1
|
Stambler BS, Ryu KP. Atrial natriuretic peptide accelerates onset and dynamics of ventricular fibrillation during hypokalemia in isolated rabbit hearts. J Electrocardiol 2020; 62:184-189. [PMID: 32961473 DOI: 10.1016/j.jelectrocard.2020.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Atrial natriuretic peptide (ANP), which is released by the heart in response to acute cardiac stretch, possesses cardiac electrophysiological properties that include modulation of ion channel function and repolarization. However, data regarding whether ANP can directly modulate electrical instability or arrhythmias are largely lacking. OBJECTIVE This study sought to determine whether ANP modifies onset or electrophysiological characteristics of ventricular fibrillation (VF) induced by severe hypokalemia in an isolated heart model. METHODS Langendorff-perfused rabbit hearts in the absence and presence of 10 nM ANP (n = 9 in each group) were subjected to a low potassium (K+) perfusate (1.2 mM K+). Left ventricular (LV) epicardial monophasic action potential (MAP) and pressure were monitored continuously. Incidence and time to onset of VF and dominant frequency during VF determined by spectral analysis were evaluated. RESULTS ANP did not alter ventricular repolarization (MAP duration) or LV pressure during perfusion with physiologic, K+-containing solution. Within the first 30 s after low K+ perfusion, ANP accelerated the onset of beat-to-beat repolarization alternans (100% vs. 33% in ANP-treated vs. non-treated hearts, p < 0.01). During low K+ perfusion, the incidence of VF did not differ between ANP-treated and non-treated hearts (8 of 9 [89%] in each group). However, VF occurred sooner (3.75 ± 0.33 vs. 5.78 ± 0.70 min, P < 0.05) and immediately after VF onset, peak dominant frequency was higher (24.1 ± 7.3 vs. 14.2 ± 2.3 Hz, P = 0.01) in ANP-treated than in non-treated hearts. CONCLUSIONS ANP accelerates initiation of VF and increases maximum dominant frequency during VF in isolated hearts subjected to severe hypokalemia.
Collapse
Affiliation(s)
- Bruce S Stambler
- Piedmont Heart Institute, Atlanta, GA, United States of America.
| | | |
Collapse
|
2
|
Menon A, Hong L, Savio-Galimberti E, Sridhar A, Youn SW, Zhang M, Kor K, Blair M, Kupershmidt S, Darbar D. Electrophysiologic and molecular mechanisms of a frameshift NPPA mutation linked with familial atrial fibrillation. J Mol Cell Cardiol 2019; 132:24-35. [PMID: 31077706 DOI: 10.1016/j.yjmcc.2019.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 11/28/2022]
Abstract
A frameshift (fs) mutation in the natriuretic peptide precursor A (NPPA) gene, encoding a mutant atrial natriuretic peptide (Mut-ANP), has been linked with familial atrial fibrillation (AF) but the underlying mechanisms by which the mutation causes AF remain unclear. We engineered 2 transgenic (TG) mouse lines expressing the wild-type (WT)-NPPA gene (H-WT-NPPA) and the human fs-Mut-NPPA gene (H-fsMut-NPPA) to test the hypothesis that mice overexpressing the human NPPA mutation are more susceptible to AF and elucidate the underlying electrophysiologic and molecular mechanisms. Transthoracic echocardiography and surface electrocardiography (ECG) were performed in H-fsMut-NPPA, H-WT-NPPA, and Non-TG mice. Invasive electrophysiology, immunohistochemistry, Western blotting and patch clamping of membrane potentials were performed. To examine the role of the Mut-ANP in ion channel remodeling, we measured plasma cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) levels and protein kinase A (PKA) activity in the 3 groups of mice. In H-fsMut-NPPA mice mean arterial pressure (MAP) was reduced when compared to H-WT-NPPA and Non-TG mice. Furthermore, injection of synthetic fs-Mut-ANP lowered the MAP in H-WT-NPPA and Non-TG mice while synthetic WT-ANP had no effect on MAP in the 3 groups of mice. ECG characterization revealed significantly prolonged QRS duration in H-fsMut-NPPA mice when compared to the other two groups. Trans-Esophageal (TE) atrial pacing of H-fsMut-NPPA mice showed increased AF burden and AF episodes when compared with H-WT-NPPA or Non-TG mice. The cardiac Na+ (NaV1.5) and Ca2+ (CaV1.2/CaV1.3) channel expression and currents (INa, ICaL) and action potential durations (APD90/APD50/APD20) were significantly reduced in H-fsMut-NPPA mice while the rectifier K+ channel current (IKs) was markedly increased when compared to the other 2 groups of mice. In addition, plasma cGMP levels were only increased in H-fsMut-NPPA mice with a corresponding reduction in plasma cAMP levels and PKA activity. In summary, we showed that mice overexpressing an AF-linked NPPA mutation are more prone to develop AF and this risk is mediated in part by remodeling of the cardiac Na+, Ca2+ and K+ channels creating an electrophysiologic substrate for reentrant AF.
Collapse
Affiliation(s)
- Ambili Menon
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Liang Hong
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Eleonora Savio-Galimberti
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America
| | - Arvind Sridhar
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Seock-Won Youn
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America; Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Meihong Zhang
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kaylen Kor
- Department of Pharmacology, Vanderbilt University Medical Center, United States of America
| | - Marcia Blair
- Department of Pharmacology, Vanderbilt University Medical Center, United States of America
| | - Sabina Kupershmidt
- Department of Nursing, University of South Dakota Sioux Falls, SD, United States of America
| | - Dawood Darbar
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America; Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States of America; Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America.
| |
Collapse
|
3
|
Moghtadaei M, Polina I, Rose RA. Electrophysiological effects of natriuretic peptides in the heart are mediated by multiple receptor subtypes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:37-49. [DOI: 10.1016/j.pbiomolbio.2015.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022]
|
4
|
Ishikawa T, Tsuji Y, Makita N. Inherited bradyarrhythmia: A diverse genetic background. J Arrhythm 2015; 32:352-358. [PMID: 27761158 PMCID: PMC5063261 DOI: 10.1016/j.joa.2015.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/03/2015] [Accepted: 09/16/2015] [Indexed: 12/31/2022] Open
Abstract
Bradyarrhythmia is a common heart rhythm abnormality comprising number of diseases and is associated with decreased heart rate due to the failure of action potential generation and propagation at the sinus node. Permanent pacemaker implantation is often used therapeutically to compensate for decreased heart rate and cardiac output. The vast majority of bradyarrhythmia cases are attributable either to aging or to structural abnormalities of the cardiac conduction system, caused by underlying structural heart disease. However, there is a subset of bradyarrhythmia primarily caused by genetic defects in the absence of aging or underlying structural heart disease. These include several genes that play principal roles in cardiac electrophysiology, heart development, cardioprotection, and the structural integrity of the membrane and sarcomere. Recent advances in the functional analysis of mutations using a heterologous expression system and genetically engineered animal models have provided significant insights into the underlying molecular mechanisms responsible for inherited arrhythmia. In this review, current understandings of the genetic and molecular basis of inherited bradyarrhythmia are presented.
Collapse
Affiliation(s)
- Taisuke Ishikawa
- Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yukiomi Tsuji
- Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Naomasa Makita
- Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
5
|
Govindan M, Borgulya G, Kiotsekoglou A, Saha SK, Camm AJ. Prognostic value of left atrial expansion index and exercise-induced change in atrial natriuretic peptide as long-term predictors of atrial fibrillation recurrence. ACTA ACUST UNITED AC 2012; 14:1302-10. [DOI: 10.1093/europace/eus088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Perrin MJ, Gollob MH. The role of atrial natriuretic peptide in modulating cardiac electrophysiology. Heart Rhythm 2011; 9:610-5. [PMID: 22083030 DOI: 10.1016/j.hrthm.2011.11.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Indexed: 11/29/2022]
Abstract
Since the discovery of atrial natriuretic peptide (ANP) in 1981, significant progress has been made in understanding the mechanism of its release and its role in salt and water balance in the body. It has also become clear that ANP plays a key role in cardiac electrophysiology, modulating the autonomic nervous system and regulating the function of cardiac ion channels. The clinical importance of this role was established when mutations in NPPA, the gene encoding ANP, were identified as a cause of familial atrial fibrillation. This review examines our current understanding of the electrophysiological effects of ANP, and their physiological relationship to clinical studies linking ANP and atrial fibrillation.
Collapse
Affiliation(s)
- Mark J Perrin
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
7
|
Chung CY, Bien H, Sobie EA, Dasari V, McKinnon D, Rosati B, Entcheva E. Hypertrophic phenotype in cardiac cell assemblies solely by structural cues and ensuing self-organization. FASEB J 2010; 25:851-62. [PMID: 21084696 DOI: 10.1096/fj.10-168625] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In vitro models of cardiac hypertrophy focus exclusively on applying "external" dynamic signals (electrical, mechanical, and chemical) to achieve a hypertrophic state. In contrast, here we set out to demonstrate the role of "self-organized" cellular architecture and activity in reprogramming cardiac cell/tissue function toward a hypertrophic phenotype. We report that in neonatal rat cardiomyocyte culture, subtle out-of-plane microtopographic cues alter cell attachment, increase biomechanical stresses, and induce not only structural remodeling, but also yield essential molecular and electrophysiological signatures of hypertrophy. Increased cell size and cell binucleation, molecular up-regulation of released atrial natriuretic peptide, altered expression of classic hypertrophy markers, ion channel remodeling, and corresponding changes in electrophysiological function indicate a state of hypertrophy on par with other in vitro and in vivo models. Clinically used antihypertrophic pharmacological treatments partially reversed hypertrophic behavior in this in vitro model. Partial least-squares regression analysis, combining gene expression and functional data, yielded clear separation of phenotypes (control: cells grown on flat surfaces; hypertrophic: cells grown on quasi-3-dimensional surfaces and treated). In summary, structural surface features can guide cardiac cell attachment, and the subsequent syncytial behavior can facilitate trophic signals, unexpectedly on par with externally applied mechanical, electrical, and chemical stimulation.
Collapse
Affiliation(s)
- Chiung-yin Chung
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-8181, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Abraham RL, Yang T, Blair M, Roden DM, Darbar D. Augmented potassium current is a shared phenotype for two genetic defects associated with familial atrial fibrillation. J Mol Cell Cardiol 2009; 48:181-90. [PMID: 19646991 DOI: 10.1016/j.yjmcc.2009.07.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 07/10/2009] [Accepted: 07/23/2009] [Indexed: 12/19/2022]
Abstract
Mutations in multiple genes have been implicated in familial atrial fibrillation (AF), but the underlying mechanisms, and thus implications for therapy, remain ill-defined. Among 231 participants in the Vanderbilt AF Registry, we found a mutation in KCNQ1 (encoding the alpha-subunit of slow delayed rectifier potassium current [I(Ks)]) and separately a mutation in natriuretic peptide precursor A (NPPA) gene (encoding atrial natriuretic peptide, ANP), both segregating with early onset lone AF in different kindreds. The functional effects of these mutations yielded strikingly similar I(Ks) "gain-of-function." In Chinese Hamster Ovary (CHO) cells, coexpression of mutant KCNQ1 with its ancillary subunit KCNE1 generated approximately 3-fold larger currents that activated much faster than wild-type (WT)-I(Ks). Application of the WT NPPA peptide fragment produced similar changes in WT-I(Ks), and these were exaggerated with the mutant NPPA S64R peptide fragment. Anantin, a competitive ANP receptor antagonist, completely inhibited the changes in I(Ks) gating observed with NPPA S64R. Computational simulations identified accelerated transitions into open states as the mechanism for variant I(Ks) gating. Incorporating these I(Ks) changes into computed human atrial action potentials (AP) resulted in 37% shortening (120 vs. 192 ms at 300 ms cycle length), reflecting loss of the phase II dome which is dependent on L-type calcium channel current. We found striking functional similarities due to mutations in KCNQ1 and NPPA genes which led to I(Ks) "gain-of-function", atrial AP shortening, and consequently altered calcium current as a common mechanism between diverse familial AF syndromes.
Collapse
Affiliation(s)
- Robert L Abraham
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, 1285A MRB IV, 2311 Pierce Avenue, Nashville, TN 37232-6602, USA
| | | | | | | | | |
Collapse
|
9
|
Inaba H, Hayami N, Ajiki K, Sugishita Y, Kunishima T, Yamagishi N, Yamagishi S, Murakawa Y. Human atrial natriuretic peptide suppresses torsades de pointes in rabbits. Circ J 2008; 72:820-4. [PMID: 18441465 DOI: 10.1253/circj.72.820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The increase in inward current, primarily L-type Ca2+ current, facilitates torsades de pointes (TdP). Because human atrial natriuretic peptide (ANP) moderates the L-type Ca2+ current, in our study it was hypothesized that ANP counteracts TdP. METHODS AND RESULTS We tested the effect of ANP, guanosine 3', 5'-cyclic monophosphate analogue (8-bromo cGMP) and hydralazine on the occurrence of TdP in a rabbit model. In control rabbits, administration of methoxamine and nifekalant almost invariably caused TdP (14/15). In contrast, ANP (10 microg . kg(-1) . min(-1)) markedly abolished TdP (2/15), whereas hydralazine failed to show a comparable anti-arrhythmic action (10/15). TdP occurred only in 1 of 15 rabbits treated with 8-bromo cGMP. Presence of early afterdepolarization-like hump in the ventricular monophasic action potential was associated with the occurrence of TdP. CONCLUSION Results suggest that ANP affects TdP in the rabbit model, and that this anti-arrhythmic effect of ANP is not necessarily shared by other vasodilating agents.
Collapse
Affiliation(s)
- Hideko Inaba
- Fourth Department of Internal Medicine, Mizonokuchi Hospital, Teikyo University School of Medicine, Kawasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Stambler BS, Guo GB. Atrial natriuretic peptide has dose-dependent, autonomically mediated effects on atrial refractoriness and repolarization in anesthetized dogs. J Cardiovasc Electrophysiol 2006; 16:1341-7. [PMID: 16403067 DOI: 10.1111/j.1540-8167.2005.00259.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Atrial natriuretic peptide (ANP) may alter electrophysiological properties of the heart and possibly have a role in arrhythmogenesis. However, previous studies have yielded conflicting results and have not fully considered whether ANP's cardiac electrophysiological effects are mediated via direct actions and/or indirectly via the autonomic nervous system. This study's aim was to establish whether ANP infused at pathophysiological and pharmacological doses has significant in vivo cardiac electrophysiological effects and to determine whether these effects are directly or autonomically mediated. METHODS AND RESULTS Electrophysiologic and hemodynamic effects of ANP infusion (human ANP at 15-600 ng/kg per minute) were examined in chloralose-anesthetized dogs under conditions of varying autonomic blockade. In autonomically intact dogs (n = 12), low-dose ANP (15 ng/kg per minute) shortened atrial effective refractory period (ERP) (P < 0.001) and monophasic action potential duration (MAPD90) (P < 0.05) at 600, 500, and 400 msec atrial paced cycle lengths and reduced right atrial pressure (P < 0.05) but did not alter mean arterial pressure. After either combined vagal and beta-adrenergic blockade (vagotomy plus atropine plus propranolol, n = 7) or selective vagal blockade (n = 9), low-dose ANP no longer altered atrial ERP or MAPD90. Higher ANP doses (150 and 600 ng/kg per minute) decreased mean arterial and right atrial pressures (P < 0.001) but did not alter atrial ERP, MAPD90, or other electrophysiological parameters including atrial fibrillation threshold, ventricular ERP, and MAPD90. CONCLUSION ANP has dose-dependent, autonomically mediated effects on atrial refractoriness and repolarization.
Collapse
Affiliation(s)
- Bruce S Stambler
- Department of Medicine, McGuire Veterans Affairs Medical Center, Medical College of Virginia, Richmond, Virginia, USA.
| | | |
Collapse
|
12
|
STAMBLER BRUCES, GUO GARYB. Atrial Natriuretic Peptide Has Dose-Dependent, Autonomically Mediated Effects on Atrial Refractoriness and Repolarization in Anesthetized Dogs. J Cardiovasc Electrophysiol 2005. [DOI: 10.1111/j.1540-8167.2005.40488.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Fenelon G, Protter AA, Stambler BS. Examination of the in vivo cardiac electrophysiological effects of nesiritide (human brain natriuretic peptide) in conscious dogs. J Card Fail 2002; 8:320-5. [PMID: 12411983 DOI: 10.1054/jcaf.2002.127772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Human brain natriuretic peptide (hBNP) is a new therapeutic agent, nesiritide, indicated in patients with decompensated congestive heart failure, a group at significant risk of developing cardiac arrhythmias. Whether hBNP has cardiac electrophysiologic effects has not been reported. METHODS AND RESULTS In 9 healthy, chronically instrumented, conscious dogs, hemodynamic and electrophysiologic parameters were assessed at baseline and during recombinant hBNP (nesiritide) infusion at 0.03 and 0.09 microg/kg/min after 1 hour at each dose. Infusion of hBNP produced dose-related increases (P <.001) in hBNP and cyclic GMP plasma levels and reductions (P <.05) in mean arterial pressure. Mean central venous pressure and sinus cycle length did not change significantly. Infusion of hBNP produced no significant changes in any of the electrophysiologic parameters including no change in surface ECG variables (P wave duration, PR interval, QRS duration, and QTc interval), corrected sinus node recovery time, atrioventricular nodal Wenckebach cycle length, and atrial and ventricular effective refractory periods measured at a 400 ms cycle length. Spontaneous or induced arrhythmias were not observed during hBNP infusion. CONCLUSIONS In conscious, healthy dogs, short-term infusion of recombinant hBNP has no significant effects on atrial or ventricular electrophysiologic parameters.
Collapse
MESH Headings
- Animals
- Arrhythmias, Cardiac/chemically induced
- Arrhythmias, Cardiac/physiopathology
- Consciousness/physiology
- Cyclic GMP/blood
- Dogs
- Dose-Response Relationship, Drug
- Electric Stimulation
- Electrocardiography
- Electrophysiologic Techniques, Cardiac
- Heart Atria/drug effects
- Heart Conduction System/drug effects
- Heart Conduction System/physiology
- Heart Ventricles/drug effects
- Hemodynamics/drug effects
- Infusions, Intravenous
- Models, Animal
- Models, Cardiovascular
- Natriuretic Agents/physiology
- Natriuretic Peptide, Brain/blood
- Natriuretic Peptide, Brain/drug effects
- Natriuretic Peptide, Brain/pharmacology
- Reference Values
- Treatment Outcome
- Ventricular Function
Collapse
Affiliation(s)
- Guilherme Fenelon
- Department of Medicine, West Roxbury Veterans Affairs Medical Center, Harvard Medical School, West Roxbury, Massachusetts, USA
| | | | | |
Collapse
|
14
|
Shimizu K, Shintani Y, Ding WG, Matsuura H, Bamba T. Potentiation of slow component of delayed rectifier K(+) current by cGMP via two distinct mechanisms: inhibition of phosphodiesterase 3 and activation of protein kinase G. Br J Pharmacol 2002; 137:127-37. [PMID: 12183338 PMCID: PMC1573469 DOI: 10.1038/sj.bjp.0704843] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2002] [Accepted: 06/13/2002] [Indexed: 11/08/2022] Open
Abstract
1. Regulation of the slowly activating component of delayed rectifier K(+) current (I(Ks)) by intracellular guanosine 3'5' cyclic monophosphate (cGMP) was investigated in guinea-pig sino-atrial (SA) node cells using the whole-cell patch-clamp method. 2. When a cell was dialyzed with pipette solution containing 100 micro M cGMP, I(Ks) started to gradually increase and reached a maximum increase of a factor of 2.37 +/- 0.39 (n = 4) about 10-15 min after rupture of patch membrane. Atrial natriuretic peptide (ANP, 100 nM) also potentiated I(Ks), consistent with intracellular cGMP-induced enhancement of I(Ks). 3. Bath application of a selective blocker of the cGMP-inhibited phosphodiesterase (PDE3) milrinone (100 microM) enhanced I(Ks) by a factor of 1.50 +/- 0.09 (n = 4) but failed to further enhance I(Ks) after a maximum stimulation by intracellular cGMP (100 microM), suggesting that blockade of PDE3 activity is involved in the enhancement of I(Ks). A potent but nonspecific PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX, 100 microM) further increased I(Ks) stimulated by 100 microM milrinone, indicating that PDE subtypes other than PDE3 are also involved in the regulation of basal I(Ks) in guinea-pig SA node cells. 4. Bath application of 100 microM 8-bromoguanosine 3'5' cyclic monophosphate (8-Br-cGMP) increased I(Ks) by a factor of 1.48 +/- 0.11 (n = 5) and this stimulatory effect was totally abolished by cGMP-dependent protein kinase (PKG) inhibitor KT-5823 (500 nM), suggesting that the activation of PKG also mediates cGMP-induced potentiation of I(Ks). 5. These results strongly suggest that intracellular cGMP potentiates I(Ks) not only by blocking PDE3 but also by activating PKG in guinea-pig SA node cells.
Collapse
Affiliation(s)
- Kentaro Shimizu
- Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Yutaka Shintani
- Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Tadao Bamba
- Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
15
|
Bode F, Katchman A, Woosley RL, Franz MR. Gadolinium decreases stretch-induced vulnerability to atrial fibrillation. Circulation 2000; 101:2200-5. [PMID: 10801762 DOI: 10.1161/01.cir.101.18.2200] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is frequently associated with atrial dilatation caused by pressure or volume overload. Stretch-activated channels (SACs) have been found in myocardial cells and may promote AF in dilated atria. To prove this hypothesis, we investigated the effect of the SAC blocker gadolinium (Gd(3+)) on AF propensity in the isolated rabbit heart during atrial stretch. METHODS AND RESULTS In 16 isolated Langendorff-perfused rabbit hearts, the interatrial septum was perforated to equalize biatrial pressures. Caval and pulmonary veins were occluded. Intra-atrial pressure (IAP) was increased in steps of 2 to 3 cm H(2)O by increasing the pulmonary outflow fluid column. Vulnerability to AF was evaluated by 15-second burst pacing at each IAP level. At baseline, IAP needed to be raised to 8.8+/-0.2 cm H(2)O (mean+/-SEM) to induce AF. A dose-dependent decrease in AF vulnerability was observed after Gd(3+) 12.5, 25, and 50 micromol/L was added. AF threshold increased to 19.0+/-0.5 cm H(2)O with Gd(3+) 50 micromol/L (P<0.001 versus baseline). Spontaneous runs of AF occurred in 5 hearts on a rise of IAP to 13.8+/-3.3 cm H(2)O at baseline but never during Gd(3+). Atrial effective refractory period shortened progressively from 78+/-3 ms at 0.5 cm H(2)O to 52+/-3 ms at 20 cm H(2)O (P<0.05). Gd(3+) 50 micromol/L had no significant effect on effective refractory period. CONCLUSIONS Acute atrial stretch significantly enhances the vulnerability to AF. Gd(3+) reduces the stretch-induced vulnerability to AF in a dose-dependent manner. Block of SAC might represent a novel antiarrhythmic approach to AF under conditions of elevated atrial pressure or volume.
Collapse
Affiliation(s)
- F Bode
- Department of Pharmacology, Georgetown University, Veterans Affairs Medical Center, Washington, DC 20422, USA
| | | | | | | |
Collapse
|
16
|
Shimoni Y. Hormonal control of cardiac ion channels and transporters. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 72:67-108. [PMID: 10446502 DOI: 10.1016/s0079-6107(99)00005-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Y Shimoni
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Alta., Canada.
| |
Collapse
|
17
|
Pacher P, Ungvári Z, Nánási PP, Kecskeméti V. Electrophysiological changes in rat ventricular and atrial myocardium at different stages of experimental diabetes. ACTA PHYSIOLOGICA SCANDINAVICA 1999; 166:7-13. [PMID: 10372973 DOI: 10.1046/j.1365-201x.1999.00538.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Action potential configuration in ventricular and atrial myocardium, as well as rate-dependent changes in ventricular action potential duration (APD) were studied and compared in healthy and diabetic rats. Diabetes was induced by a single injection of streptozotocin (STZ, 65 mg kg(-1) i.v.). Conventional microelectrode techniques were applied to record action potentials after the establishment of diabetes (2, 6, 10 and 18 weeks after STZ-treatment). Untreated age-matched animals were used as controls. Both depolarization and repolarization were significantly retarded following STZ-treatment. However, the time course of development of diabetic changes in atrial and ventricular myocardium was different. APD was significantly lengthened from week 2 of diabetes in ventricular, but only from week 6 in atrial preparations. In atrial myocardium, lengthening of APD was more pronounced at early rather than late phases of repolarization. The maximum rate of depolarization (Vmax) was significantly reduced from the 6th week of diabetes in both preparations. No differences were observed in action potential amplitude (except at week 18) and in the resting membrane potential in diabetic rats. Diabetic ventricular preparations showed a positive APD-frequency relationship at any level of repolarization, in contrast to control muscles, where APD25 and APD50 values lengthened. But APD75 and APD90 values were not changed significantly with increase in the pacing frequency. The results indicate that development of diabetic alterations are not fully identical in atrial and ventricular myocardium of the rat, probably owing to differences in density and kinetics of ionic currents responsible for atrial and ventricular action potentials.
Collapse
Affiliation(s)
- P Pacher
- Department of Pharmacology, Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | |
Collapse
|
18
|
Friedman PA, Hill MR, Stanton MS. Cardiac parasympathetic stimulation via QRS-synchronous low-energy shocks in humans. J Cardiovasc Electrophysiol 1999; 10:10-6. [PMID: 9930904 DOI: 10.1111/j.1540-8167.1999.tb00636.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION In patients receiving test shocks to verify lead connections at implantation, we anecdotally have observed postshock delay. The purpose of this study was to determine whether QRS-synchronous low-energy shocks delivered by implantable defibrillators result in postshock cycle length prolongation, and to determine the mechanism of this phenomenon. METHODS AND RESULTS Twenty-five patients undergoing defibrillator testing were studied, three with epicardial patches and 22 with transvenous leads. Each patient received QRS-synchronous shocks of 0.2, 0.4, 0.6, and 2.0 J in random order. Patients were further randomized to receive either saline or 2.0 mg atropine intravenously, and then given a second sequence of shocks. At baseline, the postshock cycle length (1,035+/-245 msec) was significantly longer than the preshock cycle length (968+/-177 msec, P = 0.01). In patients with a coronary sinus (CS) or superior vena cava (SVC) lead, the mean prolongation was 91+/-160 msec, compared with 12+/-106 msec for patients without such a lead (P < 0.0001). All energy levels resulted in significant postshock prolongation compared with preshock cycle lengths (P < 0.05). Postshock prolongation before atropine was 76+/-162 msec, compared with -13+/-52 msec afterward (P < 0.00001). Biphasic shocks resulted in greater postshock prolongation than monophasic shocks of equal energy. CONCLUSION Low-energy shocks delivered during the QRS complex cause postshock cycle length prolongation in man. This effect required the presence of a CS or SVC lead. Atropine inhibited this effect, suggesting the phenomenon was mediated by direct cardiac parasympathetic nerve stimulation by the intracardiac shock.
Collapse
Affiliation(s)
- P A Friedman
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
19
|
Murakawa Y, Yamashita T, Kanese Y, Omata M. Effect of atrial natriuretic peptide on electrical defibrillation efficacy. J Cardiovasc Electrophysiol 1998; 9:962-9. [PMID: 9786076 DOI: 10.1111/j.1540-8167.1998.tb00136.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION In vitro studies have suggested that human atrial natriuretic peptide (ANP) modulates the electrophysiologic properties of myocardial cells. This study assessed whether ANP could influence defibrillation efficacy. METHODS AND RESULTS In 35 anesthetized dogs, the transcardiac defibrillation threshold (DFT) as well as hemodynamic and electrophysiologic variables were determined before and during treatment with ANP (n = 11), hydralazine (n = 11), or saline (n = 13). ANP (1.5 microg/kg + 0.2 microg/kg per min) increased the plasma concentration of cyclic GMP (a second messenger for ANP) and significantly decreased aortic blood pressure (mean 100+/-11 mmHg to 83+/-15 mmHg). ANP also prolonged ventricular repolarization (effective refractory period 157+/-7 msec to 165+/-11 msec) and markedly reduced DFT (5.4+/-1.2 J to 3.8+/-0.7 J [P < 0.01]) without changing pulmonary artery pressure or sinus cycle length. Neither saline nor hydralazine (1.5 mg/kg) had a significant effect on DFT (saline 4.7+/-2.1 J to 4.6+/-2.4 J; hydralazine 4.3+/-2.0 J to 4.2+/-1.9 J), although hydralazine caused pronounced hypotension (mean aortic pressure 103+/-9 mmHg to 74+/-13 mmHg). CONCLUSION These results suggest that ANP increases defibrillation efficacy, and that this effect is not necessarily shared by other vasodilating agents.
Collapse
Affiliation(s)
- Y Murakawa
- Second Department of Internal Medicine, University of Tokyo, Japan.
| | | | | | | |
Collapse
|
20
|
Pacher P, Kecskemeti V, Ronai AZ, Balogh I, Szalai G, Matkovics B. Changes in cardiac electrophysiology, morphology, tissue biochemistry and vascular reactions in glutathione depleted animals. Mol Cell Biochem 1998; 185:183-190. [PMID: 9746225 DOI: 10.1023/a:1006844012590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of acute and chronic glutathione depletion (single i.p. injection of 3 mmol/kg L-buthionine-S,R-sulphoximine and 2 mmol/kg for 4 days) on heart action potential (AP) characteristics, electronmicroscopy, cytochemistry and biochemistry and vascular contractility and nitric oxide-mediated relaxation were studied in rats and guinea pigs. In guinea pig cardiac preparations both acute and chronic glutathione depletion caused a significant decrease of maximum rate of rise of depolarization phase and duration of action potential AP(APD) at 25, 50, and 90% of repolarization but did not modify the other AP parameters. The contractile responses of helically cut aortic strips to norepinephrine were not altered by chronic glutathione depletion but the relaxing responses of precontracted preparations to acetylcholine were significantly reduced both in rats and guinea pigs. Morphologically there were indications of permeability changes, intracellular and interstitial edema and myofilament damage in the myocardium. There was also a decrease in cytochromoxydase and succinyl dehydrogenase activities both in rats and guinea pigs. The present data suggest that glutathione depletion may influence the Na+ and K+ channel activities, causes morphological and biochemical changes in cardiac preparations and may interfere with nitric oxide generation or its action in aortic strips.
Collapse
Affiliation(s)
- P Pacher
- Department of Pharmacology, Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
21
|
De Mello WC. Atrial natriuretic factor reduces cell coupling in the failing heart, an effect mediated by cyclic GMP. J Cardiovasc Pharmacol 1998; 32:75-9. [PMID: 9676724 DOI: 10.1097/00005344-199807000-00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The influence of the atrial natriuretic factor (ANF) on heart-cell communication was investigated in cell pairs isolated from the ventricle of cardiomyopathic hamsters (BIO TO-2; 11 months old), and the results were compared with controls (F1B) of same age. The results indicated that ANF (10(-8) M) added to the bath caused a decline in junctional conductance (gj) of 48 +/- 2% (n = 15) within 90 s. The effect of ANF was suppressed by HS-142-1, a specific antagonist of guanylyl cyclase ANF receptor. Moreover, the decline in gj elicited by ANF was related to the synthesis of cyclic guanosine monophosphate (cGMP). Indeed, dibutyryl-cGMP (10(-4) M) decreased gj by 80 +/- 3.5% (n = 15) within 90 s, and zaprinast, a selective inhibitor of cGMP phosphodiesterase, enhanced the effect of ANF on gj. The possible relationship between ischemia, ANF release, and impairment of cell coupling is discussed.
Collapse
Affiliation(s)
- W C De Mello
- Department of Pharmacology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan 00936-5067, USA
| |
Collapse
|
22
|
Billington T, Pharmawati M, Gehring CA. Isolation and immunoaffinity purification of biologically active plant natriuretic peptide. Biochem Biophys Res Commun 1997; 235:722-5. [PMID: 9207228 DOI: 10.1006/bbrc.1997.6883] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It has recently been demonstrated that antibodies against atrial natriuretic peptides (ANP) recognise analogues in plants and that rat ANP binds specifically to isolated plant membranes and promotes stomatal guard cell opening in a concentration dependent manner. Here we report the isolation and immunoaffinity purification of plant natriuretic peptide (PNP) from ivy (Hedera helix) with rabbit anti-alpha-ANP (1-28) (human, canine) antiserum. We also demonstrate that immunoaffinity purified plant peptide induces stomatal opening in a concentration dependent manner. This is therefore the first report of an active indigenous peptide hormone in plants. We propose that PNPs are part of a signalling system that has evolved early in evolution and is involved in the regulation of ion transport and transpiration in plants.
Collapse
Affiliation(s)
- T Billington
- School of Biological and Chemical Sciences, Deakin University, Geelong Campus, Victoria, Australia
| | | | | |
Collapse
|