1
|
Fritzsch B. Evolution and development of extraocular motor neurons, nerves and muscles in vertebrates. Ann Anat 2024; 253:152225. [PMID: 38346566 PMCID: PMC11786961 DOI: 10.1016/j.aanat.2024.152225] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The purpose of this review is to analyze the origin of ocular motor neurons, define the pattern of innervation of nerve fibers that project to the extraocular eye muscles (EOMs), describe congenital disorders that alter the development of ocular motor neurons, and provide an overview of vestibular pathway inputs to ocular motor nuclei. Six eye muscles are innervated by axons of three ocular motor neurons, the oculomotor (CNIII), trochlear (CNIV), and abducens (CNVI) neurons. Ocular motor neurons (CNIII) originate in the midbrain and innervate the ipsilateral orbit, except for the superior rectus and the levator palpebrae, which are contralaterally innervated. Trochlear motor neurons (CNIV) originate at the midbrain-hindbrain junction and innervate the contralateral superior oblique muscle. Abducens motor neurons (CNVI) originate variously in the hindbrain of rhombomeres r4-6 that innervate the posterior (or lateral) rectus muscle and innervate the retractor bulbi. Genes allow a distinction between special somatic (CNIII, IV) and somatic (CNVI) ocular motor neurons. Development of ocular motor neurons and their axonal projections to the EOMs may be derailed by various genetic causes, resulting in the congenital cranial dysinnervation disorders. The ocular motor neurons innervate EOMs while the vestibular nuclei connect with the midbrain-brainstem motor neurons.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Neurological Sciences, University of Nebraska Medical Center, NE, USA.
| |
Collapse
|
2
|
Najac M, McLean DL, Raman IM. Synaptic variance and action potential firing of cerebellar output neurons during motor learning in larval zebrafish. Curr Biol 2023; 33:3299-3311.e3. [PMID: 37421952 PMCID: PMC10527510 DOI: 10.1016/j.cub.2023.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023]
Abstract
The cerebellum regulates both reflexive and acquired movements. Here, by recording voltage-clamped synaptic currents and spiking in cerebellar output (eurydendroid) neurons in immobilized larval zebrafish, we investigated synaptic integration during reflexive movements and throughout associative motor learning. Spiking coincides with the onset of reflexive fictive swimming but precedes learned swimming, suggesting that eurydendroid signals may facilitate the initiation of acquired movements. Although firing rates increase during swimming, mean synaptic inhibition greatly exceeds mean excitation, indicating that learned responses cannot result solely from changes in synaptic weight or upstream excitability that favor excitation. Estimates of spike threshold crossings based on measurements of intrinsic properties and the time course of synaptic currents demonstrate that noisy excitation can transiently outweigh noisy inhibition enough to increase firing rates at swimming onset. Thus, the millisecond-scale variance of synaptic currents can regulate cerebellar output, and the emergence of learned cerebellar behaviors may involve a time-based code.
Collapse
Affiliation(s)
- Marion Najac
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
3
|
Ricci M, Kim J, Johansson F. A computational passage-of-time model of the cerebellar Purkinje cell in eyeblink conditioning. Front Comput Neurosci 2023; 17:1108346. [PMID: 36950506 PMCID: PMC10025386 DOI: 10.3389/fncom.2023.1108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
The cerebellar Purkinje cell controlling eyeblinks can learn, remember, and reproduce the interstimulus interval in a classical conditioning paradigm. Given temporally separated inputs, the cerebellar Purkinje cell learns to pause its tonic inhibition of a motor pathway with high temporal precision so that an overt blink occurs at the right time. Most models place the passage-of-time representation in upstream network effects. Yet, bypassing the upstream network and directly stimulating the Purkinje cell's pre-synaptic fibers during conditioning still causes acquisition of a well-timed response. Additionally, while network models are sensitive to variance in the temporal structure of probe stimulation, in vivo findings suggest that the acquired Purkinje cell response is not. Such findings motivate alternative approaches to modeling neural function. Here, we present a proof-of-principle model of the passage-of-time which is internal to the Purkinje cell and is invariant to probe structure. The model is consistent with puzzling findings, accurately recapitulates Purkinje cell firing during classical conditioning and makes testable electrophysiological predictions.
Collapse
Affiliation(s)
- Matthew Ricci
- Carney Institute for Brain Sciences, Brown University, Providence, RI, United States
| | - Junkyung Kim
- Carney Institute for Brain Sciences, Brown University, Providence, RI, United States
| | - Fredrik Johansson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- *Correspondence: Fredrik Johansson
| |
Collapse
|
4
|
Li R, Li Q, Chu X, Li L, Li X, Li J, Yang Z, Xu M, Luo C, Zhang K. Role of cerebellar cortex in associative learning and memory in guinea pigs. Open Life Sci 2022; 17:1208-1216. [PMID: 36185409 PMCID: PMC9482424 DOI: 10.1515/biol-2022-0471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Time-related cognitive function refers to the capacity of the brain to store, extract, and process specific information. Previous studies demonstrated that the cerebellar cortex participates in advanced cognitive functions, but the role of the cerebellar cortex in cognitive functions is unclear. We established a behavioral model using classical eyeblink conditioning to study the role of the cerebellar cortex in associative learning and memory and the underlying mechanisms. We performed an investigation to determine whether eyeblink conditioning could be established by placing the stimulating electrode in the middle cerebellar peduncle. Behavior training was performed using a microcurrent pulse as a conditioned stimulus to stimulate the middle cerebellar peduncle and corneal blow as an unconditioned stimulus. After 10 consecutive days of training, a conditioned response was successfully achieved in the Delay, Trace-200-ms, and Trace-300-ms groups of guinea pigs, with acquisition rates of >60%, but the Trace-400-ms and control groups did not achieve a conditioned stimulus-related blink conditioned response. It could be a good model for studying the function of the cerebellum during the establishment of eyeblink conditioning.
Collapse
Affiliation(s)
- Rui Li
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Qi Li
- Department of Rehabilitation Medicine, Tianjin Hospital Tianjin University, Jiefang South Road 406, Tianjin 300211, Tianjin, China.,Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, Tianjin, China
| | - Xiaolei Chu
- Department of Rehabilitation Medicine, Tianjin Hospital Tianjin University, Jiefang South Road 406, Tianjin 300211, Tianjin, China
| | - Lan Li
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Xiaoyi Li
- Department of Neuroelectrophysiology, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Juan Li
- Department of Using Quality Management, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Zhen Yang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Mingjing Xu
- Department of Rehabilitation, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Changlu Luo
- Department of Rehabilitation, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Kui Zhang
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| |
Collapse
|
5
|
Boele HJ, Joung S, Fil JE, Mudd AT, Fleming SA, Koekkoek SKE, Dilger RN. Young Domestic Pigs (Sus scrofa) Can Perform Pavlovian Eyeblink Conditioning. Front Behav Neurosci 2021; 15:690019. [PMID: 34267630 PMCID: PMC8275650 DOI: 10.3389/fnbeh.2021.690019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Pigs have been an increasingly popular preclinical model in nutritional neuroscience, as their anatomy, physiology, and nutrition requirements are highly comparable to those of humans. Eyeblink conditioning is one of the most well-validated behavioral paradigms in neuroscience to study underlying mechanisms of learning and memory formation in the cerebellum. Eyeblink conditioning has been performed in many species but has never been done on young pigs. Therefore, our aim here was to develop and validate an eyeblink conditioning paradigm in young pigs. Method: Eighteen intact male pigs were artificially reared from postnatal day 2-30. The eyeblink conditioning setup consisted of a sound-damping box with a hammock that pigs were placed in, which allowed the pig to remain comfortable yet maintain a typical range of head motion. In a delay conditioning paradigm, the conditional stimulus (CS) was a 550 ms blue light-emitting diode (LED), the unconditional stimulus (US) was a 50 ms eye air-puff, the CS-US interval was 500 ms. Starting at postnatal day 14, pigs were habituated for 5 days to the eyeblink conditioning setup, followed by 5 daily sessions of acquisition training (40 paired CS-US trials each day). Results: The group-averaged amplitude of conditioned eyelid responses gradually increased over the course of the 5 days of training, indicating that pigs learned to make the association between the LED light CS and the air-puff US. A similar increase was found for the conditioned response (CR) probability: the group-averaged CR probability on session 1 was about 12% and reached a CR probability of 55% on day 5. The latency to CR peak time lacked a temporal preference in the first session but clearly showed preference from the moment that animals started to show more CRs in session 2 and onwards whereby the eyelid was maximally closed exactly at the moment that the US would be delivered. Conclusion: We concluded that 3-week-old pigs have the capability of performing in a cerebellar classical conditioning task, demonstrating for the first time that eyeblink conditioning in young pigs has the potential to be a valuable behavioral tool to measure neurodevelopment.
Collapse
Affiliation(s)
- Henk-Jan Boele
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, Netherlands.,Princeton Neuroscience Institute, Princeton, NJ, United States
| | - Sangyun Joung
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Joanne E Fil
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Austin T Mudd
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Stephen A Fleming
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | | | - Ryan N Dilger
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Division of Nutritional Science, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
6
|
Hirono M, Karube F, Yanagawa Y. Modulatory Effects of Monoamines and Perineuronal Nets on Output of Cerebellar Purkinje Cells. Front Neural Circuits 2021; 15:661899. [PMID: 34194302 PMCID: PMC8236809 DOI: 10.3389/fncir.2021.661899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
Classically, the cerebellum has been thought to play a significant role in motor coordination. However, a growing body of evidence for novel neural connections between the cerebellum and various brain regions indicates that the cerebellum also contributes to other brain functions implicated in reward, language, and social behavior. Cerebellar Purkinje cells (PCs) make inhibitory GABAergic synapses with their target neurons: other PCs and Lugaro/globular cells via PC axon collaterals, and neurons in the deep cerebellar nuclei (DCN) via PC primary axons. PC-Lugaro/globular cell connections form a cerebellar cortical microcircuit, which is driven by serotonin and noradrenaline. PCs' primary outputs control not only firing but also synaptic plasticity of DCN neurons following the integration of excitatory and inhibitory inputs in the cerebellar cortex. Thus, strong PC-mediated inhibition is involved in cerebellar functions as a key regulator of cerebellar neural networks. In this review, we focus on physiological characteristics of GABAergic transmission from PCs. First, we introduce monoaminergic modulation of GABAergic transmission at synapses of PC-Lugaro/globular cell as well as PC-large glutamatergic DCN neuron, and a Lugaro/globular cell-incorporated microcircuit. Second, we review the physiological roles of perineuronal nets (PNNs), which are organized components of the extracellular matrix and enwrap the cell bodies and proximal processes, in GABA release from PCs to large glutamatergic DCN neurons and in cerebellar motor learning. Recent evidence suggests that alterations in PNN density in the DCN can regulate cerebellar functions.
Collapse
Affiliation(s)
- Moritoshi Hirono
- Department of Physiology, Wakayama Medical University, Wakayama, Japan
| | - Fuyuki Karube
- Lab of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
7
|
Kir3 channel blockade in the cerebellar cortex suppresses performance of classically conditioned Purkinje cell responses. Sci Rep 2020; 10:15654. [PMID: 32973240 PMCID: PMC7515874 DOI: 10.1038/s41598-020-72581-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/03/2020] [Indexed: 11/23/2022] Open
Abstract
In the eyeblink conditioning paradigm, cerebellar Purkinje cells learn to respond to the conditional stimulus with an adaptively timed pause in its spontaneous firing. Evidence suggests that the pause is elicited by glutamate released from parallel fibers and acting on metabotropic receptors (mGluR7) which initiates a delayed-onset suppression of firing. We suggested that G protein activation of hyperpolarizing Kir3 channels (or ‘GIRK’, G protein-coupled inwardly-rectifying K+ channels) could be part of such a mechanism. Application of the Kir3 antagonist Tertiapin-LQ locally in the superficial layers of the cerebellar cortex in decerebrate ferrets suppressed normal performance of Purkinje cell pause responses to the conditional stimulus. Importantly, there was no detectable effect on spontaneous firing. These findings suggest that intact functioning of Kir3 channels in the cerebellar cortex is required for normal conditioned Purkinje cell responses.
Collapse
|
8
|
Rasmussen A. Graded error signals in eyeblink conditioning. Neurobiol Learn Mem 2020; 170:107023. [DOI: 10.1016/j.nlm.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 01/06/2023]
|
9
|
Johansson F. Intrinsic memory of temporal intervals in cerebellar Purkinje cells. Neurobiol Learn Mem 2019; 166:107103. [PMID: 31648018 DOI: 10.1016/j.nlm.2019.107103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/15/2019] [Accepted: 10/20/2019] [Indexed: 11/30/2022]
Abstract
The general consensus for learning and memory, including in the cerebellum, is that modification of synaptic strength via long-term potentiation (LTP) or long-term depression (LTD) are the primary mechanisms for the formation of memories. Recent findings suggest additional cellular mechanisms - referred to as 'intrinsic plasticity' - where a neuron's membrane excitability intrinsically changes. These mechanisms act like a dimmer and alter neuronal responsiveness by adjusting response amplitudes and spike thresholds. Here, I argue that classical conditioning of cerebellar Purkinje cell responses reveals yet another cell-intrinsic learning mechanism which significantly differs from both changes in synaptic strength and changes in membrane excitability. When the conditional (CS) and unconditional stimuli (US) are delivered directly to the Purkinje cell's immediate pre-synaptic afferents, the parallel fibres and the climbing fibre, the cell learns to respond to the CS with a pause in its spontaneous firing that reflects the interval between the two stimuli. The pause response has a delayed onset and adaptively timed maximum, offset and duration, determined by the previously experienced CS-US interval. The timing is not dependent on any network-generated time-varying input. This implies the existence of a timing mechanism and a memory substrate that encodes the duration of the CS-US interval inside the Purkinje cell. Such temporal interval learning is not simply a change that causes more or less firing in response to an input. Here, I review these findings in relation to the standard theory of synaptic strength changes and the network interactions believed to be necessary for generating time codes.
Collapse
Affiliation(s)
- Fredrik Johansson
- Associative Learning Group, Department of Experimental Medical Science, Lund University, Sweden; Department of Neuroscience, Physiology and Pharmacology, University College London, UK.
| |
Collapse
|
10
|
Changes in cerebellar intrinsic neuronal excitability and synaptic plasticity result from eyeblink conditioning. Neurobiol Learn Mem 2019; 166:107094. [PMID: 31542329 DOI: 10.1016/j.nlm.2019.107094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022]
Abstract
There is a long history of research documenting plasticity in the cerebellum as well as the role of the cerebellum in learning and memory. Recordings in slices of cerebellum have provided evidence of long-term depression and long-term potentiation at several excitatory and inhibitory synapses. Lesions and recordings show the cerebellum is crucial for eyeblink conditioning and it appears changes in both synaptic and membrane plasticity are involved. In addition to its role in fine motor control, there is growing consensus that the cerebellum is crucial for perceptual, cognitive, and emotional functions. In the current review, we explore the evidence that eyeblink conditioning results in significant changes in intrinsic membrane excitability as well as synaptic plasticity in Purkinje cells of the cerebellar cortex in rabbits and changes in intrinsic membrane excitability in principal neurons of the deep cerebellar nuclei in rats.
Collapse
|
11
|
Extinction and Renewal of Conditioned Eyeblink Responses in Focal Cerebellar Disease. THE CEREBELLUM 2019; 18:166-177. [PMID: 30155831 DOI: 10.1007/s12311-018-0973-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Extinction of conditioned aversive responses (CR) has been shown to be context-dependent. The hippocampus and prefrontal cortex are of particular importance. The cerebellum may contribute to context-related processes because of its known connections with the hippocampus and prefrontal cortex. Context dependency of extinction can be demonstrated by the renewal effect. When CR acquisition takes place in context A and is extinguished in context B, renewal refers to the recovery of the CR in context A (A-B-A paradigm). In the present study acquisition, extinction and renewal of classically conditioned eyeblink responses were tested in 18 patients with subacute focal cerebellar lesions and 18 age- and sex-matched healthy controls. Standard delay eyeblink conditioning was performed using an A-B-A paradigm. All cerebellar patients underwent a high-resolution T1-weighted brain MRI scan to perform lesion-symptom mapping. CR acquisition was not significantly different between cerebellar and control participants allowing to draw conclusions on extinction. CR extinction was significantly less in cerebellar patients. Reduction of CR extinction tended to be more likely in patients with lesions in the lateral parts of lobule VI and Crus I. A significant renewal effect was present in controls only. The present data provide further evidence that the cerebellum contributes to extinction of conditioned eyeblink responses. Because acquisition was preserved and extinction took place in another context than acquisition, more lateral parts of the cerebellar hemisphere may contribute to context-related processes. Furthermore, lack of renewal in cerebellar patients suggest a contribution of the cerebellum to context-related processes.
Collapse
|
12
|
van Gaalen J, Maas RPPWM, Ippel EF, Elting MW, van Spaendonck-Zwarts KY, Vermeer S, Verschuuren-Bemelmans C, Timmann D, van de Warrenburg BP. Abnormal eyeblink conditioning is an early marker of cerebellar dysfunction in preclinical SCA3 mutation carriers. Exp Brain Res 2018; 237:427-433. [PMID: 30430184 PMCID: PMC6373441 DOI: 10.1007/s00221-018-5424-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/01/2018] [Indexed: 12/16/2022]
Abstract
Background Spinocerebellar ataxias (SCAs) are a group of autosomal dominantly inherited degenerative diseases. As the pathological process probably commences years before the first appearance of clinical symptoms, preclinical carriers of a SCA mutation offer the opportunity to study the earliest stages of cerebellar dysfunction and degeneration. Eyeblink classical conditioning (EBCC) is a motor learning paradigm, crucially dependent on the integrity of the olivocerebellar circuit, and has been shown to be able to detect subtle alterations of cerebellar function, which might already be present in preclinical carriers. Methods In order to acquire conditioned responses, we performed EBCC, delay paradigm, in 18 preclinical carriers of a SCA3 mutation and 16 healthy, age-matched controls by presenting repeated pairings of an auditory tone with a supraorbital nerve stimulus with a delay interval of 400 ms. Results Preclinical carriers acquired significantly less conditioned eyeblink responses than controls and learning rates were significantly reduced. This motor learning defect was, however, not associated with the predicted time to onset. Conclusions EBCC is impaired in preclinical carriers of a SCA3 mutation, as a result of impaired motor learning capacities of the cerebellum and is thus suggestive of cerebellar dysfunction. EBCC can be used to detect but probably not monitor preclinical cerebellar dysfunction in genetic ataxias, such as SCA3. Electronic supplementary material The online version of this article (10.1007/s00221-018-5424-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - R P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - E F Ippel
- Department of Medical Genetics, University Medical Center, Utrecht, The Netherlands
| | - M W Elting
- Department of Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | | | - S Vermeer
- Family Cancer Clinic, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C Verschuuren-Bemelmans
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D Timmann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Abstract
Several lines of evidence show that classical or Pavlovian conditioning of blink responses depends on the cerebellum. Recordings from cerebellar Purkinje cells that control the eyelid and the conditioned blink show that during training with a conditioning protocol, a Purkinje cell develops a pause response to the conditional stimulus. This conditioned cellular response has many of the properties that characterise the overt blink. The present paper argues that the learned Purkinje cell pause response is the memory trace and main driver of the overt conditioned blink and that it explains many well-known behavioural phenomena.
Collapse
|
14
|
Schreurs BG. Classical Conditioning and Modification of the Rabbit's (Oryctolagus Cuniculus) Unconditioned Nictitating Membrane Response. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/1534582303002002001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A fundamental tenet of behavior is that a reflex is automatic, unconscious, involuntary, and relatively invariant. However, we have discovered that a reflex can change dramatically as a function of classical conditioning, and this change can be demonstrated independently of the conditioned stimulus. We have termed this phenomenon conditioning-specific reflex modification (CRM). Although the behavioral laws and neural substrates of nonassociative reflex changes have been identified, the behavioral laws and neural substrates of CRM are only now being revealed. For example, CRM is similar to classical conditioning in that (a) it is a function of both the strength of conditioning and (b) the strength of the unconditioned stimulus, (c) it can be extinguished, and (d) it can be generalized from one unconditioned stimulus to another. Preliminary analysis suggests that CRM may have some features in common with post-traumatic stress disorder and may provide insights into treatment of the disorder.
Collapse
|
15
|
Ernst T, Beyer L, Mueller O, Göricke S, Ladd M, Gerwig M, Timmann D. Pronounced reduction of acquisition of conditioned eyeblink responses in young adults with focal cerebellar lesions impedes conclusions on the role of the cerebellum in extinction and savings. Neuropsychologia 2016; 85:287-300. [DOI: 10.1016/j.neuropsychologia.2016.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/09/2016] [Accepted: 03/23/2016] [Indexed: 11/30/2022]
|
16
|
Lange I, Kasanova Z, Goossens L, Leibold N, De Zeeuw CI, van Amelsvoort T, Schruers K. The anatomy of fear learning in the cerebellum: A systematic meta-analysis. Neurosci Biobehav Rev 2015; 59:83-91. [PMID: 26441374 DOI: 10.1016/j.neubiorev.2015.09.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 11/17/2022]
Abstract
Recent neuro-imaging studies have implicated the cerebellum in several higher-order functions. Its role in human fear conditioning has, however, received limited attention. The current meta-analysis examines the loci of cerebellar contributions to fear conditioning in healthy subjects, thus mapping, for the first time, the neural response to conditioned aversive stimuli onto the cerebellum. By using the activation likelihood estimation (ALE) technique for analyses, we identified several distinct regions in the cerebellum that activate in response to the presentation of the conditioned stimulus: the cerebellar tonsils, lobules HIV-VI, and the culmen. These regions have separately been implicated in fear acquisition, consolidation of fear memories and expression of conditioned fear responses. Their specific role in these processes may be attributed to the general contribution of cerebellar cortical networks to timing and prediction. Our meta-analysis highlights the potential role of the cerebellum in human cognition and emotion in general, and addresses the possibility how deficits in associative cerebellar learning may play a role in the pathogenesis of anxiety disorders. Future studies are needed to further clarify the mechanistic role of the cerebellum in higher order functions and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Iris Lange
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands.
| | - Zuzana Kasanova
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Liesbet Goossens
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Nicole Leibold
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Chris I De Zeeuw
- Royal Dutch Academy of Arts and Sciences, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; Erasmus Medical Center, Department of Neuroscience, Rotterdam, The Netherlands
| | - Therese van Amelsvoort
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Koen Schruers
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands; University of Leuven, Faculty of Psychology, Center for Experimental and Learning Psychology, Leuven, Belgium
| |
Collapse
|
17
|
Moya MV, Siegel JJ, McCord ED, Kalmbach BE, Dembrow N, Johnston D, Chitwood RA. Species-specific differences in the medial prefrontal projections to the pons between rat and rabbit. J Comp Neurol 2015; 522:3052-74. [PMID: 24639247 DOI: 10.1002/cne.23566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/18/2014] [Accepted: 02/18/2014] [Indexed: 12/19/2022]
Abstract
The medial prefrontal cortex (mPFC) of both rats and rabbits has been shown to support trace eyeblink conditioning, presumably by providing an input to the cerebellum via the pons that bridges the temporal gap between conditioning stimuli. The pons of rats and rabbits, however, shows divergence in gross anatomical organization, leaving open the question of whether the topography of prefrontal inputs to the pons is similar in rats and rabbits. To investigate this question, we injected anterograde tracer into the mPFC of rats and rabbits to visualize and map in 3D the distribution of labeled terminals in the pons. Effective mPFC injections showed labeled axons in the ipsilateral descending pyramidal tract in both species. In rats, discrete clusters of densely labeled terminals were observed primarily in the rostromedial pons. Clusters of labeled terminals were also observed contralateral to mPFC injection sites in rats, appearing as a less dense "mirror-image" of ipsilateral labeling. In rabbits, mPFC labeled corticopontine terminals were absent in the rostral pons, and instead were restricted to the intermediate pons. The densest terminal fields were typically observed in association with the ipsilateral pyramidal tract as it descended ventromedially through the rabbit pons. No contralateral terminal labeling was observed for any injections made in the rabbit mPFC. The results suggest the possibility that mPFC inputs to the pons may be integrated with different sources of cortical inputs between rats and rabbits. The resulting implications for mPFC or pons manipulations for studies of trace eyeblink in each species are discussed.
Collapse
Affiliation(s)
- Maria V Moya
- Center for Learning & Memory, University of Texas at Austin, Austin, Texas, 78712
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Although our ability to store semantic declarative information can nowadays be readily surpassed by that of simple personal computers, our ability to learn and express procedural memories still outperforms that of supercomputers controlling the most advanced robots. To a large extent, our procedural memories are formed in the cerebellum, which embodies more than two-thirds of all neurons in our brain. In this review, we will focus on the emerging view that different modules of the cerebellum use different encoding schemes to form and express their respective memories. More specifically, zebrin-positive zones in the cerebellum, such as those controlling adaptation of the vestibulo-ocular reflex, appear to predominantly form their memories by potentiation mechanisms and express their memories via rate coding, whereas zebrin-negative zones, such as those controlling eyeblink conditioning, appear to predominantly form their memories by suppression mechanisms and express their memories in part by temporal coding using rebound bursting. Together, the different types of modules offer a rich repertoire to acquire and control sensorimotor processes with specific challenges in the spatiotemporal domain.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands
| | - Michiel M Ten Brinke
- Department of Neuroscience, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|
19
|
Cerebellar cortex and cerebellar nuclei are concomitantly activated during eyeblink conditioning: a 7T fMRI study in humans. J Neurosci 2015; 35:1228-39. [PMID: 25609637 DOI: 10.1523/jneurosci.2492-14.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There are controversies whether learning of conditioned eyeblink responses primarily takes place within the cerebellar cortex, the interposed nuclei, or both. It has also been suggested that the cerebellar cortex may be important during early stages of learning, and that there is a shift to the cerebellar nuclei during later stages. As yet, human studies have provided little to resolve this question. In the present study, we established a setup that allows ultra-high-field 7T functional magnetic resonance imaging (fMRI) of the cerebellar cortex and interposed cerebellar nuclei simultaneously during delay eyeblink conditioning in humans. Event-related fMRI signals increased concomitantly in the cerebellar cortex and nuclei during early acquisition of conditioned eyeblink responses in 20 healthy human subjects. ANOVAs with repeated-measures showed significant effects of time across five blocks of 20 conditioning trials in the cortex and nuclei (p < 0.05, permutation corrected). Activations were most pronounced in, but not limited to, lobules VI and interposed nuclei. Increased activations were most prominent at the first time the maximum number of conditioned responses was achieved. Our data are consistent with a simultaneous and synergistic two-site model of learning during acquisition of classically conditioned eyeblinks. Because increased MRI signal reflects synaptic activity, concomitantly increased signals in the cerebellar nuclei and cortex are consistent with findings of learning related potentiation at the mossy fiber to nuclear cell synapse and mossy fiber to granule cell synapse. Activity related to the expression of conditioned responses, however, cannot be excluded.
Collapse
|
20
|
Longley M, Yeo CH. Distribution of neural plasticity in cerebellum-dependent motor learning. PROGRESS IN BRAIN RESEARCH 2014; 210:79-101. [PMID: 24916290 DOI: 10.1016/b978-0-444-63356-9.00004-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The cerebellum is essential for some forms of motor learning. Two examples that provide useful experimental models are modification of the vestibulo-ocular reflex and classical conditioning of the nictitating membrane response (NMR) in the rabbit. There has been considerable analysis of these behavioral models and of conditioning of the eyelid blink reflex, which is similar in several respects to NMR conditioning but with some key differences in its control circuitry. The evidence is consistent with the suggestion that storage of these motor memories is to be found within the cerebellum and its associated brainstem circuitry. The cerebellum presents many advantages as a model system to characterize the cellular and molecular mechanisms underpinning behavioral learning. And yet, localizing the essential synaptic changes has proven to be difficult. A major problem has been to establish to what extent these neural changes are distributed through the cerebellar cortex, cerebellar nuclei, and associated brainstem nuclei. Inspired by recent theoretical work, here we review evidence that the distribution of plasticity across cortical and cerebellar nuclear (or brainstem vestibular system) levels for different learning tasks may be different and distinct. Our primary focus is on classical conditioning of the NMR and eyelid blink, and we offer comparisons with mechanisms for modifications of the vestibulo-ocular reflex. We describe a view of cerebellar learning that satisfies theoretical and empirical analysis.
Collapse
Affiliation(s)
- Michael Longley
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Christopher H Yeo
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
21
|
Abstract
Long-term depression (LTD) here concerned is persistent attenuation of transmission efficiency from a bundle of parallel fibers to a Purkinje cell. Uniquely, LTD is induced by conjunctive activation of the parallel fibers and the climbing fiber that innervates that Purkinje cell. Cellular and molecular processes underlying LTD occur postsynaptically. In the 1960s, LTD was conceived as a theoretical possibility and in the 1980s, substantiated experimentally. Through further investigations using various pharmacological or genetic manipulations of LTD, a concept was formed that LTD plays a major role in learning capability of the cerebellum (referred to as "Marr-Albus-Ito hypothesis"). In this chapter, following a historical overview, recent intensive investigations of LTD are reviewed. Complex signal transduction and receptor recycling processes underlying LTD are analyzed, and roles of LTD in reflexes and voluntary movements are defined. The significance of LTD is considered from viewpoints of neural network modeling. Finally, the controversy arising from the recent finding in a few studies that whereas LTD is blocked pharmacologically or genetically, motor learning in awake behaving animals remains seemingly unchanged is examined. We conjecture how this mismatch arises, either from a methodological problem or from a network nature, and how it might be resolved.
Collapse
|
22
|
Rasmussen A, Hesslow G. Feedback control of learning by the cerebello-olivary pathway. PROGRESS IN BRAIN RESEARCH 2014; 210:103-19. [PMID: 24916291 DOI: 10.1016/b978-0-444-63356-9.00005-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ability to anticipate future events and to modify erroneous anticipatory actions is crucial for the survival of any organism. Both theoretical and empirical lines of evidence implicate the cerebellum in this ability. It is often suggested that the cerebellum acquires "expectations" or "internal models." However, except in a metaphorical sense, the cerebellum, which consists of a set of interconnected nerve cells, cannot contain "internal models" or "have expectations." In this chapter, we try to untangle these metaphors by translating them back into neurophysiological cause and effect relationships. We approach this task from within the paradigm of classical conditioning, in which a subject, through repeated presentations of a conditional stimulus, followed by an unconditional stimulus, acquires a conditioned response. Importantly, the conditioned response is timed so that it anticipates the unconditioned response. Available neurophysiological evidence suggests that Purkinje cells, in the cerebellar cortex, generate the conditioned response. In addition, Purkinje cells provide negative feedback to the inferior olive, which is a relay for the unconditional stimulus, via the nucleo-olivary pathway. Purkinje cells can therefore regulate the intensity of the signal derived from the unconditional stimulus, which, in turn, decides subsequent plasticity. Hence, as learning progresses, the olivary signal will become weaker and weaker due to increasing negative feedback from Purkinje cells. Thus, in an important sense, learning-induced changes in Purkinje cell activity constitute an "expectation" or "anticipation" of a future event (the unconditional stimulus), and, consistent with theoretical models, future learning depends on the accuracy of this expectation.
Collapse
Affiliation(s)
- Anders Rasmussen
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Germund Hesslow
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Hardiman MJ, Hsu HJ, Bishop DVM. Children with specific language impairment are not impaired in the acquisition and retention of Pavlovian delay and trace conditioning of the eyeblink response. BRAIN AND LANGUAGE 2013; 127:428-439. [PMID: 24139661 PMCID: PMC3847270 DOI: 10.1016/j.bandl.2013.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 05/30/2023]
Abstract
Three converging lines of evidence have suggested that cerebellar abnormality is implicated in developmental language and literacy problems. First, some brain imaging studies have linked abnormalities in cerebellar grey matter to dyslexia and specific language impairment (SLI). Second, theoretical accounts of both dyslexia and SLI have postulated impairments of procedural learning and automatisation of skills, functions that are known to be mediated by the cerebellum. Third, motor learning has been shown to be abnormal in some studies of both disorders. We assessed the integrity of face related regions of the cerebellum using Pavlovian eyeblink conditioning in 7-11year-old children with SLI. We found no relationship between oral language skills or literacy skills with either delay or trace conditioning in the children. We conclude that this elementary form of associative learning is intact in children with impaired language or literacy development.
Collapse
Affiliation(s)
- Mervyn J Hardiman
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD, United Kingdom.
| | | | | |
Collapse
|
24
|
Hesslow G, Jirenhed DA, Rasmussen A, Johansson F. Classical conditioning of motor responses: What is the learning mechanism? Neural Netw 2013; 47:81-7. [DOI: 10.1016/j.neunet.2013.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 03/20/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
|
25
|
Abstract
The central assumption of existing models of motor learning in the cerebellum is that cerebellar mossy fibres signal information about the context in which a movement is to be performed and climbing fibres signal in relation to a movement error. This leads to changes in the responsiveness of Purkinje cells, which on the next occasion will generate a corrected output in a given context. Support for this view has come mainly from work on adaptation of the vestibulo-ocular reflex. The discovery that classically conditioned eyeblink responses depend critically on the cerebellum offers the possibility to study the learning of a novel behaviour, rather than modification of an existing reflex. After repeated pairing of a neutral stimulus, such as a tone, with a blink-eliciting stimulus, the tone will acquire the ability to elicit a blink on its own. We review evidence from studies employing a wide variety of techniques that the cerebellum is critical in this type of learning as well as evidence that mossy and climbing fibres have roles assigned to them in cerebellar learning models.
Collapse
Affiliation(s)
- C H Yeo
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London, UK WC1E 6BT
| | | |
Collapse
|
26
|
Differential expression of VGLUT1 or VGLUT2 in the trigeminothalamic or trigeminocerebellar projection neurons in the rat. Brain Struct Funct 2013; 219:211-29. [DOI: 10.1007/s00429-012-0495-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/01/2012] [Indexed: 12/18/2022]
|
27
|
Anatomical characterization of a rabbit cerebellar eyeblink premotor pathway using pseudorabies and identification of a local modulatory network in anterior interpositus. J Neurosci 2012; 32:12472-87. [PMID: 22956838 DOI: 10.1523/jneurosci.2088-12.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Rabbit eyeblink conditioning is a well characterized model of associative learning. To identify specific neurons that are part of the eyeblink premotor pathway, a retrograde transsynaptic tracer (pseudorabies virus) was injected into the orbicularis oculi muscle. Four time points (3, 4, 4.5, and 5 d) were selected to identify sequential segments of the pathway and a map of labeled structures was generated. At 3 d, labeled first-order motor neurons were found in dorsolateral facial nucleus ipsilaterally. At 4 d, second-order premotor neurons were found in reticular nuclei, and sensory trigeminal, auditory, vestibular, and motor structures, including contralateral red nucleus. At 4.5 d, labeled third-order premotor neurons were found in the pons, midbrain, and cerebellum, including dorsolateral anterior interpositus nucleus and rostral fastigial nucleus. At 5 d, labeling revealed higher-order premotor structures. Labeled fourth-order Purkinje cells were found in ipsilateral cerebellar cortex in cerebellar lobule HVI and in lobule I. The former has been implicated in eyeblink conditioning and the latter in vestibular control. Labeled neurons in anterior interpositus were studied, using neurotransmitter immunoreactivity to classify individual cell types and delineate their interconnectivity. Labeled third-order premotor neurons were immunoreactive for glutamate and corresponded to large excitatory projection neurons. Labeled fourth-order premotor interneurons were immunoreactive for GABA (30%), glycine (18%), or both GABA and glycine (52%) and form a functional network within anterior interpositus involved in modulation of motor commands. These results identify a complete eyeblink premotor pathway, deep cerebellar interconnectivity, and specific neurons responsible for the generation of eyeblink responses.
Collapse
|
28
|
Hawkins RD, Clark GA, Kandel ER. Cell Biological Studies of Learning in Simple Vertebrate and Invertebrate Systems. Compr Physiol 2011. [DOI: 10.1002/cphy.cp010502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Amygdala conditioning modulates sensory input to the cerebellum. Neurobiol Learn Mem 2010; 94:521-9. [PMID: 20832497 DOI: 10.1016/j.nlm.2010.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 08/29/2010] [Accepted: 09/02/2010] [Indexed: 11/22/2022]
Abstract
Localization of emotional learning in the amygdala and discrete motor learning in the cerebellum provides empirical means to study the mechanisms mediating the interaction between fast emotional and slow motor learning. Behavioral studies have demonstrated that fear conditioning facilitates the motor conditioning. The present study tests the hypothesis that the amygdala output induces this facilitation by increasing the salience of the conditioned stimulus (CS) representation in the pontine nucleus (PN) input to the cerebellum. Paired trials of CS-US (unconditioned stimulus) were applied to anesthetized rats, a condition that allows for amygdala-based fear conditioning but not cerebellar-based motor conditioning. Multiple unit recordings in the PN served to assess the salience of the CS. Results showed that CS-US conditioning increased the PN-reactivity to the CS. Lidocaine-induced reversible inactivation of the amygdala prevented the facilitatory effect of conditioning on the PN-reactivity to the CS. These findings suggest that the amygdala-based conditioned responses reach the PN and increase the salience of the CS signal there, perhaps facilitating cerebellar conditioning. This facilitatory effect of the amygdala may be conceptualized under the 'two-stage theory of learning', which predicts that emotional learning in the first stage accelerates the motor learning in the second stage. We hereby demonstrate the physiological mechanism through which fast emotional learning in the first stage facilitates slow cerebellar learning in the second stage.
Collapse
|
30
|
Electrophysiological localization of eyeblink-related microzones in rabbit cerebellar cortex. J Neurosci 2010; 30:8920-34. [PMID: 20592214 DOI: 10.1523/jneurosci.6117-09.2010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The classically conditioned eyeblink response in the rabbit is one of the best-characterized behavioral models of associative learning. It is cerebellum dependent, with many studies indicating that the hemispheral part of Larsell's cerebellar cortical lobule VI (HVI) is critical for the acquisition and performance of learned responses. However, there remain uncertainties about the distribution of the critical regions within and around HVI. In this learning, the unconditional stimulus is thought to be carried by periocular-activated climbing fibers. Here, we have used a microelectrode array to perform systematic, high-resolution, electrophysiological mapping of lobule HVI and surrounding folia in rabbits, to identify regions with periocular-evoked climbing fiber activity. Climbing fiber local field potentials and single-unit action potentials were recorded, and electrode locations were reconstructed from histological examination of brain sections. Much of the sampled cerebellar cortex, including large parts of lobule HVI, was unresponsive to periocular input. However, short-latency ipsilateral periocular-evoked climbing fiber responses were reliably found within a region in the ventral part of the medial wall of lobule HVI, extending to the base of the primary fissure. Small infusions of the AMPA/kainate receptor antagonist CNQX into this electrophysiologically defined region in awake rabbits diminished or abolished conditioned responses. The known parasagittal zonation of the cerebellum, supported by zebrin immunohistochemistry, indicates that these areas have connections consistent with an essential role in eyeblink conditioning. These small eyeblink-related areas provide cerebellar cortical targets for analysis of eyeblink conditioning at a neuronal level but need to be localized with electrophysiological identification in individual animals.
Collapse
|
31
|
Jones CRG, Jahanshahi M. The substantia nigra, the basal ganglia, dopamine and temporal processing. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2010:161-71. [PMID: 20411776 DOI: 10.1007/978-3-211-92660-4_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
It has been proposed that the basal ganglia are important to the temporal processing of milliseconds- and seconds-range intervals, both within the motor and perceptual domains. This review summarizes and discuses evidence from animal, pharmacological, clinical, and imaging research that supports this proposal, with particular reference to the role of the substantia nigra (SN).
Collapse
Affiliation(s)
- Catherine R G Jones
- Department of Psychology and Human Development, Institute of Education, University of London, London, UK.
| | | |
Collapse
|
32
|
Boele HJ, Koekkoek SKE, De Zeeuw CI. Cerebellar and extracerebellar involvement in mouse eyeblink conditioning: the ACDC model. Front Cell Neurosci 2010; 3:19. [PMID: 20126519 PMCID: PMC2805432 DOI: 10.3389/neuro.03.019.2009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 11/29/2009] [Indexed: 11/20/2022] Open
Abstract
Over the past decade the advent of mouse transgenics has generated new perspectives on the study of cerebellar molecular mechanisms that are essential for eyeblink conditioning. However, it also appears that results from eyeblink conditioning experiments done in mice differ in some aspects from results previously obtained in other mammals. In this review article we will, based on studies using (cell-specific) mouse mutants and region-specific lesions, re-examine the general eyeblink behavior in mice and the neuro-anatomical circuits that might contribute to the different peaks in the conditioned eyeblink trace. We conclude that the learning process in mice has at least two stages: An early stage, which includes short-latency responses that are at least partly controlled by extracerebellar structures such as the amygdala, and a later stage, which is represented by well-timed conditioned responses that are mainly controlled by the pontocerebellar and olivocerebellar systems. We refer to this overall concept as the Amygdala-Cerebellum-Dynamic-Conditioning Model (ACDC model).
Collapse
Affiliation(s)
- Henk-Jan Boele
- Department of Neuroscience, Erasmus Medical Center, RotterdamThe Netherlands
| | | | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, RotterdamThe Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, AmsterdamThe Netherlands
| |
Collapse
|
33
|
Abstract
This experiment monitored eyelid responses bilaterally during delay eyeblink conditioning in rats. Rats were given paired or unpaired training with a tone or light conditioned stimulus (CS) and a unilateral periorbital shock unconditioned stimulus (US). Rats given paired training acquired high levels of conditioned responses (CRs), which occurred in both eyelids. However, acquisition was faster, and the overall percentage of CRs was greater in the eyelid that was ipsilateral to the US. CRs in the eyelid ipsilateral to the US also had shorter onset latencies and larger amplitudes than CRs in the contralateral eyelid. Both eyelids consistently showed high percentages of unconditioned responses (UR) to the US, and the UR amplitude decreased across training sessions in the paired group. The present study demonstrated that CRs occur robustly in both eyelids of rats given eyeblink conditioning, which is similar to previous findings in humans and monkeys. The results also showed that conditioning occurs more prominently in the eyelid that is ipsilateral to the US, which is similar to previous findings in humans, monkeys, dogs, and rabbits.
Collapse
|
34
|
Thompson R, Steinmetz J. The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience 2009; 162:732-55. [DOI: 10.1016/j.neuroscience.2009.01.041] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/18/2008] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
|
35
|
Rasmussen A, Jirenhed DA, Hesslow G. Simple and complex spike firing patterns in Purkinje cells during classical conditioning. THE CEREBELLUM 2009; 7:563-6. [PMID: 18931885 DOI: 10.1007/s12311-008-0068-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Classical blink conditioning is known to depend critically on the cerebellum and the relevant circuitry is gradually being unravelled. Several lines of evidence support the theory that the conditioned stimulus is transmitted by mossy fibers to the cerebellar cortex whereas the unconditioned stimulus is transmitted by climbing fibers. This view has been dramatically confirmed by recent Purkinje cell recordings during training with a classical conditioning paradigm. We have tracked the activity of single Purkinje cells with microelectrodes for several hours in decerebrate ferrets during learning, extinction, and relearning. Paired peripheral forelimb and periocular stimulation, as well as paired direct stimulation of cerebellar afferent pathways (mossy and climbing fibers) causes acquisition of a pause response in Purkinje cell simple spike firing. This conditioned Purkinje cell response has temporal properties that match those of the behavioral response. Its latency varies with the interstimulus interval and it responds to manipulations of the conditioned stimulus in the same way that the blink does. Complex spike firing largely mirrors the simple spike behavior. We have previously suggested that cerebellar learning is subject to a negative feedback control via the inhibitory nucleo-olivary pathway. As the Purkinje cell learns to respond to the conditioned stimulus with a suppression of simple spikes, disinhibition of anterior interpositus neurons would be expected to cause inhibition of the inferior olive. Observations of complex spike firing in the Purkinje cells during conditioning and extinction confirm this prediction. Before training, complex spikes are unaffected or facilitated by the conditioned stimulus, but as the simple spike pause response develops, spontaneous and stimulus-evoked complex spikes are also strongly suppressed by the conditioned stimulus. After extinction of the simple spike pause response, the complex spikes reappear.
Collapse
Affiliation(s)
- Anders Rasmussen
- Department of Experimental Medical Science, Lund University, BMC F10, Lund, Sweden
| | | | | |
Collapse
|
36
|
Jirenhed DA, Bengtsson F, Hesslow G. Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J Neurosci 2007; 27:2493-502. [PMID: 17344387 PMCID: PMC6672498 DOI: 10.1523/jneurosci.4202-06.2007] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Associative learning in the cerebellum underlies motor memories and probably also cognitive associations. Pavlovian eyeblink conditioning, a widely used experimental model of such learning, depends on the cerebellum, but the memory locus within the cerebellum as well as the underlying mechanisms have remained controversial. To date, crucial information on how cerebellar Purkinje cells change their activity during learning has been ambiguous and contradictory, and there is no information at all about how they behave during extinction and reacquisition. We have now tracked the activity of single Purkinje cells with microelectrodes for up to 16 h in decerebrate ferrets during learning, extinction, and relearning. We demonstrate that paired peripheral forelimb and periocular stimulation, as well as paired direct stimulation of cerebellar afferent pathways (mossy and climbing fibers) consistently causes a gradual acquisition of an inhibitory response in Purkinje cell simple spike firing. This conditioned cell response has several properties that matches known features of the behavioral conditioned response. The response latency varies with the interstimulus interval, and the response maximum is adaptively timed to precede the unconditioned stimulus. Across training trials, it matches behavioral extinction to unpaired stimulation and also the substantial savings that occur when paired stimulation is reinstated. These data suggest that many of the basic behavioral phenomena in eyeblink conditioning can be explained at the level of the single Purkinje cell.
Collapse
Affiliation(s)
- Dan-Anders Jirenhed
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden.
| | | | | |
Collapse
|
37
|
Villarreal RP, Steinmetz JE. Neuroscience and learning: lessons from studying the involvement of a region of cerebellar cortex in eyeblink classical conditioning. J Exp Anal Behav 2006; 84:631-52. [PMID: 16596983 PMCID: PMC1389784 DOI: 10.1901/jeab.2005.96-04] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
How the nervous system encodes learning and memory processes has interested researchers for 100 years. Over this span of time, a number of basic neuroscience methods has been developed to explore the relationship between learning and the brain, including brain lesion, stimulation, pharmacology, anatomy, imaging, and recording techniques. In this paper, we summarize how different research approaches can be employed to generate converging data that speak to how structures and systems in the brain are involved in simple associative learning. To accomplish this, we review data regarding the involvement of a particular region of cerebellar cortex (Larsell's lobule HVI) in the widely used paradigm of classical eyeblink conditioning. We also present new data on the role of lobule HVI in eyeblink conditioning generated by combining temporary brain inactivation and single-cell recording methods, an approach that looks promising for further advancing our understanding of relationships between brain and behavior.
Collapse
Affiliation(s)
| | - Joseph E Steinmetz
- Indiana University
- Requests for information concerning this research should be sent to Joseph E. Steinmetz, Ph.D, Department of Psychology, Indiana University, 1101 E. 10th Street, Bloomington, Indiana 47405-7007, Telephone: 812-855-6414, Fax: 812-855-4691 (e-mail: )
| |
Collapse
|
38
|
Green JT. The effects of ethanol on the developing cerebellum and eyeblink classical conditioning. THE CEREBELLUM 2005; 3:178-87. [PMID: 15543808 DOI: 10.1080/14734220410017338] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In rats, developmental ethanol exposure has been used to model the central nervous system deficits associated with human fetal alcohol syndrome. Binge-like ethanol exposure of neonatal rats depletes cells in the cerebellum, including Purkinje cells, granule cells, and deep nuclear cells, and produces deficits in simple tests of motor coordination. However, the extent to which anatomical damage is related to behavioral deficits has been difficult to estimate. Eyeblink classical conditioning is known to engage a discrete brain stem-cerebellar circuit, making it an ideal test of cerebellar functional integrity after developmental ethanol exposure. Eyeblink conditioning is a simple form of motor learning in which a neutral stimulus (such as a tone) comes to elicit an eyeblink when repeatedly paired with a stimulus that evokes an eyeblink prior to training (such as mild periorbital stimulation). In eyeblink conditioning, one of the deep cerebellar nuclei, the interpositus nucleus, as well as specific Purkinje cell populations, are sites of convergence for tone conditioned stimulus and somatosensory unconditioned stimulus information, and, together with brain stem nuclei, provide the necessary and sufficient substrate for the learned response. A series of studies have shown that eyeblink conditioning is impaired in both weanling and adult rats given binge-like exposure to ethanol as neonates. In addition, interpositus nucleus neurons from ethanol-exposed rats showed impaired activation during eyeblink conditioning. These deficits are accompanied by a permanent reduction In the deep cerebellar nuclear cell population. Because particular cerebellar cell populations are utilized in well-defined ways during eyeblink conditioning, conclusions regarding the underlying neural substrates of behavioral change after developmental ethanol exposure are greatly strengthened.
Collapse
Affiliation(s)
- John T Green
- Department of Psychology, University of Vermont, Burlington 05405-0134, USA.
| |
Collapse
|
39
|
Jones CRG, Rosenkranz K, Rothwell JC, Jahanshahi M. The right dorsolateral prefrontal cortex is essential in time reproduction: an investigation with repetitive transcranial magnetic stimulation. Exp Brain Res 2004; 158:366-72. [PMID: 15365666 DOI: 10.1007/s00221-004-1912-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 03/22/2004] [Indexed: 10/26/2022]
Abstract
This study used repetitive transcranial magnetic stimulation (rTMS) to investigate the roles of the right dorsolateral prefrontal cortex (DLPFC) and supplementary motor area (SMA) in short (500 ms) and long (2 s) interval timing. The results were compared with rTMS over the leg area of motor cortex, an area not thought to be involved with time estimation. rTMS was delivered during one of two phases of a time reproduction task: at the onset of the Estimation Phase (presentation of the interval to be timed) and at the onset of the Reproduction Phase (subjects' reproduction of the timed interval). There was a significant main effect of Site (SMA vs. right DLPFC vs. leg motor area) due to the fact that rTMS over the right DLPFC caused subjects to underestimate time intervals compared with rTMS over the leg motor area. There was also a significant three-way interaction between Site, Duration and Phase (Estimation Phase vs. Reproduction Phase) that post hoc analyses showed was due to underestimation of long intervals when rTMS was given over the right DLPFC at the start of the Reproduction Phase. There was no effect of rTMS over the right DLPFC or SMA in the short interval task. This is consistent with previous studies showing that the right DLPFC is important in estimating time intervals in the seconds-range. In addition, we suggest that the selectivity of the rTMS effect for the Reproduction Phase indicates that the right DLPFC plays a particular role in memory processes.
Collapse
Affiliation(s)
- Catherine R G Jones
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK.
| | | | | | | |
Collapse
|
40
|
Edge AL, Marple-Horvat DE, Apps R. Lateral cerebellum: functional localization within crus I and correspondence to cortical zones. Eur J Neurosci 2003; 18:1468-85. [PMID: 14511327 DOI: 10.1046/j.1460-9568.2003.02873.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study investigates the functional connections of different parts of the medial-most folium of crus I in the cat cerebellar hemisphere. Three areas were identified physiologically by recording on the cerebellar surface climbing fibre (CF) field potentials evoked by electrical stimulation of different body sites. From medial to lateral in relation to the long axis of the folium, area 1 receives convergent input from all body sites tested (optic chiasm, ipsilateral periorbital region, ipsilateral and contralateral forelimbs), area 2 receives input mainly from the ipsilateral periorbital region, while area 3 receives input mainly from the optic chiasm. These physiological differences were used to guide injections of bi-directional tracer material into individual cortical areas. The inferior olive and cerebellar nuclei were then mapped, revealing a precise topography within the olivo-cerebellar and cortico-nuclear projections for each area. On the basis of their anatomical and physiological characteristics areas 1, 2 and 3 correspond to zones C2, C3 and D1, respectively. CF inputs arise from the rostral medial accessory olive (C2), the interface between the rostral dorsal accessory olive and ventral lamella of the principal olive (vlPO, C3), and from vlPO (D1). The corresponding cortico-nuclear projections are nucleus interpositus posterior (C2), the transitional region between the dentate nucleus and nucleus interpositus anterior (C3), and the dentate nucleus (D1). Overall, the results provide a comprehensive description of the functional localization of different zones within crus I (folium 1), and suggest that a potent source of CF input to the C2 and D1 zones within this region of cortex arises from visual pathways.
Collapse
Affiliation(s)
- Antonia L Edge
- Department of Physiology, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
41
|
Christian KM, Thompson RF. Neural Substrates of Eyeblink Conditioning: Acquisition and Retention. Learn Mem 2003; 10:427-55. [PMID: 14657256 DOI: 10.1101/lm.59603] [Citation(s) in RCA: 438] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Classical conditioning of the eyeblink reflex to a neutral stimulus that predicts an aversive stimulus is a basic form of associative learning. Acquisition and retention of this learned response require the cerebellum and associated sensory and motor pathways and engage several other brain regions including the hippocampus, neocortex, neostriatum, septum, and amygdala. The cerebellum and its associated circuitry form the essential neural system for delay eyeblink conditioning. Trace eyeblink conditioning, a learning paradigm in which the conditioned and unconditioned stimuli are noncontiguous, requires both the cerebellum and the hippocampus and exhibits striking parallels to declarative memory formation in humans. Identification of the neural structures critical to the development and maintenance of the conditioned eyeblink response is an essential precursor to the investigation of the mechanisms responsible for the formation of these associative memories. In this review, we describe the evidence used to identify the neural substrates of classical eyeblink conditioning and potential mechanisms of memory formation in critical regions of the hippocampus and cerebellum. Addressing a central goal of behavioral neuroscience, exploitation of this simple yet robust model of learning and memory has yielded one of the most comprehensive descriptions to date of the physical basis of a learned behavior in mammals.
Collapse
Affiliation(s)
- Kimberly M Christian
- Neuroscience Program, University of Southern California, Los Angeles, California 90089-2520, USA.
| | | |
Collapse
|
42
|
Hardiman MJ, Yeo CH. The Effect of Kainic Acid Lesions of the Cerebellar Cortex on the Conditioned Nictitating Membrane Response in the Rabbit. Eur J Neurosci 2002; 4:966-980. [PMID: 12106432 DOI: 10.1111/j.1460-9568.1992.tb00123.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In previous studies we have shown that aspiration lesions centred on lobule HVI in the cerebellar cortex of rabbits produce a profound loss of conditioned nictitating membrane (NM) responses. Because aspiration lesions of the cerebellar cortex cause retrograde degeneration in precerebellar nuclei we tested in rabbits whether excitotoxic lesions of the cerebellar cortex that spare these precerebellar nuclei also cause a loss of conditioned NM responses. Following discrete injections of kainic acid into HVI and rostral regions of the adjacent folia of crus I and crus II, we observed an immediate loss of conditioned NM responses. Following extensive retraining several subjects showed a gradual recovery of conditioned responses. But subjects with the most complete lesions never recovered more than a few conditioned responses. Kainic acid lesions did not change ipsilateral unconditioned reflex responses to a range of stimulus intensities. The kainic acid injections caused obvious degeneration of Purkinje and granule cells but not of the precerebellar nuclei. We conclude that HVI and parts of crus I and crus II are essential for normal retention of conditioned NM responses.
Collapse
Affiliation(s)
- M. J. Hardiman
- Neuroscience and Behaviour Group, Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
43
|
Van Ham JJ, Yeo CH. Somatosensory Trigeminal Projections to the Inferior Olive, Cerebellum and other Precerebellar Nuclei in Rabbits. Eur J Neurosci 2002; 4:302-317. [PMID: 12106357 DOI: 10.1111/j.1460-9568.1992.tb00878.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have analysed the pathways through which somatosensory information from the face reaches the inferior olive and the cerebellum in rabbits. We used wheatgerm agglutinin - horseradish peroxidase (WGA - HRP) to trace projections from all parts of the somatosensory trigeminal system to the olive, cerebellar cortex, the cerebellar deep nuclei and the pontine nuclei. Projections to the cerebellar cortex and inferior olive were verified using retrograde transport of WGA - HRP. Two regions of the inferior olive-the medial dorsal accessory olive and the ventral leaf of the principal olive-receive inputs from pars interpolaris (Vi) and rostral pars caudalis (Vc) of the spinal trigeminal nucleus and from the principal trigeminal nucleus (Vp). Another area in the caudal medial accessory olive receives inputs from rostral Vo (pars oralis of the spinal trigeminal nucleus), caudal Vi and Vc. There are trigemino-olivo-cortical inputs to lobule HVI via all these olivary areas and to the paramedian lobe via the principal olive only. Cerebellar cortex-lobules HVI, crus I and II, paramedian lobe and IX-receives direct mossy fibre inputs from Vp, Vo and rostral Vi. The pontine nuclei receive an input only from rostral Vi. We saw no trigeminal projections to other precerebellar nuclei or to the deep cerebellar nuclei. The concentration of face somatosensory cortical inputs, via several pathways, upon lobule HVI may underlie its important role in the regulation of learned and unlearned eyeblinks.
Collapse
Affiliation(s)
- Jacqueline J. Van Ham
- Neuroscience and Behaviour Group, Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
44
|
Abstract
Several forms of motor learning, including classical conditioning of the eyeblink and nictitating membrane response (NMR), are dependent upon the cerebellum, but it is not known how motor memories are stored within the cerebellar circuitry. Localized infusions of the GABA(A) agonist muscimol were used to target putative consolidation processes by producing reversible inactivations after NMR conditioning sessions. Posttraining inactivations of eyeblink control regions in cerebellar cortical lobule HVI completely prevented conditioning from developing over four sessions. In contrast, similar inactivations of eyeblink control regions in the cerebellar nuclei allowed conditioning to develop normally. These findings provide evidence that there are critical posttraining memory consolidation processes for eyeblink conditioning mediated by the cerebellar cortex.
Collapse
Affiliation(s)
- Phillip J E Attwell
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
45
|
Sanchez M, Sillitoe RV, Attwell PJE, Ivarsson M, Rahman S, Yeo CH, Hawkes R. Compartmentation of the rabbit cerebellar cortex. J Comp Neurol 2002; 444:159-73. [PMID: 11835188 DOI: 10.1002/cne.10144] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cytoarchitecture of the adult rabbit cerebellum is revealed by using zebrin II/aldolase c immunocytochemistry in both wholemount and sectioned material. Zebrin II is expressed by approximately half of the Purkinje cells of the cerebellar cortex. In most regions these form a symmetrical array of zebrin II positive and negative parasagittal bands. Four transverse expression domains are identified in the vermis: (1) an anterior zone, comprising four narrow bands, one at the midline and three laterally to either side, extending throughout the anterior lobe to the primary fissure; (2) a central zone with broad immunoreactive bands separated by narrow zebrin II negative bands that disappear caudally to leave no apparent compartmentation; (3) a posterior zone with prominent alternating zebrin II positive and negative bands; and (4) a nodular zone in which all Purkinje cells express zebrin II. In the hemispheres a striped topography is found in lobules HVI, HVII, and crus I, and all Purkinje cells are zebrin II+ in the flocculus and paraflocculus. Because of its importance for the classical conditioning of the eyeblink response, we made a detailed analysis of lobule HVI of the hemisphere. The immunocytochemical data show a complex substructure within HVI with three prominent zebrin II positive bands (probably homologous with P4a+, P4b+, and P5+ of rodents) separated by two zebrin II negative regions (P4- and P4b-). Thus, the organization of the rabbit cerebellum is consistent with the patterns described previously for rat, mouse, and opossum and suggests that there may be a common ground plan for the mammalian cerebellum.
Collapse
Affiliation(s)
- Miguel Sanchez
- Department of Cell Biology & Anatomy, and Genes and Development Research Group, Faculty of Medicine, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Acquisition of eyeblink conditioning is critically dependent on normal function in cerebellar cortical lobule HVI. J Neurosci 2001. [PMID: 11466443 DOI: 10.1523/jneurosci.21-15-05715.2001] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Classical conditioning of the nictitating membrane response (NMR)/eyeblink response of rabbits is a simple form of cerebellar-dependent, associative motor learning. Reversible inactivations of the cerebellar nuclei and inferior olive have implicated the olivo-cortico-nuclear loop in the acquisition of nictitating membrane conditioning, but the role of the cerebellar cortex in acquisition has not been tested directly. Here we have used local infusions of the water-soluble, disodium salt of 6-cyano-7-nitroquinoxaline-2,3-dione reversibly to block cerebellar cortical AMPA/kainate receptors in lobule HVI during acquisition training. After the drug effects dissipated, there was no evidence that acquisition had taken place; the subjects behaved as if naive. Further training without inactivation then allowed normal acquisition, and further inactivations during performance of conditioned responses abolished these established responses. There was a strong correlation between the inactivation effects on acquisition and subsequent inactivation effects on performance, indicating that the same eyeblink-control cortical microzones are engaged in learning and expressing this behavior. The cortical component of the olivo-cortico-nuclear loop is essential for acquisition of classically conditioned nictitating membrane response learning, and eyeblink control areas in HVI are critical. Our findings are consistent with models of cerebellar learning that assign essential plasticity to the cortex or to a distribution between levels in olivo-cortico-nuclear modules.
Collapse
|
47
|
Ramnani N, Toni I, Josephs O, Ashburner J, Passingham RE. Learning- and expectation-related changes in the human brain during motor learning. J Neurophysiol 2000; 84:3026-35. [PMID: 11110829 DOI: 10.1152/jn.2000.84.6.3026] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have studied a simple form of motor learning in the human brain so as to isolate activity related to motor learning and the prediction of sensory events. Whole-brain, event-related functional magnetic resonance imaging (fMRI) was used to record activity during classical discriminative delay eyeblink conditioning. Auditory conditioned stimulus (CS+) trials were presented either with a corneal airpuff unconditioned stimulus (US, paired), or without a US (unpaired). Auditory CS- trials were never reinforced with a US. Trials were presented pseudorandomly, 66 times each. The subjects gradually produced conditioned responses to CS+ trials, while increasingly differentiating between CS+ and CS- trials. The increasing difference between hemodynamic responses for unpaired CS+ and for CS- trials evolved slowly during conditioning in the ipsilateral cerebellar cortex (Crus I/Lobule HVI), contralateral motor cortex and hippocampus. To localize changes that were related to sensory prediction, we compared trials on which the expected airpuff US failed to occur (Unpaired CS+) with trials on which it occurred as expected (Paired CS+). Error-related signals in the contralateral cerebellum and somatosensory cortex were seen to increase during learning as the sensory prediction became stronger. The changes seen in the ipsilateral cerebellar cortex may be due either to the violations of sensory predictions, or to learning-related increases in the excitability of cerebellar neurons to presentations of the CS+.
Collapse
Affiliation(s)
- N Ramnani
- Wellcome Department of Cognitive Neurology, Institute of Neurology, London WC1N 3BG, United Kingdom.
| | | | | | | | | |
Collapse
|
48
|
Svensson P, Ivarsson M, Hesslow G. Involvement of the cerebellum in a new temporal property of the conditioned eyeblink response. PROGRESS IN BRAIN RESEARCH 2000; 124:317-23. [PMID: 10943135 DOI: 10.1016/s0079-6123(00)24026-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- P Svensson
- Department of Physiological Sciences, Section for Neurophysiology, Lund University, Sweden.
| | | | | |
Collapse
|
49
|
Bao S, Chen L, Thompson RF. Learning- and cerebellum-dependent neuronal activity in the lateral pontine nucleus. Behav Neurosci 2000; 114:254-61. [PMID: 10832787 DOI: 10.1037/0735-7044.114.2.254] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of inactivation of cerebellar deep nuclei and the lateral pontine nucleus on classical eyeblink conditioning with tone or lateral reticular nucleus (LRN) stimulation as conditioned stimuli (CSs) were examined. Inactivation of cerebellar deep nuclei abolished eyeblink conditioned responses (CRs) when the CS was either a tone or LRN stimulation. Inactivation of the lateral pontine nucleus prevented only the acquisition and retention of tone-evoked eyeblink CRs. Multiple-unit recording demonstrated that when LRN stimulation was used as the CS, inactivation of the interpositus nucleus abolished learning-related neuronal activity in the lateral pontine nucleus, whereas inactivation of pontine nucleus had little effect on similar activity in the interpositus nucleus. Thus, the learning-induced neuronal activity in the lateral pontine nucleus was most likely driven by the cerebellar interpositus nucleus.
Collapse
Affiliation(s)
- S Bao
- Neuroscience Program, University of Southern California, Los Angeles 90089-2520, USA
| | | | | |
Collapse
|
50
|
Svensson P, Ivarsson M. Short-lasting conditioned stimulus applied to the middle cerebellar peduncle elicits delayed conditioned eye blink responses in the decerebrate ferret. Eur J Neurosci 1999; 11:4333-40. [PMID: 10594659 DOI: 10.1046/j.1460-9568.1999.00862.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In delay eye blink conditioning, the conditioned stimulus (CS) ends at the time of the unconditioned stimulus (US). If the CS duration is decreased, there will be a 'trace' period with no ongoing CS before the onset of the US. During this period some neural activity has to continue after the CS offset to: (i) permit association between the CS and the US; and (ii) elicit a conditioned response appearing after the CS offset. In this study we test the role of the cerebellum in maintaining CS activity required for eliciting a conditioned response after the CS offset. Decerebrate ferrets were trained in a delay conditioning paradigm with an electrical stimulation of the forelimb as CS and of the periorbital area as US. The conditioned responses in the upper eyelid were monitored with electromyographical techniques. In well-trained animals, test CSs of short duration down to 0.2 ms were applied to the forelimb or the middle cerebellar peduncle, while the interstimulus interval between CS onset and US onset was kept constant at 300 ms. Test CSs of short duration applied to the forelimb elicited conditioned responses. More importantly, also a short-lasting CS to the middle cerebellar peduncle could elicit conditioned responses. The results indicate that precerebellar CS pathways are not required for maintaining the neural activity that elicits conditioned responses after the CS offset. It is suggested that neurons maintaining such activity are located in the cerebellum, either the cortex alone or the cortex and the deep nuclei.
Collapse
Affiliation(s)
- P Svensson
- Section for Neurophysiology, Department of Physiological Sciences, Lund, Sweden.
| | | |
Collapse
|