 1. When stimulating bilaterally, SII source waveforms closely resembled the time course of the response to separate stimulation of the opposite hand. Thus, in bilateral simultaneous stimulation, the contralateral input arriving first in SII appeared to inhibit the later ipsilateral input. Similarly, the separate response to input at two unilateral finger sites which arrived slightly earlier in SII dominated the simultaneous response. Our results confirm previous findings of considerable overlap in the cortical hand representation in SII and illustrate hemispheric specialization to contralateral input when simultaneous stimuli occur bilaterally.
Collapse
Affiliation(s)
- K Hoechstetter
- Section of Biomagnetism, University Hospital of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Restuccia D, Valeriani M, Barba C, Le Pera D, Tonali P, Mauguière F. Different contribution of joint and cutaneous inputs to early scalp somatosensory evoked potentials. Muscle Nerve 1999; 22:910-9. [PMID: 10398210 DOI: 10.1002/(sici)1097-4598(199907)22:7<910::aid-mus15>3.0.co;2-v] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To elucidate whether the frontal components of scalp somatosensory evoked potentials (SEPs) depend on the type of peripheral input, we compared scalp SEPs in response to electrical stimuli applied to: (i) the proximal phalanx of the thumb, involving both deep and cutaneous afferents; and (ii) the distal phalanx of the thumb, involving cutaneous afferents, but excluding joint inputs coming from the interphalangeal articulation. We applied the same dipolar model that we built to explain the scalp SEP distribution to median nerve stimulation in previous investigations. Cortical SEPs after proximal stimulation were generated by three dipolar sources, one of which was likely to account for the frontal scalp N30. When we analyzed SEPs for distal (purely cutaneous) stimulation, the frontal and central recordings showed a clear reduction in amplitude of the negative responses having a latency of about 30 ms. Moreover, when applying the dipole model derived from analysis of responses to proximal stimulation to SEPs to distal stimulation, the source corresponding to the N30 distribution showed no activity, suggesting a strong relationship between joint and tendinous inputs and the activity of the N30 generator.
Collapse
Affiliation(s)
- D Restuccia
- Department of Neurology, Catholic University, Rome, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Blood AJ, Toga AW. Optical intrinsic signal imaging responses are modulated in rodent somatosensory cortex during simultaneous whisker and forelimb stimulation. J Cereb Blood Flow Metab 1998; 18:968-77. [PMID: 9740100 DOI: 10.1097/00004647-199809000-00006] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Optical intrinsic signal imaging (OIS) was used to investigate physiologic interactions between spatially and functionally distinct cortical somatosensory systems. The OIS response magnitude was evaluated after simultaneous stimulation of single whiskers and forelimb digits. Whisker C1 was deflected at a frequency of 10 Hz for 2 seconds while low- or high-intensity vibratory stimuli were applied to forelimb digits. The OIS responses to simultaneous whisker and forelimb stimulation were compared with lone whisker stimulated controls. Overall, addition of a second stimulus caused decreases in barrel cortex response magnitude. Three different response patterns were detected within individual trial sets. Modulation of barrel cortex evoked potentials provided evidence that changes in OIS responses observed here may be partially influenced by vascular responses to changes in neuronal activity. However, OIS responses in the barrel region during lone forelimb stimulation that were unaccompanied by evoked potentials suggested the possibility of independent vascular dynamic influences on response modulation. This study demonstrates that cortical responses at the level of primary sensory processing may be significantly influenced by activity in adjacent regions. Furthermore, it reveals that vascular and neuronal characteristics of interregional modulation do not co-localize and may produce responses in which one component increases while the other decreases.
Collapse
Affiliation(s)
- A J Blood
- Department of Neurology, UCLA School of Medicine, Los Angeles, California 90095-1769, USA
| | | |
Collapse
|
16
|
Rossi A, Decchi B, Groccia V, Della Volpe R, Spidalieri R. Interactions between nociceptive and non-nociceptive afferent projections to cerebral cortex in humans. Neurosci Lett 1998; 248:155-8. [PMID: 9654332 DOI: 10.1016/s0304-3940(98)00354-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We investigated the effect of a tonic discharge of muscle nociceptive afferents on somatosensory evoked potentials (SEPs) in humans in response to stimulation of non-nociceptive afferents arising from the same muscle. Conditioning nociceptive muscle stimulation was achieved by local injection of 50 mg levo-ascorbic acid (in a volume of 0.3 ml) in the body of the extensor digitorum brevis muscle (EDB). The test stimulus for SEPs was an electrical pulse applied to the EDB nerve at an intensity below the motor threshold. The main finding was that tonic muscle nociceptive stimulation strongly depressed the middle-latency P60-N75 complex without modifying the size of the early P40-N50 complex of SEPs. Depression of the P60-N75 complex was correlated with the pain-induced loss of proprioception of the foot, making it plausible that this cortical complex reflects neuronal processes leading to perception.
Collapse
Affiliation(s)
- A Rossi
- Laboratory of Human Neurophysiology, Institute of Neurological Sciences, University of Siena, Italy.
| | | | | | | | | |
Collapse
|
17
|
Xerri C, Merzenich MM, Peterson BE, Jenkins W. Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys. J Neurophysiol 1998; 79:2119-48. [PMID: 9535973 DOI: 10.1152/jn.1998.79.4.2119] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adult owl and squirrel monkeys were trained to master a small-object retrieval sensorimotor skill. Behavioral observations along with positive changes in the cortical area 3b representations of specific skin surfaces implicated specific glabrous finger inputs as important contributors to skill acquisition. The area 3b zones over which behaviorally important surfaces were represented were destroyed by microlesions, which resulted in a degradation of movements that had been developed in the earlier skill acquisition. Monkeys were then retrained at the same behavioral task. They could initially perform it reasonably well using the stereotyped movements that they had learned in prelesion training, although they acted as if key finger surfaces were insensate. However, monkeys soon initiated alternative strategies for small object retrieval that resulted in a performance drop. Over several- to many-week-long period, monkeys again used the fingers for object retrieval that had been used successfully before the lesion, and reacquired the sensorimotor skill. Detailed maps of the representations of the hands in SI somatosensory cortical fields 3b, 3a, and 1 were derived after postlesion functional recovery. Control maps were derived in the same hemispheres before lesions, and in opposite hemispheres. Among other findings, these studies revealed the following 1) there was a postlesion reemergence of the representation of the fingertips engaged in the behavior in novel locations in area 3b in two of five monkeys and a less substantial change in the representation of the hand in the intact parts of area 3b in three of five monkeys. 2) There was a striking emergence of a new representation of the cutaneous fingertips in area 3a in four of five monkeys, predominantly within zones that had formerly been excited only by proprioceptive inputs. This new cutaneous fingertip representation disproportionately represented behaviorally crucial fingertips. 3) There was an approximately two times enlargement of the representation of the fingers recorded in cortical area 1 in postlesion monkeys. The specific finger surfaces employed in small-object retrieval were differentially enlarged in representation. 4) Multiple-digit receptive fields were recorded at a majority of emergent, cutaneous area 3a sites in all monkeys and at a substantial number of area 1 sites in three of five postlesion monkeys. Such fields were uncommon in area 1 in control maps. 5) Single receptive fields and the component fields of multiple-digit fields in postlesion representations were within normal receptive field size ranges. 6) No significant changes were recorded in the SI hand representations in the opposite (untrained, intact) control hemisphere. These findings are consistent with "substitution" and "vicariation" (adaptive plasticity) models of recovery from brain damage and stroke.
Collapse
Affiliation(s)
- C Xerri
- Keck Center and Coleman Laboratory, University of California at San Francisco, San Francisco, California 94143-0732, USA
| | | | | | | |
Collapse
|
18
|
Valeriani M, Restuccia D, Di Lazzaro V, Le Pera D, Scerrati M, Tonali P, Mauguière F. Giant central N20-P22 with normal area 3b N20-P20: an argument in favour of an area 3a generator of early median nerve cortical SEPs? ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1997; 104:60-7. [PMID: 9076254 DOI: 10.1016/s0168-5597(96)96660-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Generators of early cortical somatosensory evoked potentials (SEPs) still remain to be precisely localised. This gap in knowledge has often resulted in unclear and contrasting SEPs localisation in patients with focal hemispheric lesions. We recorded SEPs to median nerve stimulation in a patient with right frontal astrocytoma, using a 19-channel recording technique. After stimulation of the left median nerve, N20 amplitude was normal when recorded by the parietal electrode contralateral to the stimulation, while it was abnormally enhanced in traces obtained by the contralateral central electrode. The amplitude of the frontal P20 response was within normal limits. This finding suggests that two dipolar sources, tangential and radial to the scalp surface, respectively, contribute concomitantly to N20 generation. The possible location of the N20 radial source in area 3a is discussed. The P22 potential was also recorded with increased amplitude by the central electrode contralateral to the stimulation, while N30 amplitude was normal in frontal and central traces. We propose that the radial dipolar source of P22 response is independent from both N20 and N30 generators and can be located either in 3a or in area 4. This report illustrates the usefulness of multichannel recordings in diagnosing dysfunction of the sensorimotor cortex in focal cortical lesions.
Collapse
Affiliation(s)
- M Valeriani
- Department of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Guilbaud G, Benoist JM, Condes-Lara M, Gautron M. Further evidence for the involvement of SmI cortical neurons in nociception: their responsiveness at 24 hr after carrageenin-induced hyperalgesic inflammation in the rat. Somatosens Mot Res 1993; 10:229-44. [PMID: 8237212 DOI: 10.3109/08990229309028834] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this electrophysiological study, the responsiveness of neurons in the primary somatosensory cortex (SmI) was analyzed in rats with carrageenin-induced hyperalgesia for 24 hr. The functional implication of some changes in neuronal activity was improved in a few cases by a pharmacological test with Xylocaine injection in or close to the neuronal receptive field (RF), or with systemic aspirin. Unit recordings were performed alternately in the SmI cortex contralateral (Cc) or ipsilateral (Ci) to the inflamed hindpaw. In 29 rats with hyperalgesia tested prior to the recording session, 218 cells (128 in the Cc, 90 in the Ci) were tested with mechanical stimuli. In each SmI cortex, about 50% of them were driven by the stimulus. The "nonresponsive" neurons exhibited a higher firing rate in the Cc than in the Ci. The "responsive" (i.e., the somatosensory) neurons were classified according to their response to light touch, pinch, or joint movement. There was a highly significant difference between the two cortices, essentially because of the high proportion of "joint" Cc neurons (27 of 73 [37%] of the somatosensory neurons in the Cc, vs. only 8 of 47 [17%] in the Ci). "Light touch" neurons (41 of 73 [56%] in the Cc, vs. 35 of 47 [74.5%] in the Ci) had small RFs contralateral to the recording site. Of the 41 Cc cells of this type, 23 did not exhibit the classical characteristics of "light touch" cells; in particular, they exhibited striking discharges triggered by the stimulus but outlasting the stimulus duration, or occurring without intentional stimulation. These abnormal discharges were depressed or suppressed by injection of a local anesthetic (Xylocaine) in or close to the neuronal RF. "Pinch" neurons were very rare (5 of 73 [7%] in the Cc, vs. 4 of 47 [8.5%] in the Ci). Responses elicited from the inflamed paw were more pronounced than those from the noninflamed paw. "Joint" neurons were more numerous in the Cc than in the Ci. In addition, their responses obtained from contralateral RFs, and therefore from the inflamed paw, were more sustained than Ci responses elicited from the noninflamed paw. Afterdischarges of Ce neuronal responses and spontaneous paroxysmal activity were common on this side and were depressed by local anesthetic (Xylocaine) in their RFs or by systemic aspirin. These electrophysiological data emphasize the implication of SmI cortex in inflammatory hyperalgesia and more generally in pain processing.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G Guilbaud
- Unité de Recherches de Physiopharmacologie du Système nerveux, U 161 INSERM, Paris, France
| | | | | | | |
Collapse
|
20
|
Yamada T, Saito T, Matsue Y, Honda Y, Fuchigami T, Fujii M, Ross M. The influence of interfering input from the peroneal nerve on tibial-nerve somatosensory evoked potential. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1992; 84:492-8. [PMID: 1280195 DOI: 10.1016/0168-5597(92)90038-d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Using a conditioning-test paradigm, we studied the recovery function of tibial nerve somatosensory evoked potentials (SEPs) conditioned by preceding peroneal nerve stimulation. The inter-stimulus intervals (ISIs) ranged from 0 to 400 msec, where 0 msec indicated simultaneous arrival of tibial and peroneal nerve volleys at the L1 spine. The recovery curve was W-shaped, showing two peaks of SEP suppression, maximum at 6 msec ISI (1st phase) and 50-75 ISI msec (2nd phase). In the 1st phase suppression, we found distinct differences in wave forms between 0-2 msec ISI and 4-6 msec ISI. At 0-2 msec ISI, P40-N50-P60 amplitude decreased and latencies shortened, while P31 and N35 were unchanged. At 4-6 msec ISI, all peaks, possibly excluding P31, were markedly depressed. We attribute the former change to an "occlusive effect" and the latter to an "inhibitory effect," each mediated via a central synaptic network between the two nerves. The attenuation of the 2nd but not the 1st phase suppression by peroneal nerve block distal to the stimulating electrodes provided evidence that the 2nd phase suppression resulted primarily from interfering afferent signals generated by peroneal nerve peripheral receptors, activated by foot movement.
Collapse
Affiliation(s)
- T Yamada
- Department of Neurology, University of Iowa, College of Medicine, Iowa City 52242
| | | | | | | | | | | | | |
Collapse
|
21
|
Cherkasskii VL. Nonlinear temporal summation of EPSP in mollusk neurons. NEUROPHYSIOLOGY+ 1989. [DOI: 10.1007/bf01056974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Burke D, Gandevia SC. Interfering cutaneous stimulation and the muscle afferent contribution to cortical potentials. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1988; 70:118-25. [PMID: 2456190 DOI: 10.1016/0013-4694(88)90112-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cerebral potentials were recorded in response to selective stimulation using microelectrodes of muscle afferents in motor fascicles innervating the intrinsic muscles of the foot or at the motor point of abductor hallucis. The early components of these potentials (P40, N50 and P60) were consistently attenuated by continuous tactile stimulation of related skin areas and by electrical stimulation of digital nerves, timed so that the digital volley reached cortex approximately 5 msec before the muscle afferent volley. The same conditioning cutaneous inputs also attenuated the cerebral potentials evoked by selective stimulation of cutaneous afferents. These findings confirm that there are intermodality and intramodality interactions between low-threshold cutaneous and muscle afferents and between cutaneous afferents, respectively. The findings indicate that 'interference phenomena' (Kakigi and Jones 1986) can occur between different afferent modalities, and within any one modality, and cannot be used to determine the afferent species responsible for the test evoked potential.
Collapse
Affiliation(s)
- D Burke
- Department of Neurology, Prince Henry Hospital, Sydney, Australia
| | | |
Collapse
|
23
|
Yamamoto T, Samejima A, Oka H. Morphology of layer V pyramidal neurons in the cat somatosensory cortex: an intracellular HRP study. Brain Res 1987; 437:369-74. [PMID: 2449268 DOI: 10.1016/0006-8993(87)91654-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pyramidal tract (PT) or corticopontine neurons of the cat somatosensory cortex (SI) were identified with antidromic activation on stimulation of the bulbar pyramid or pontine nuclei (PN) and stained intracellularly with HRP after examining the electrophysiological properties. Comparison of the conduction velocity of the stem axons and the soma-dendritic morphology revealed that in the cat SI, there exists two types of layer V pyramidal neurons, i.e. one has smooth apical dendrites with larger soma (51.6 +/- 9.5 x 22.7 +/- 2.8 micron) and the other has richly spinous apical dendrites with smaller soma (34.0 +/- 8.8 x 15.3 +/- 3.3 micron). The former group responded antidromically at latencies shorter than 1 ms by PT stimulation or 1.5 ms by PN stimulation, respectively. These values were consistent with the borderline latencies between two similar groups of layer V pyramidal neurons in the motor (fast and slow PTNs) and parietal (aspiny and spiny layer V corticopontine neurons) cortices in the cat.
Collapse
Affiliation(s)
- T Yamamoto
- Department of Physiology, Fukui Medical School, Japan
| | | | | |
Collapse
|
24
|
Abstract
The effect of pairing two vibrissa stimulations on unit responses of the barrel field of the somatosensory cortex were studied in partially restrained but awake and undrugged rats. Before pairing, one of the stimulations (S2) evoked a stable, short-latency and excitatory response from the recorded unit. Depending on the neuron, the other stimulation (S1), preceding S2 by 500 ms, did or did not have an effect before pairing. In a number of cases, the S1-S2 association produced significant changes in the unit responses: (1) the appearance of an excitatory response to S1 when that stimulus was ineffective before pairing; (2) the modification of pre-existing responses to S1 and/or S2. In all instances these modifications consisted in the decrease or disappearance of the "afferent inhibition" and/or the appearance of long-latency excitatory components. These effects appeared after some 30-100 trials and persisted in some cases up to 20 min after interruption of pairing. Our observations provide the first physiological data on the plasticity of the vibrissa projections in the chronic adult rodent. Though the underlying plastic neural elements and mechanisms remain to be specified, these phenomena suggest that "learned" changes in unit activity may occur in sensory systems and not only in "non-specific" ones.
Collapse
Affiliation(s)
- J Delacour
- Laboratoire de Psychophysiologie, Université Paris 7, France
| | | | | |
Collapse
|
25
|
|
26
|
Palmer CI, Massion J, Dufossé M. The responses of pericruciate cortical neurones to distal forepaw electrical stimulation in the unanaesthetized, unrestrained cat. Exp Brain Res 1986; 63:474-86. [PMID: 3758266 DOI: 10.1007/bf00237471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Experiments were performed to examine the responses of cortical neurons in the pericruciate cortex to cutaneous afferent input from the distal forepaw. Ninety-nine cortical neurons responding to electrical stimulation of the forepaw were recorded from four cats. Their response latencies ranged from 6 to 23 ms. The units had cutaneous receptive fields which ranged in size from those restricted to one digit to those extending over the whole forelimb. They were recorded from area 4 and area 3. Intracortical microstimulation at the recording sites activated either the distal or proximal musculature of the forelimb. When the characteristics obtained from each recording site were examined as a group of features, a uniform population emerged which was significantly different from the rest of the sample. These units had the shortest latency responses to distal forepaw electrical stimulation, the shortest duration of evoked discharge, the smallest distal cutaneous receptive fields. Such units were recorded at the border between areas 3 and 4, at sites which on microstimulation resulted in movements of the distal forepaw musculature.
Collapse
|
27
|
Zarzecki P. Functions of Corticocortical Neurons of Somatosensory, Motor, and Parietal Cortex. Cereb Cortex 1986. [DOI: 10.1007/978-1-4613-2149-1_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
28
|
Herman D, Kang R, MacGillis M, Zarzecki P. Responses of cat motor cortex neurons to cortico-cortical and somatosensory inputs. Exp Brain Res 1985; 57:598-604. [PMID: 2984038 DOI: 10.1007/bf00237846] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Intracellular techniques were used to investigate a cortico-cortical path from sensory cortex to motor cortex of cats. Cortico-cortical epsps were evoked in motor cortex neurons by microstimulation of area 3a. Epsps with latencies between 1.2 and 2.4 ms were identified as monosynaptic. These short latency cortico-cortical effects were recorded in layers II through VI of the motor cortex. Neurons with monosynaptic cortico-cortical epsps also received excitatory inputs from forelimb nerves, usually from both muscle and cutaneous afferent fibers. The epsps evoked from forelimb nerves in motor cortex neurons were preceded by neural activity in somatosensory cortex. Time delays between arrival of inputs in sensory cortex and in motor cortex were compared to the latencies of cortico-cortical epsps in the same motor cortex neurons. It was apparent that the timing was appropriate for the identified cortico-cortical path to have relayed some sensory inputs to motor cortex.
Collapse
|