1
|
Jorrin B, Palacios JM, Peix Á, Imperial J. Rhizobium ruizarguesonis sp. nov., isolated from nodules of Pisum sativum L. Syst Appl Microbiol 2020; 43:126090. [PMID: 32690191 DOI: 10.1016/j.syapm.2020.126090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 10/24/2022]
Abstract
Four strains, coded as UPM1132, UPM1133T, UPM1134 and UPM1135, and isolated from nodules of Pisum sativum plants grown on Ni-rich soils were characterised through a polyphasic taxonomy approach. Their 16S rRNA gene sequences were identical and showed 100% similarity with their closest phylogenetic neighbors, the species included in the 'R. leguminosarum group': R. laguerreae FB206T, R. leguminosarum USDA 2370T, R. anhuiense CCBAU 23252T, R. sophoreae CCBAU 03386T, R. acidisoli FH13T and R. hidalgonense FH14T, and 99.6% sequence similarity with R. esperanzae CNPSo 668T. The analysis of combined housekeeping genes recA, atpD and glnII sequences showed similarities of 92-95% with the closest relatives. Whole genome average nucleotide identity (ANI) values were 97.5-99.7% ANIb similarity among the four strains, and less than 92.4% with closely related species, while digital DNA-DNA hybridization average values (dDDH) were 82-85% within our strains and 34-52% with closely related species. Major fatty acids in strain UPM1133T were C18:1 ω7c / C18:1 ω6c in summed feature 8, C14:0 3OH/ C16:1 iso I in summed feature 2 and C18:0. Colonies were small to medium, pearl-white coloured in YMA at 28°C and growth was observed in the ranges 8-34°C, pH 5.5-7.5 and 0-0.7% (w/v) NaCl. The DNA G+C content was 60.8mol %. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strains UPM1132, UPM1133T, UPM1134 and UPM1135 into a novel species of Rhizobium, for which the name Rhizobium ruizarguesonis sp. nov. is proposed. The type strain is UPM1133T (=CECT 9542T=LMG 30526T).
Collapse
Affiliation(s)
- Beatriz Jorrin
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - José Manuel Palacios
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón, Madrid, Spain; Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Álvaro Peix
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain; Unidad Asociada Grupo de Interacción Planta-Microorganismo Universidad de Salamanca-IRNASA (CSIC).
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón, Madrid, Spain; Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
2
|
Schwarz C, Poss Z, Hoffmann D, Appel J. Hydrogenases and Hydrogen Metabolism in Photosynthetic Prokaryotes. RECENT ADVANCES IN PHOTOTROPHIC PROKARYOTES 2010; 675:305-48. [DOI: 10.1007/978-1-4419-1528-3_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
3
|
Imperlini E, Bianco C, Lonardo E, Camerini S, Cermola M, Moschetti G, Defez R. Effects of indole-3-acetic acid on Sinorhizobium meliloti survival and on symbiotic nitrogen fixation and stem dry weight production. Appl Microbiol Biotechnol 2009; 83:727-38. [PMID: 19343341 DOI: 10.1007/s00253-009-1974-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/18/2009] [Accepted: 03/19/2009] [Indexed: 11/24/2022]
Abstract
We evaluated the effects of the main auxin phytohormone, indole-3-acetic acid (IAA), on the central metabolism of Sinorhizobium meliloti 1021. We either treated S. meliloti 1021 wild-type cells with 0.5 mM IAA, 1021+, or use a derivative, RD64, of the same strain harboring an additional pathway for IAA biosynthesis (converting tryptophan into IAA via indoleacetamide). We assayed the activity of tricarboxylic acid cycle (TCA) key enzymes and found that activity of citrate synthase and alpha-ketoglutarate dehydrogenase were increased in both 1021+ and RD64 as compared to the wild-type strain. We also showed that the intracellular acetyl-CoA content was enhanced in both RD64 and 1021+ strains when compared to the control strain. The activity of key enzymes, utilizing acetyl-CoA for poly-beta-hydroxybutyrate (PHB) biosynthesis, was also induced. The PHB level measured in these cells were significantly higher than that found in control cells. Moreover, 4-week-long survival experiments showed that 80% of 1021 cells died, whereas 50% of RD64 cells were viable. Medicago truncatula plants nodulated by RD64 (Mt-RD64) showed an induction of both acetylene reduction activity and stem dry weight production.
Collapse
Affiliation(s)
- Esther Imperlini
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
4
|
Whole-genome transcriptional profiling of Bradyrhizobium japonicum during chemoautotrophic growth. J Bacteriol 2008; 190:6697-705. [PMID: 18689488 DOI: 10.1128/jb.00543-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium japonicum is a facultative chemoautotroph capable of utilizing hydrogen gas as an electron donor in a respiratory chain terminated by oxygen to provide energy for cellular processes and carbon dioxide assimilation via a reductive pentose phosphate pathway. A transcriptomic analysis of B. japonicum cultured chemoautotrophically identified 1,485 transcripts, representing 17.5% of the genome, as differentially expressed when compared to heterotrophic cultures. Genetic determinants required for hydrogen utilization and carbon fixation, including the uptake hydrogenase system and components of the Calvin-Benson-Bassham cycle, were strongly induced in chemoautotrophically cultured cells. A putative isocitrate lyase (aceA; blr2455) was among the most strongly upregulated genes, suggesting a role for the glyoxylate cycle during chemoautotrophic growth. Addition of arabinose to chemoautotrophic cultures of B. japonicum did not significantly alter transcript profiles. Furthermore, a subset of nitrogen fixation genes was moderately induced during chemoautotrophic growth. In order to specifically address the role of isocitrate lyase and nitrogenase in chemoautotrophic growth, we cultured aceA, nifD, and nifH mutants under chemoautotrophic conditions. Growth of each mutant was similar to that of the wild type, indicating that the glyoxylate bypass and nitrogenase activity are not essential components of chemoautotrophy in B. japonicum.
Collapse
|
5
|
Brito B, Toffanin A, Prieto RI, Imperial J, Ruiz-Argüeso T, Palacios JM. Host-dependent expression of Rhizobium leguminosarum bv. viciae hydrogenase is controlled at transcriptional and post-transcriptional levels in legume nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:597-604. [PMID: 18393619 DOI: 10.1094/mpmi-21-5-0597] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The legume host affects the expression of Rhizobium leguminosarum hydrogenase activity in root nodules. High levels of symbiotic hydrogenase activity were detected in R. leguminosarum bacteroids from different hosts, with the exception of lentil (Lens culinaris). Transcription analysis showed that the NifA-regulated R. leguminosarum hydrogenase structural gene promoter (P(1)) is poorly induced in lentil root nodules. Replacement of the P(1) promoter by the FnrN-dependent promoter of the fixN gene restored transcription of hup genes in lentil bacteroids, but not hydrogenase activity. In the P(fixN)-hupSL strain, additional copies of the hup gene cluster and nickel supplementation to lentil plants increased bacteroid hydrogenase activity. However, the level of activity in lentil still was significantly lower than in pea bacteroids, indicating that an additional factor is impairing hydrogenase expression inside lentil nodules. Immunological analysis revealed that lentil bacteroids contain reduced levels of both hydrogenase structural subunit HupL and nickel-binding protein HypB. Altogether, results indicate that hydrogenase expression is affected by the legume host at the level of both transcription of hydrogenase structural genes and biosynthesis or stability of nickel-related proteins HypB and HupL, and suggest the existence of a plant-dependent mechanism that affects hydrogenase activity during the symbiosis by limiting nickel availability to the bacteroid.
Collapse
Affiliation(s)
- Belén Brito
- Departamento de Biotecnología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica de Madrid (UPM), Spain
| | | | | | | | | | | |
Collapse
|
6
|
Fernández D, Toffanin A, Palacios JM, Ruiz-Argüeso T, Imperial J. Hydrogenase genes are uncommon and highly conserved in Rhizobium leguminosarum bv. viciae. FEMS Microbiol Lett 2005; 253:83-8. [PMID: 16216440 DOI: 10.1016/j.femsle.2005.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 09/14/2005] [Accepted: 09/14/2005] [Indexed: 11/30/2022] Open
Abstract
A screening for hydrogen uptake (hup) genes in Rhizobium leguminosarum bv. viciae isolates from different locations within Spain identified no Hup+ strains, confirming the scarcity of the Hup trait in R. leguminosarum. However, five new Hup+ strains were isolated from Ni-rich soils from Italy and Germany. The hup gene variability was studied in these strains and in six available strains isolated from North America. Sequence analysis of three regions within the hup cluster showed an unusually high conservation among strains, with only 0.5-0.6% polymorphic sites, suggesting that R. leguminosarum acquired hup genes de novo in a very recent event.
Collapse
Affiliation(s)
- Domingo Fernández
- Laboratorio de Microbiología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, s/n, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
7
|
Lira-Ruan V, Sarath G, Klucas RV, Arredondo-Peter R. In silico analysis of a flavohemoglobin from Sinorhizobium meliloti strain 1021. Microbiol Res 2003; 158:215-27. [PMID: 14521231 DOI: 10.1078/0944-5013-00200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hemoglobins (Hbs) have been characterized from a wide variety of eubacteria, but not from nitrogen-fixing rhizobia. Our search for Hb-like sequences in the Sinorhizobium meliloti genome revealed that a gene coding for a flavohemoglobin (fHb) exists in S. meliloti (SmfHb). Computer analysis showed that SmfHb and Alcaligenes eutrophus fHb are highly similar and could fold into the same tertiary structure. A FNR-like box was detected upstream of the smfhb gene and mapping analysis revealed that the smfhb gene is flanked by nos and fix genes. These observations suggest that smjhb is regulated by the concentration of O2 and that SmfHb functions in some aspects of nitrogen metabolism.
Collapse
Affiliation(s)
- Verónica Lira-Ruan
- Laboratorio de Biofísica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Colonia Chamilpa, 62210 Cuernavaca, Morelos, México
| | | | | | | |
Collapse
|
8
|
Baginsky C, Brito B, Imperial J, Palacios JM, Ruiz-Argüeso T. Diversity and evolution of hydrogenase systems in rhizobia. Appl Environ Microbiol 2002; 68:4915-24. [PMID: 12324339 PMCID: PMC126442 DOI: 10.1128/aem.68.10.4915-4924.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uptake hydrogenases allow rhizobia to recycle the hydrogen generated in the nitrogen fixation process within the legume nodule. Hydrogenase (hup) systems in Bradyrhizobium japonicum and Rhizobium leguminosarum bv. viciae show highly conserved sequence and gene organization, but important differences exist in regulation and in the presence of specific genes. We have undertaken the characterization of hup gene clusters from Bradyrhizobium sp. (Lupinus), Bradyrhizobium sp. (Vigna), and Rhizobium tropici and Azorhizobium caulinodans strains with the aim of defining the extent of diversity in hup gene composition and regulation in endosymbiotic bacteria. Genomic DNA hybridizations using hupS, hupE, hupUV, hypB, and hoxA probes showed a diversity of intraspecific hup profiles within Bradyrhizobium sp. (Lupinus) and Bradyrhizobium sp. (Vigna) strains and homogeneous intraspecific patterns within R. tropici and A. caulinodans strains. The analysis also revealed differences regarding the possession of hydrogenase regulatory genes. Phylogenetic analyses using partial sequences of hupS and hupL clustered R. leguminosarum and R. tropici hup sequences together with those from B. japonicum and Bradyrhizobium sp. (Lupinus) strains, suggesting a common origin. In contrast, Bradyrhizobium sp. (Vigna) hup sequences diverged from the rest of rhizobial sequences, which might indicate that those organisms have evolved independently and possibly have acquired the sequences by horizontal transfer from an unidentified source.
Collapse
Affiliation(s)
- Cecilia Baginsky
- Laboratorio de Microbiología, E.T.S. Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | | | |
Collapse
|
9
|
Axelsson R, Lindblad P. Transcriptional regulation of Nostoc hydrogenases: effects of oxygen, hydrogen, and nickel. Appl Environ Microbiol 2002; 68:444-7. [PMID: 11772661 PMCID: PMC126551 DOI: 10.1128/aem.68.1.444-447.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription of structural genes encoding two hydrogenases in N(2)-fixing cultures of the cyanobacteria Nostoc muscorum and Nostoc sp. strain PCC 73102 were examined by reverse transcription-PCR. A low level of oxygen and addition of nickel induce higher transcript levels of both hydrogenases, whereas molecular hydrogen has a positive effect on the transcription of the genes encoding only the uptake hydrogenase.
Collapse
Affiliation(s)
- Rikard Axelsson
- Department of Physiological Botany, EBC, Uppsala University, SE-752 36 Uppsala, Sweden.
| | | |
Collapse
|
10
|
Mattsson U, Sellstedt A. Hydrogenase in Frankia KB5: expression of and relation to nitrogenase. Can J Microbiol 2000; 46:1091-5. [PMID: 11142397 DOI: 10.1139/w00-100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The localization and expression of the hydrogenase in free-living Frankia KB5 was investigated immunologically and by monitoring activity, focusing on its relationships with nitrogenase and H2. Immunological studies revealed that the large subunit of the hydrogenase in Frankia KB5 was modified post-translationally, and transferred into the membrane after processing. The large subunit was constitutively expressed and no correlation was found between hydrogenase activity and synthesis. Although H2 was not needed for induction of hydrogenase synthesis, exogenously added H2 triggered hydrogen uptake in medium containing nitrogen, i.e., in the hyphae. A correlation between nitrogenase activity and hydrogen uptake was found in cultures grown in media without nitrogen, but interestingly the two enzymes showed no co-regulation.
Collapse
Affiliation(s)
- U Mattsson
- Department of Plant Physiology, Umeå University, Sweden.
| | | |
Collapse
|
11
|
Báscones E, Imperial J, Ruiz-Argüeso T, Palacios JM. Generation of new hydrogen-recycling Rhizobiaceae strains by introduction of a novel hup minitransposon. Appl Environ Microbiol 2000; 66:4292-9. [PMID: 11010872 PMCID: PMC92298 DOI: 10.1128/aem.66.10.4292-4299.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrogen evolution by nitrogenase is a source of inefficiency for the nitrogen fixation process by the Rhizobium-legume symbiosis. To develop a strategy to generate rhizobial strains with H(2)-recycling ability, we have constructed a Tn5 derivative minitransposon (TnHB100) that contains the ca. 18-kb H(2) uptake (hup) gene cluster from Rhizobium leguminosarum bv. viciae UPM791. Bacteroids from TnHB100-containing strains of R. leguminosarum bv. viciae PRE, Bradyrhizobium japonicum, R. etli, and Mesorhizobium loti expressed high levels of hydrogenase activity that resulted in full recycling of the hydrogen evolved by nitrogenase in nodules. Efficient processing of the hydrogenase large subunit (HupL) in these strains was shown by immunoblot analysis of bacteroid extracts. In contrast, Sinorhizobium meliloti, M. ciceri, and R. leguminosarum bv. viciae UML2 strains showed poor expression of the hup system that resulted in H(2)-evolving nodules. For the latter group of strains, no immunoreactive material was detected in bacteroid extracts using anti-HupL antiserum, suggesting a low level of transcription of hup genes or HupL instability. A general procedure for the characterization of the minitransposon insertion site and removal of antibiotic resistance gene included in TnHB100 has been developed and used to generate engineered strains suitable for field release.
Collapse
Affiliation(s)
- E Báscones
- Laboratorio de Microbiología, Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
12
|
Colombo MV, Gutiérrez D, Palacios JM, Imperial J, Ruiz-Argüeso T. A novel autoregulation mechanism of fnrN expression in Rhizobium leguminosarum bv viciae. Mol Microbiol 2000; 36:477-86. [PMID: 10792733 DOI: 10.1046/j.1365-2958.2000.01867.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fnrN gene from Rhizobium leguminosarum UPM791 controls microaerobic expression of both nitrogen fixation and hydrogenase activities in symbiotic cells. Two copies of fnrN are present in this strain, one chromosomal (fnrN1) and the other located in the symbiotic plasmid (fnrN2). Their expression was studied by cloning the regulatory regions in lacZ promoter-probe vectors. The fnrN genes were found to be autoregulated: they are expressed only at basal levels under aerobic conditions; they are highly expressed under microaerobic conditions; and they are expressed at basal levels in the double mutant DG2 (fnrN1 fnrN2) under any condition. The promoters of both genes contain two FnrN-binding sequences (anaeroboxes), centred at positions -12.5 (proximal anaerobox) and -44.5 (distal anaerobox). Expression analysis and gel retardation experiments with fnrN1-derivative promoter mutants altered in key bases of the anaerobox sequences demonstrated that binding of FnrN1 to the distal anaerobox is necessary for microaerobic activation of transcription, and that binding of FnrN1 to the proximal anaerobox results in transcriptional repression. The apparent affinity of FnrN1 for the proximal anaerobox was fivefold lower than for the distal anaerobox, resulting in repression of transcription of fnrN1 only at high-FnrN1 concentrations. This positive and negative autoregulation mechanism ensures an equilibrated expression of fnrN in response to microaerobic conditions.
Collapse
Affiliation(s)
- M V Colombo
- Laboratorio de Microbiología, E.T.S. Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, s/n, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
13
|
Brito B, Monza J, Imperial J, Ruiz-Argüeso T, Palacios JM. Nickel availability and hupSL activation by heterologous regulators limit symbiotic expression of the Rhizobium leguminosarum bv. viciae hydrogenase system in Hup(-) rhizobia. Appl Environ Microbiol 2000; 66:937-42. [PMID: 10698755 PMCID: PMC91926 DOI: 10.1128/aem.66.3.937-942.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A limited number of Rhizobium and Bradyrhizobium strains possess a hydrogen uptake (Hup) system that recycles the hydrogen released from the nitrogen fixation process in legume nodules. To extend this ability to rhizobia that nodulate agronomically important crops, we investigated factors that affect the expression of a cosmid-borne Hup system from Rhizobium leguminosarum bv. viciae UPM791 in R. leguminosarum bv. viciae, Rhizobium etli, Mesorhizobium loti, and Sinorhizobium meliloti Hup(-) strains. After cosmid pAL618 carrying the entire hup system of strain UPM791 was introduced, all recipient strains acquired the ability to oxidize H(2) in symbioses with their hosts, although the levels of hydrogenase activity were found to be strain and species dependent. The levels of hydrogenase activity were correlated with the levels of nickel-dependent processing of the hydrogenase structural polypeptides and with transcription of structural genes. Expression of the NifA-dependent hupSL promoter varied depending on the genetic background, while the hyp operon, which is controlled by the FnrN transcriptional regulator, was expressed at similar levels in all recipient strains. With the exception of the R. etli-bean symbiosis, the availability of nickel to bacteroids strongly affected hydrogenase processing and activity in the systems tested. Our results indicate that efficient transcriptional activation by heterologous regulators and processing of the hydrogenase as a function of the availability of nickel to the bacteroid are relevant factors that affect hydrogenase expression in heterologous rhizobia.
Collapse
Affiliation(s)
- B Brito
- Laboratorio de Microbiología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
14
|
Hernando Y, Palacios J, Imperial J, Ruiz-Argüeso T. Rhizobium leguminosarum bv. viciae hypA gene is specifically expressed in pea (Pisum sativum) bacteroids and required for hydrogenase activity and processing. FEMS Microbiol Lett 1998; 169:295-302. [PMID: 9868773 DOI: 10.1111/j.1574-6968.1998.tb13332.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Rhizobium leguminosarum bv. viciae strain UPM791 induces in symbiosis with peas the synthesis of a nickel-containing hydrogenase which recycles the hydrogen evolved by nitrogenase. The genes required for synthesis of this hydrogenase, hupSLCDEFGHIJKhypABFCDEX, are clustered in the symbiotic plasmid. Analysis of a hypA-deficient mutant showed that HypA is essential for symbiotic hydrogenase activity and required for correct processing of the hydrogenase large subunit. Unlike other microoxically induced hyp genes, the hypA gene was only expressed in pea bacteroids from its own promoter. The hypA mRNA 5' end was mapped 109 bp upstream of the translational start codon. This distinct pattern of expression suggests a different role for HypA and the remaining Hyp proteins in hydrogenase synthesis.
Collapse
Affiliation(s)
- Y Hernando
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | |
Collapse
|
15
|
Durmowicz MC, Maier RJ. The FixK2 protein is involved in regulation of symbiotic hydrogenase expression in Bradyrhizobium japonicum. J Bacteriol 1998; 180:3253-6. [PMID: 9620982 PMCID: PMC107833 DOI: 10.1128/jb.180.12.3253-3256.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The roles of the nitrogen fixation regulatory proteins NifA, FixK1, and FixK2 in the symbiotic regulation of hydrogenase structural gene expression in Bradyrhizobium japonicum have been investigated. Bacteroids from FixJ and FixK2 mutants have little or no hydrogenase activity, and extracts from these mutant bacteroids contain no hydrogenase protein. Bacteroids from a FixK1 mutant exhibit wild-type levels of hydrogenase activity. In beta-galactosidase transcriptional assays with NifA and FixK2 expression plasmids, the FixK2 protein induces transcription from the hup promoter to levels similar to those induced by HoxA, the transcriptional activator of free-living hydrogenase expression. The NifA protein does not activate transcription at the hydrogenase promoter. Therefore, FixK2 is involved in the transcriptional activation of symbiotic hydrogenase expression. By using beta-galactosidase transcriptional fusion constructs containing successive truncations of the hup promoter, the region of the hup promoter required for regulation by FixK2 was determined to be between 29 and 44 bp upstream of the transcription start site.
Collapse
Affiliation(s)
- M C Durmowicz
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
16
|
Gutiérrez D, Hernando Y, Palacios JM, Imperial J, Ruiz-Argüeso T. FnrN controls symbiotic nitrogen fixation and hydrogenase activities in Rhizobium leguminosarum biovar viciae UPM791. J Bacteriol 1997; 179:5264-70. [PMID: 9286975 PMCID: PMC179391 DOI: 10.1128/jb.179.17.5264-5270.1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rhizobium leguminosarum bv. viciae UPM791 contains a second copy of the fnrN gene, which encodes a redox-sensitive transcriptional activator functionally homologous to Escherichia coli Fnr. This second copy (fnrN2) is located in the symbiotic plasmid, while fnrN1 is in the chromosome. Isolation and sequencing of the fnrN2 gene revealed that the deduced amino acid sequence of FnrN2 is 87.5% identical to the sequence of FnrN1, including a conserved cysteine-rich motif characteristic of Fnr-like proteins. Individual R. leguminosarum fnrN1 and fnrN2 mutants exhibited a Fix+ phenotype and near wild-type levels of nitrogenase and hydrogenase activities in pea (Pisum sativum L.) nodules. In contrast, an fnrN1 fnrN2 double mutant formed ineffective nodules lacking both nitrogenase and hydrogenase activities. Unlike the wild-type strain and single fnrN1 or fnrN2 mutants, the fnrN1 fnrN2 double mutant was unable to induce micro-oxic or bacteroid activation of the hypBFCDEX operon, which encodes proteins essential for hydrogenase synthesis. In the search for symbiotic genes that could be controlled by FnrN, a fixNOQP operon, putatively encoding a micro-oxically induced, bacteroid-specific cbb3-type terminal cytochrome oxidase, was isolated from strain UPM791 and partially sequenced. The fixNOQP operon was present in a single copy located in the symbiotic plasmid, and an anaerobox was identified in the fixN promoter region. Consistent with this, a fixNOQP'-lacZ fusion was shown to be highly induced in micro-oxic cells of the wild-type strain. A high level of micro-oxic induction was also observed in single fnrN1 and fnrN2 mutants, but no detectable induction was observed in the fnrN1 fnrN2 double mutant. The lack of expression of fixNOQP in the fnrN1 fnrN2 double mutant is likely to cause the observed Fix- phenotype. These data demonstrate that, contrary to the situation in other rhizobia, FnrN controls both hydrogenase and nitrogenase activities of R. leguminosarum bv. viciae UPM791 in the nodule and suggest that this strain lacks a functional fixK gene.
Collapse
Affiliation(s)
- D Gutiérrez
- Laboratorio de Microbiología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | | | |
Collapse
|
17
|
Brito B, Martínez M, Fernández D, Rey L, Cabrera E, Palacios JM, Imperial J, Ruiz-Argüeso T. Hydrogenase genes from Rhizobium leguminosarum bv. viciae are controlled by the nitrogen fixation regulatory protein nifA. Proc Natl Acad Sci U S A 1997; 94:6019-24. [PMID: 9177161 PMCID: PMC20993 DOI: 10.1073/pnas.94.12.6019] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/1996] [Accepted: 04/07/1997] [Indexed: 02/04/2023] Open
Abstract
Rhizobium leguminosarum bv. viciae expresses an uptake hydrogenase in symbiosis with peas (Pisum sativum) but, unlike all other characterized hydrogen-oxidizing bacteria, cannot express it in free-living conditions. The hydrogenase-specific transcriptional activator gene hoxA described in other species was shown to have been inactivated in R. leguminosarum by accumulation of frameshift and deletion mutations. Symbiotic transcription of hydrogenase structural genes hupSL originates from a -24/-12 type promoter (hupSp). A regulatory region located in the -173 to -88 region was essential for promoter activity in R. leguminosarum. Activation of hupSp was observed in Klebsiella pneumoniae and Escherichia coli cells expressing the K. pneumoniae nitrogen fixation regulator NifA, and in E. coli cells expressing R. meliloti NifA. This activation required direct interaction of NifA with the essential -173 to -88 regulatory region. However, no sequences resembling known NifA-binding sites were found in or around this region. NifA-dependent activation was also observed in R. etli bean bacteroids. NifA-dependent hupSp activity in heterologous hosts was also absolutely dependent on the RpoN sigma-factor and on integration host factor. Proteins immunologically related to integration host factor were identified in R. leguminosarum. The data suggest that hupSp is structurally and functionally similar to nitrogen fixation promoters. The requirement to coordinate nitrogenase-dependent H2 production and H2 oxidation in nodules might be the reason for the loss of HoxA in R. leguminosarum and the concomitant NifA control of hup gene expression. This evolutionary acquired control would ensure regulated synthesis of uptake hydrogenase in the most common H2-rich environment for rhizobia, the legume nodule.
Collapse
Affiliation(s)
- B Brito
- Laboratorio de Microbiología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Durmowicz MC, Maier RJ. Roles of HoxX and HoxA in biosynthesis of hydrogenase in Bradyrhizobium japonicum. J Bacteriol 1997; 179:3676-82. [PMID: 9171416 PMCID: PMC179164 DOI: 10.1128/jb.179.11.3676-3682.1997] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In-frame deletion mutagenesis was used to study the roles of two Bradyrhizobium japonicum proteins, HoxX and HoxA, in hydrogenase biosynthesis; based on their sequences, these proteins were previously proposed to be sensor and regulator proteins, respectively, of a two-component regulatory system necessary for hydrogenase transcription. Deletion of the hoxX gene resulted in a strain that expressed only 30 to 40% of wild-type hydrogenase activity. The inactive unprocessed form of the hydrogenase large subunit accumulated in this strain, indicating a role for HoxX in posttranslational processing of the hydrogenase enzyme but not in transcriptional regulation. Strains containing a deletion of the hoxA gene or a double mutation (hoxX and hoxA) did not exhibit any hydrogenase activity under free-living conditions, and extracts from these strains were inactive in gel retardation assays with a 158-bp fragment of the DNA region upstream of the hupSL operon. However, bacteroids from root nodules formed by all three mutant types (hoxX, hoxA, and hoxX hoxA) exhibited hydrogenase activity comparable to that of wild-type bacteroids. Bacteroid extracts from all of these strains, including the wild type, failed to cause a shift of the hydrogenase upstream region used in our assay. It was shown that HoxA is a DNA-binding transcriptional activator of hydrogenase structural gene expression under free-living conditions but not under symbiotic conditions. Although symbiotic hydrogenase expression is still sigma54 dependent, a transcriptional activator other than HoxA functions presumably upstream of the HoxA binding site.
Collapse
Affiliation(s)
- M C Durmowicz
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
19
|
Rey L, Fernández D, Brito B, Hernando Y, Palacios JM, Imperial J, Ruiz-Argüeso T. The hydrogenase gene cluster of Rhizobium leguminosarum bv. viciae contains an additional gene (hypX), which encodes a protein with sequence similarity to the N10-formyltetrahydrofolate-dependent enzyme family and is required for nickel-dependent hydrogenase processing and activity. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:237-48. [PMID: 8842143 DOI: 10.1007/bf02173769] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Plasmid pAL618 contains the genetic determinants for H2 uptake (hup) from Rhizobium leguminosarum bv. viciae, including a cluster of 17 genes named hupSLCDEFGHIJK-hypABFCDE. A 1.7-kb segment of insert DNA located downstream of hypE has now been sequenced, thus completing the sequence of the 20441-bp insert DNA in plasmid pAL618. An open reading frame (designated hypX) encoding a protein with a calculated M(r) of 62300 that exhibits extensive sequence similarity with HoxX from Alcaligenes eutrophus (52% identity) and Bradyrhizobium japonicum (57% identity) was identified 10 bp downstream of hypE. Nodule bacteroids produced by hypX mutants in pea (Pisum sativum L.) plants grown at optimal nickel concentrations (100 microM) for hydrogenase expression, exhibited less than 5% of the wild-type levels of hydrogenase activity. These bacteroids contained wild-type levels of mRNA from hydrogenase structural genes (hupSL) but accumulated large amounts of the immature form of HupL protein. The Hup-deficient mutants were complemented for normal hydrogenase activity and nickel-dependent maturation of HupL by a hypX gene provided in trans. From expression analysis of hypX-lacZ fusion genes, it appears that hypX gene is transcribed from the FnrN-dependent hyp promoter, thus placing hypX in the hyp operon (hypBFCDEX). Comparisons of the HypX/HoxX sequences with those in databases provided unexpected insights into their function in hydrogenase synthesis. Similarities were restricted to two distinct regions in the HypX/HoxX sequences. Region I, corresponding to a sequence conserved in N10-formyltetrahydrofolate-dependent enzymes involved in transferring one-carbon units (C1), was located in the N-terminal half of the protein, whereas region II, corresponding to a sequence conserved in enzymes of the enoyl-CoA hydratase/isomerase family, was located in the C-terminal half. These similarities strongly suggest that HypX/HoxX have dual functions: binding of the C1 donor N10-formyltetrahydrofolate and transfer of the C1 to an unknown substrate, and catalysis of a reaction involving polarization of the C = O bond of an X-CO-SCoA substrate. These results also suggest the involvement of a small organic molecule, possibly synthesized with the participation of an X-CO-SCoA precursor and of formyl groups, in the synthesis of the metal-containing active centre of hydrogenase.
Collapse
Affiliation(s)
- L Rey
- Laboratorio de Microbiologia, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Brito B, Palacios JM, Ruiz-Argüeso T, Imperial J. Identification of a gene for a chemoreceptor of the methyl-accepting type in the symbiotic plasmid of Rhizobium leguminosarum bv. viciae UPM791. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1308:7-11. [PMID: 8765742 DOI: 10.1016/0167-4781(96)00083-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The 4 kb DNA region located immediately upstream of the Rhizobium leguminosarum bv. viciae UPM791 hydrogen structural genes was sequenced and found to encode a chemoreceptor of the methyl-accepting type, the first to be described in a rhizobial symbiotic plasmid. Two additional open reading frames were found. Their protein products showed sequence homology to dehydrogenases and isomerases involved in the metabolism of aromatic compounds. Mutant analysis showed that this region is not required for hydrogenase activity.
Collapse
Affiliation(s)
- B Brito
- Laboratorio de Microbiología. Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Hernando Y, Palacios JM, Imperial J, Ruiz-Argüeso T. The hypBFCDE operon from Rhizobium leguminosarum biovar viciae is expressed from an Fnr-type promoter that escapes mutagenesis of the fnrN gene. J Bacteriol 1995; 177:5661-9. [PMID: 7559356 PMCID: PMC177378 DOI: 10.1128/jb.177.19.5661-5669.1995] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Pea (Pisum sativum L.) bacteroids produced by Rhizobium leguminosarum bv. viciae UPM791 synthesize a membrane-bound (NiFe) hydrogenase which oxidizes H2 arising from the nitrogen fixation process in root nodules. Synthesis of the active enzyme requires the products of the structural genes hupSL and an array of accessory proteins from at least 15 additional genes, including the gene cluster hypABFCDE, likely involved in nickel metabolism. Unlike the hupSL genes, which are expressed only in symbiosis, the hypBFCDE operon was also activated in vegetative cells in response to low pO2 in the culture medium. In microaerobic cells and in bacteroids, transcription of the hypBFCDE operon occurred from a promoter, P5b, with a transcription initiation site located 190 bp upstream of the ATG start codon of hypB, within the coding sequence of hypA. Transcription start site 5b was preceded by an Fnr box (anaerobox), 5'-TTGAgccatgTCAA-3', centered at position -39.5. Expression of the P5b promoter in the heterologous Rhizobium meliloti bacterial host was dependent on the presence of an active fixK gene. A 2.6-kb EcoRI fragment was isolated from an R. leguminosarum bv. viciae UPM791 gene bank by complementing an R. meliloti FixK- mutant. Sequencing of this DNA fragment identified an fnrN gene, and cassette insertion mutagenesis demonstrated that R. leguminosarum bv. viciae fnrN is able to replace the R. meliloti fixK gene for activation of both the R. leguminosarum bv. viciae hypBFCDE operon and the R. meliloti fix genes. However, bacteroids from a genomic FnrN- mutant of R. leguminosarum bv. viciae exhibited wild-type levels of hydrogenase activity. Microaerobic expression of P(5b) was reduced to ca. 50% of the wild-type level in the FnrN(-) mutant. These results indicate that hyp gene expression escapes mutagenesis of the fnrN gene and suggest the existence of a second fnr-like gene in R. leguminosarum by. viciae. Southern blot analysis with an fnrN internal probe revealed the presence of a second genomic region with homology to fnrN.
Collapse
Affiliation(s)
- Y Hernando
- Laboratorio de Microbiología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Rey L, Imperial J, Palacios JM, Ruiz-Argüeso T. Purification of Rhizobium leguminosarum HypB, a nickel-binding protein required for hydrogenase synthesis. J Bacteriol 1994; 176:6066-73. [PMID: 7928968 PMCID: PMC196826 DOI: 10.1128/jb.176.19.6066-6073.1994] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The products of the Rhizobium leguminosarum hyp gene cluster are necessary for synthesis of a functional uptake [NiFe] hydrogenase system in symbiosis with pea plants, and at least for HypB and HypF, a role in hydrogenase-specific nickel metabolism has been postulated (L. Rey, J. Murillo, Y. Hernando, E. Hidalgo, E. Cabrera, J. Imperial, and T. Ruiz-Argüeso, Mol. Microbiol. 8:471-481, 1993). The R. leguminosarum hypB gene product has been overexpressed in Escherichia coli and purified by immobilized nickel chelate affinity chromatography in a single step. The purified recombinant HypB protein was able to bind 3.9 +/- 0.1 Ni2+ ions per HypB monomer in solution. Co2+, Cu2+, and Zn2+ ions competed with Ni2+ with increasing efficiency. Monospecific HypB antibodies were raised and used to show that HypB is synthesized in R. leguminosarum microaerobic vegetative cells and pea bacteroids but not in R. leguminosarum aerobic cells. HypB protein synthesized by R. leguminosarum microaerobic vegetative cells could also be isolated by immobilized nickel chelate affinity chromatography. A histidine-rich region at the amino terminus of the protein (23-HGHHHH DGHHDHDHDHDHHRGDHEHDDHHH-54) is proposed to play a role in nickel binding, both in solution and in chelated form.
Collapse
Affiliation(s)
- L Rey
- Laboratorio de Microbiología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | |
Collapse
|
23
|
Brito B, Palacios JM, Hidalgo E, Imperial J, Ruiz-Argüeso T. Nickel availability to pea (Pisum sativum L.) plants limits hydrogenase activity of Rhizobium leguminosarum bv. viciae bacteroids by affecting the processing of the hydrogenase structural subunits. J Bacteriol 1994; 176:5297-303. [PMID: 8071205 PMCID: PMC196714 DOI: 10.1128/jb.176.17.5297-5303.1994] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Rhizobium leguminosarum bv. viciae UPM791 induces the synthesis of an [NiFe] hydrogenase in pea (Pisum sativum L.) bacteroids which oxidizes the H2 generated by the nitrogenase complex inside the root nodules. The synthesis of this hydrogenase requires the genes for the small and large hydrogenase subunits (hupS and hupL, respectively) and 15 accessory genes clustered in a complex locus in the symbiotic plasmid. We show here that the bacteroid hydrogenase activity is limited by the availability of nickel to pea plants. Addition of Ni2+ to plant nutrient solutions (up to 10 mg/liter) resulted in sharp increases (up to 15-fold) in hydrogenase activity. This effect was not detected when other divalent cations (Zn2+, Co2+, Fe2+, and Mn2+) were added at the same concentrations. Determinations of the steady-state levels of hupSL-specific mRNA indicated that this increase in hydrogenase activity was not due to stimulation of transcription of structural genes. Immunoblot analysis with antibodies raised against the large and small subunits of the hydrogenase enzyme demonstrated that in the low-nickel situation, both subunits are mainly present in slow-migrating, unprocessed forms. Supplementation of the plant nutrient solution with increasing nickel concentrations caused the conversion of the slow-migrating forms of both subunits into fast-moving, mature forms. This nickel-dependent maturation process of the hydrogenase subunits is mediated by accessory gene products, since bacteroids from H2 uptake-deficient mutants carrying Tn5 insertions in hupG and hupK and in hypB and hypE accumulated the immature forms of both hydrogenase subunits even in the presence of high nickel levels.
Collapse
Affiliation(s)
- B Brito
- Laboratorio de Microbiología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Abstract
Rhizobia are gram-negative bacteria with two distinct habitats: the soil rhizosphere in which they have a saprophytic and, usually, aerobic life and a plant ecological niche, the legume nodule, which constitutes a microoxic environment compatible with the operation of the nitrogen reducing enzyme nitrogenase. The purpose of this review is to summarize the present knowledge of the changes induced in these bacteria when shifting to a microoxic environment. Oxygen concentration regulates the expression of two major metabolic pathways: energy conservation by respiratory chains and nitrogen fixation. After reviewing the genetic data on these metabolic pathways and their response to oxygen we will put special emphasis on the regulatory molecules which are involved in the control of gene expression. We will show that, although homologous regulatory molecules allow response to oxygen in different species, they are assembled in various combinations resulting in a variable regulatory coupling between genes for microaerobic respiration and nitrogen fixation genes. The significance of coordinated regulation of genes not essential for nitrogen fixation with nitrogen fixation genes will also be discussed.
Collapse
Affiliation(s)
- J Batut
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS INRA, Castanet-Tolosan, France
| | | |
Collapse
|
26
|
Hydrogenase in Bradyrhizobium japonicum: genetics, regulation and effect on plant growth. World J Microbiol Biotechnol 1993; 9:615-24. [DOI: 10.1007/bf00369567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/26/1993] [Accepted: 05/13/1993] [Indexed: 10/26/2022]
|
27
|
Rey L, Murillo J, Hernando Y, Hidalgo E, Cabrera E, Imperial J, Ruiz-Argüeso T. Molecular analysis of a microaerobically induced operon required for hydrogenase synthesis in Rhizobium leguminosarum biovar viciae. Mol Microbiol 1993; 8:471-81. [PMID: 8326860 DOI: 10.1111/j.1365-2958.1993.tb01591.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The nucleotide sequence (6138 bp) of a microaerobically inducible region (hupV/VI) from the Rhizobium leguminosarum bv. viciae hydrogenase gene cluster has been determined. Six genes, arranged as a single operon, were identified, and designated hypA, B, F, C, D and E based on the sequence similarities of all of them, except hypF, to genes from the hydrogenase pleiotropic operon (hyp) from Escherichia coli. The gene products from hypBFCDE were identified by in vivo expression analysis in E. coli, and their molecular sizes were consistent with those predicted from the nucleotide sequence. Transposon Tn5 insertions into hypB, hypF, hypD and hypE resulted in R. leguminosarum mutants that lacked any hydrogenase activity in symbiosis with peas, but still were able to synthesize the polypeptide for the hydrogenase large subunit. The gene products HypA, HypB, HypF and HypD contained CX2C motifs characteristic of metal-binding proteins. In addition, HypB bore a long histidine-rich stretch of amino acids near the N-terminus, suggesting a possible role in nickel binding for this protein. The gene product HypF, which was translationally coupled to HypB, presented two cysteine motifs (CX2CX18CX2C) with a capacity to form zinc finger-like structures in the N-terminal third of the protein. A role in nickel metabolism in relation to hydrogenase synthesis is postulated for proteins HypB and HypF.
Collapse
Affiliation(s)
- L Rey
- Departamento de Microbiología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Rey L, Hidalgo E, Palacios J, Ruiz-Argüeso T. Nucleotide sequence and organization of an H2-uptake gene cluster from Rhizobium leguminosarum bv. viciae containing a rubredoxin-like gene and four additional open reading frames. J Mol Biol 1992; 228:998-1002. [PMID: 1469733 DOI: 10.1016/0022-2836(92)90886-o] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nucleotide sequence of a 3.2 kb region following the hydrogenase structural operon (hupSLCDEF) in the H2-uptake gene cluster from Rhizobium leguminosarum by viciae strain 128C53 has been determined. Five closely linked genes encoding products of 16.3 (HupG), 30.5 (HupH), 8.0 (HupI), 18.4 (HupJ) and 38.7 (HupK) kDa were identified 166 bp downstream from hupF. Transposon insertions into hupG, hupH, hupJ and hupK suppress the H2-oxidizing capability of the wild-type strain. The amino acid sequence deduced from hupI contains two Cys-X-X-Cys motifs, characteristic of rubredoxins, separated by 29 amino acid residues showing strong sequence homology with other bacterial rubredoxins. The amino acid-derived sequence from hupG and hupH showed homology to products from genes hyaE and hyaF of the operon encoding hydrogenase 1 from Escherichia coli, and hupJ and hupK were related to open reading frames identified in Rhodobacter capsulatus and Azotobacter vinelandii hydrogenase gene clusters. An involvement of the hupGHIJK gene cluster in redox reactions related to hydrogenase synthesis or activity is predicted on the basis of the function as electron carrier attributed to rubredoxin.
Collapse
Affiliation(s)
- L Rey
- Departamento de Microbiología, ETS de Ingenieros Agrónomos-UPM, Madrid, Spain
| | | | | | | |
Collapse
|
29
|
Hidalgo E, Palacios JM, Murillo J, Ruiz-Argüeso T. Nucleotide sequence and characterization of four additional genes of the hydrogenase structural operon from Rhizobium leguminosarum bv. viciae. J Bacteriol 1992; 174:4130-9. [PMID: 1597428 PMCID: PMC206125 DOI: 10.1128/jb.174.12.4130-4139.1992] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The nucleotide sequence of a 2.5-kbp region following the hydrogenase structural genes (hupSL) in the H2 uptake gene cluster from Rhizobium leguminosarum bv. viciae UPM791 was determined. Four closely linked genes encoding peptides of 27.9 (hupC), 22.1 (hupD), 19.0 (hupE), and 10.4 (hupF) kDa were identified immediately downstream of hupL. Proteins with comparable apparent molecular weights were detected by heterologous expression of these genes in Escherichia coli. The six genes, hupS to hupF, are arranged as an operon, and by mutant complementation analysis, it was shown that genes hupSLCD are cotranscribed. A transcription start site preceded by the -12 to -24 consensus sequence characteristic of NtrA-dependent promoters was identified upstream of hupS. On the basis of the lack of oxygen-dependent H2 uptake activity of a hupC::Tn5 mutant and on structural characteristics of the protein, we postulate that HupC is a b-type cytochrome involved in electron transfer from hydrogenase to oxygen. The product from hupE, which is needed for full hydrogenase activity, exhibited characteristics typical of a membrane protein. The features of HupC and HupE suggest that they form, together with the hydrogenase itself, a membrane-bound protein complex involved in hydrogen oxidation.
Collapse
Affiliation(s)
- E Hidalgo
- Departamento de Microbiología, Escuela Técnica Superior de Ingenieros Agrónomos, Madrid, Spain
| | | | | | | |
Collapse
|
30
|
Kaminski PA, Elmerich C. Involvement of fixLJ in the regulation of nitrogen fixation in Azorhizobium caulinodans. Mol Microbiol 1991; 5:665-73. [PMID: 2046550 DOI: 10.1111/j.1365-2958.1991.tb00738.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A gene bank of Azorhizobium caulinodans DNA constructed in the bacteriophage lambda GEM11 was screened with Rhizobium meliloti fixL and fixJ genes as probes. One positive recombinant phage, ORS lambda L, was isolated. The nucleotide sequence of a 3.7 kb fragment was established. Two open reading frames of 1512bp and 613bp were identified as fixL and fixJ. Kanamycin cartridges were inserted into the cloned fixL and fixJ genes and recombined into the host genome. The resulting mutants were Nif- Fix-, suggesting that the two genes were required for symbiotic nitrogen fixation and for nitrogen fixation in the free-living state. Using pnifH-lacZ and pnifA-lacZ fusions, it was shown that the FixLJ products controlled the expression of nifH and nifA in bacteria grown in the free-living state.
Collapse
Affiliation(s)
- P A Kaminski
- Département des Biotechnologies, Institute Pasteur, Paris, France
| | | |
Collapse
|