1
|
Gaona M, Corral J, Sánchez−Osuna M, Campoy S, Barbé J, Pérez-Varela M, Aranda J. Reciprocal regulation between Acinetobacter baumannii and Enterobacter cloacae AdeR homologs: implications for antimicrobial resistance and pathogenesis. PLoS One 2025; 20:e0315428. [PMID: 40063617 PMCID: PMC11892822 DOI: 10.1371/journal.pone.0315428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/25/2024] [Indexed: 05/13/2025] Open
Abstract
Acinetobacter baumannii and Enterobacter cloacae are phylogenetically distant Gram-negative bacterial pathogens that represent significant challenges in healthcare settings due to their remarkable ability to acquire antimicrobial resistance. This study investigates one of the most important efflux pump systems in A. baumannii, AdeABC-AdeRS, and identifies homologous components in E. cloacae. By constructing isogenic knockout mutants, we show that the AdeB pump component and the AdeR regulator are significant for antimicrobial resistance and pathogenicity in A. baumannii. Through in silico predictions, we identify homologs of AdeB and AdeR (ECL_01758 and ECL_01761, respectively) in E. cloacae. Notably, we demonstrate that while the inactivation of the E. cloacae gene encoding the AdeB protein does not impact on pathogenesis and only alters colistin susceptibility, a knockout mutant of the gene encoding the AdeR regulator significantly affects susceptibility to various antimicrobial classes, motility, and virulence. Additionally, we demonstrate that the AdeR regulators of A. baumannii and E. cloacae can functionally substitute for each other both in vitro and in vivo conditions. Electrophoretic mobility shift assays reveal that these regulators are capable of binding to the promoter regions of each other's species, where similar DNA motifs are present. Furthermore, cross-complementation tests show that the affected phenotypes in each species can be restored interchangeably. Moreover, phylogenomic analysis of previously published E.cloacae genomes and reconstructrion of ancestral states through the phylogenetic trees of the adeB and adeR genes suggest that these homologs are more likely derived from a common ancestor rather than through recent horizontal gene transfer. The findings of this work highlight that conserved regulatory functions concerning efflux pump expression can be maintained across species despite evolutionary divergence and open new perspectives for the control of bacterial infections.
Collapse
Affiliation(s)
- Marc Gaona
- Departament de Genètica i de Microbiologia, Facultat de Biociènces, Universitat Autònoma de Barcelona (UAB) Campus Bellaterra, Barcelona, Spain
| | - Jordi Corral
- Departament de Genètica i de Microbiologia, Facultat de Biociènces, Universitat Autònoma de Barcelona (UAB) Campus Bellaterra, Barcelona, Spain
| | - Miquel Sánchez−Osuna
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Hospital Universitari Parc Taulí, Institut d’Investigació i Innovació Parc Taulí (I3PT−CERCA), UAB Sabadell, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, UAB Campus Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Susana Campoy
- Departament de Genètica i de Microbiologia, Facultat de Biociènces, Universitat Autònoma de Barcelona (UAB) Campus Bellaterra, Barcelona, Spain
| | - Jordi Barbé
- Departament de Genètica i de Microbiologia, Facultat de Biociènces, Universitat Autònoma de Barcelona (UAB) Campus Bellaterra, Barcelona, Spain
| | - María Pérez-Varela
- Departament de Genètica i de Microbiologia, Facultat de Biociènces, Universitat Autònoma de Barcelona (UAB) Campus Bellaterra, Barcelona, Spain
| | - Jesús Aranda
- Departament de Genètica i de Microbiologia, Facultat de Biociènces, Universitat Autònoma de Barcelona (UAB) Campus Bellaterra, Barcelona, Spain
| |
Collapse
|
2
|
Gonzalez M, Huston D, McLenigan MP, McDonald JP, Garcia AM, Borden KS, Woodgate R. SetR ICE391, a negative transcriptional regulator of the integrating conjugative element 391 mutagenic response. DNA Repair (Amst) 2018; 73:99-109. [PMID: 30581075 DOI: 10.1016/j.dnarep.2018.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 11/16/2022]
Abstract
The integrating conjugative element ICE391 (formerly known as IncJ R391) harbors an error-prone DNA polymerase V ortholog, polVICE391, encoded by the ICE391 rumAB operon. polV and its orthologs have previously been shown to be major contributors to spontaneous and DNA damage-induced mutagenesis in vivo. As a result, multiple levels of regulation are imposed on the polymerases so as to avoid aberrant mutagenesis. We report here, that the mutagenesis-promoting activity of polVICE391 is additionally regulated by a transcriptional repressor encoded by SetRICE391, since Escherichia coli expressing SetRICE391 demonstrated reduced levels of polVICE391-mediated spontaneous mutagenesis relative to cells lacking SetRICE391. SetRICE391 regulation was shown to be specific for the rumAB operon and in vitro studies with highly purified SetRICE391 revealed that under alkaline conditions, as well as in the presence of activated RecA, SetRICE391 undergoes a self-mediated cleavage reaction that inactivates repressor functions. Conversely, a non-cleavable SetRICE391 mutant capable of maintaining repressor activity, even in the presence of activated RecA, exhibited low levels of polVICE391-dependent mutagenesis. Electrophoretic mobility shift assays revealed that SetRICE391 acts as a transcriptional repressor by binding to a site overlapping the -35 region of the rumAB operon promoter. Our study therefore provides evidence indicating that SetRICE391 acts as a transcriptional repressor of the ICE391-encoded mutagenic response.
Collapse
Affiliation(s)
- Martín Gonzalez
- Department of Biology, Southwestern University, Georgetown, TX 78626, USA.
| | - Donald Huston
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Mary P McLenigan
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Audrey M Garcia
- Department of Biology, Southwestern University, Georgetown, TX 78626, USA
| | - Kylie S Borden
- Department of Biology, Southwestern University, Georgetown, TX 78626, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| |
Collapse
|
3
|
Delgado G, Souza V, Morales R, Cerritos R, González-González A, Méndez JL, Vázquez V, Cravioto A. Genetic characterization of atypical Citrobacter freundii. PLoS One 2013; 8:e74120. [PMID: 24069274 PMCID: PMC3771896 DOI: 10.1371/journal.pone.0074120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/29/2013] [Indexed: 11/24/2022] Open
Abstract
The ability of a bacterial population to survive in different niches, as well as in stressful and rapidly changing environmental conditions, depends greatly on its genetic content. To survive such fluctuating conditions, bacteria have evolved different mechanisms to modulate phenotypic variations and related strategies to produce high levels of genetic diversity. Laboratories working in microbiological diagnosis have shown that Citrobacter freundii is very versatile in its colony morphology, as well as in its biochemical, antigenic and pathogenic behaviours. This phenotypic versatility has made C. freundii difficult to identify and it is frequently confused with both Salmonella enterica and Escherichia coli. In order to determine the genomic events and to explain the mechanisms involved in this plasticity, six C. freundii isolates were selected from a phenotypic variation study. An I-CeuI genomic cleavage map was created and eight housekeeping genes, including 16S rRNA, were sequenced. In general, the results showed a range of both phenotypes and genotypes among the isolates with some revealing a greater similarity to C. freundii and some to S. enterica, while others were identified as phenotypic and genotypic intermediary states between the two species. The occurrence of these events in natural populations may have important implications for genomic diversification in bacterial evolution, especially when considering bacterial species boundaries. In addition, such events may have a profound impact on medical science in terms of treatment, course and outcomes of infectious diseases, evading the immune response, and understanding host-pathogen interactions.
Collapse
Affiliation(s)
- Gabriela Delgado
- Departmento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Rosario Morales
- Departmento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - René Cerritos
- Departamento de Cirugía Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Andrea González-González
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - José Luis Méndez
- Departmento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México
| | | | | |
Collapse
|
4
|
Erill I, Campoy S, Barbé J. Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 2007; 31:637-56. [PMID: 17883408 DOI: 10.1111/j.1574-6976.2007.00082.x] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The SOS response of bacteria is a global regulatory network targeted at addressing DNA damage. Governed by the products of the lexA and recA genes, it co-ordinates a comprehensive response against DNA lesions and its description in Escherichia coli has stood for years as a textbook paradigm of stress-response systems in bacteria. In this paper we review the current state of research on the SOS response outside E. coli. By retracing research on the identification of multiple diverging LexA-binding motifs across the Bacteria Domain, we show how this work has led to the description of a minimum regulon core, but also of a heterogeneous collection of SOS regulatory networks that challenges many tenets of the E. coli model. We also review recent attempts at reconstructing the evolutionary history of the SOS network that have cast new light on the SOS response. Exploiting the newly gained knowledge on LexA-binding motifs and the tight association of LexA with a recently described mutagenesis cassette, these works put forward likely evolutionary scenarios for the SOS response, and we discuss their relevance on the ultimate nature of this stress-response system and the evolutionary pressures driving its evolution.
Collapse
Affiliation(s)
- Ivan Erill
- Biomedical Applications Group, Centro Nacional de Microelectrónica, Barcelona, Spain
| | | | | |
Collapse
|
5
|
Akiba T, Ishii N, Rashid N, Morikawa M, Imanaka T, Harata K. Structure of RadB recombinase from a hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1: an implication for the formation of a near-7-fold helical assembly. Nucleic Acids Res 2005; 33:3412-23. [PMID: 15956102 PMCID: PMC1150280 DOI: 10.1093/nar/gki662] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The X-ray crystal structure of RadB from Thermococcus kodakaraensis KOD1, an archaeal homologue of the RecA/Rad51 family proteins, have been determined in two crystal forms. The structure represents the core ATPase domain of the RecA/Rad51 proteins. Two independent molecules in the type 1 crystal were roughly related by 7-fold screw symmetry whereas non-crystallographic 2-fold symmetry was observed in the type 2 crystal. The dimer structure in the type 1 crystal is extended to construct a helical assembly, which resembles the filamentous structures reported for other RecA/Rad51 proteins. The molecular interface in the type 1 dimer is formed by facing a basic surface patch of one monomer to an acidic one of the other. The empty ATP binding pocket is located at the interface and barely concealed from the outside similarly to that in the active form of the RecA filament. The model assembly has a positively charged belt on one surface bordering the helical groove suitable for facile binding of DNA. Electron microscopy has revealed that, in the absence of ATP and DNA, RadB forms a filament with a similar diameter to that of the hypothetical assembly, although its helical properties were not confirmed.
Collapse
Affiliation(s)
| | | | - Naeem Rashid
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto UniversityKyoto 686-8501, Japan
| | - Masaaki Morikawa
- Division of Bioscience, Graduate School of Environmental Earth Science, Hokkaido UniversityKita 10 Nishi 5, Sapporo 060-0810, Japan
| | - Tadayuki Imanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto UniversityKyoto 686-8501, Japan
| | - Kazuaki Harata
- To whom correspondence should be addressed. Tel: +81 29 861 6194; Fax: +81 29 861 3444;
| |
Collapse
|
6
|
Komori K, Miyata T, DiRuggiero J, Holley-Shanks R, Hayashi I, Cann IK, Mayanagi K, Shinagawa H, Ishino Y. Both RadA and RadB are involved in homologous recombination in Pyrococcus furiosus. J Biol Chem 2000; 275:33782-90. [PMID: 10903318 DOI: 10.1074/jbc.m004557200] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecA and Rad51 proteins are essential for homologous recombination in Bacteria and Eukarya, respectively. Homologous proteins, called RadA, have been described for Archaea. Here we present the characterization of two RecA/Rad51 family proteins, RadA and RadB, from Pyrococcus furiosus. The radA and radB genes were not induced by DNA damage resulting from exposure of the cells to gamma and UV irradiation and heat shock, suggesting that they might be constitutively expressed in this hyperthermophile. RadA had DNA-dependent ATPase, D-loop formation, and strand exchange activities. In contrast, RadB had a very weak ATPase activity that is not stimulated by DNA. This protein had a strong binding affinity for DNA, but little strand exchange activity could be detected. A direct interaction between RadA and RadB was detected by an immunoprecipitation assay. Moreover, RadB, but not RadA, coprecipitated with Hjc, a Holliday junction resolvase found in P. furiosus, in the absence of ATP. This interaction was suppressed in the presence of ATP. The Holliday junction cleavage activity of Hjc was inhibited by RadB in the absence, but not in the presence, of ATP. These results suggest that RadB has important roles in homologous recombination in Archaea and may regulate the cleavage reactions of the branch-structured DNA.
Collapse
Affiliation(s)
- K Komori
- Departments of Molecular Biology and Structural Biology, Biomolecular Engineering Research Institute, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Manabe YC, Saviola BJ, Sun L, Murphy JR, Bishai WR. Attenuation of virulence in Mycobacterium tuberculosis expressing a constitutively active iron repressor. Proc Natl Acad Sci U S A 1999; 96:12844-8. [PMID: 10536010 PMCID: PMC23125 DOI: 10.1073/pnas.96.22.12844] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Iron is an essential nutrient for the survival of most organisms and has played a central role in the virulence of many infectious disease pathogens. Mycobacterial IdeR is an iron-dependent repressor that shows 80% identity in the functional domains with its corynebacterial homologue, DtxR (diphtheria toxin repressor). We have transformed Mycobacterium tuberculosis with a vector expressing an iron-independent, positive dominant, corynebacterial dtxR hyperrepressor, DtxR(E175K). Western blots of whole-cell lysates of M. tuberculosis expressing the dtxR(E175K) gene revealed the stable expression of the mutant protein in mycobacteria. BALB/c mice were infected by tail vein injection with 2 x 10(5) organisms of wild type or M. tuberculosis transformed with the dtxR mutant. At 16 weeks, there was a 1.2 log reduction in bacterial survivors in both spleen (P = 0.0002) and lungs (P = 0.006) with M. tuberculosis DtxR(E175K). A phenotypic difference in colonial morphology between the two strains also was noted. A computerized search of the M. tuberculosis genome for the palindromic consensus sequence to which DtxR and IdeR bind revealed six putative "iron boxes" within 200 bp of an ORF. Using a gel-shift assay we showed that purified DtxR binds to the operator region of five of these boxes. Attenuation of M. tuberculosis can be achieved by the insertion of a plasmid containing a constitutively active, iron-insensitive repressor, DtxR(E175K), which is a homologue of IdeR. Our results strongly suggest that IdeR controls genes essential for virulence in M. tuberculosis.
Collapse
Affiliation(s)
- Y C Manabe
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
8
|
Rabibhadana S, Chamnongpol S, Sukchawalit R, Ambulos NP, Trempy JE, Mongkolsuk S. Characterization and expression analysis of a Xanthomonas oryzae pv. oryzae recA. FEMS Microbiol Lett 1998; 158:195-200. [PMID: 9465392 DOI: 10.1111/j.1574-6968.1998.tb12820.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nucleotide sequence of Xanthomonas oryzae pv. oryzae (Xoo) DNA from pSM-A1 was determined and sequence analysis revealed an ORF with high homology to RecA proteins. Expression analysis using an anti-RecA antibody demonstrates that MMS treatment induces recA in Xanthomonas strains but not in an Escherichia coli harbouring cloned Xoo recA. This indicates the existence of a recA regulatory mechanism in Xanthomonas that is not function in E. coli. In Xoo, recA was highly induced by treatments with chemical mutagens, UV and peroxides, while superoxides, a thiol agent, a heavy metal and heat shock were not inducers. The increased amount of RecA induced by H2O2 or MMS treatments were due to increased transcription of recA. recA showed no growth phase or starvation regulation. The pattern of recA regulation in Xoo could play important roles in stress survival in the environment and during plant-microbe interactions.
Collapse
Affiliation(s)
- S Rabibhadana
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
9
|
Movahedzadeh F, Colston MJ, Davis EO. Determination of DNA sequences required for regulated Mycobacterium tuberculosis RecA expression in response to DNA-damaging agents suggests that two modes of regulation exist. J Bacteriol 1997; 179:3509-18. [PMID: 9171394 PMCID: PMC179142 DOI: 10.1128/jb.179.11.3509-3518.1997] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The recA gene of Mycobacterium tuberculosis has previously been cloned and sequenced (E. O. Davis, S. G. Sedgwick, and M. J. Colston, J. Bacteriol. 173:5653-5662, 1991). In this study, the expression of this gene was shown to be inducible in response to various DNA-damaging agents by using a transcriptional fusion to the reporter gene encoding chloramphenicol acetyltransferase. A segment of DNA around 300 bp upstream of the coding region was shown to be required for expression. However, primer extension analysis indicated that the transcriptional start sites were 47 and 93 bp upstream of the translation initiation codon. Sequence motifs with homology to two families of Escherichia coli promoters but also with significant differences were located near these proposed transcription start sites. The differences from the E. coli consensus patterns would explain the previously described lack of expression of the M. tuberculosis recA gene from its own promoter in E. coli. In addition, the M. tuberculosis LexA protein was shown to bind specifically to a sequence, GAAC-N4-GTTC, overlapping one of these putative promoters and homologous to the Bacillus subtilis Cheo box involved in the regulation of SOS genes. The region of DNA 300 bp upstream of the recA gene was shown not to contain a promoter, suggesting that it functions as an upstream activator sequence.
Collapse
Affiliation(s)
- F Movahedzadeh
- Division of Mycobacterial Research, National Institute for Medical Research, London, England
| | | | | |
Collapse
|
10
|
Rauch PJG, Palmen R, Burds AA, Gregg-Jolly LA, van der Zee JR, Hellingwerf KJ. The expression of the Acinetobacter calcoaceticus recA gene increases in response to DNA damage independently of RecA and of development of competence for natural transformation. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 4):1025-1032. [PMID: 8936328 DOI: 10.1099/00221287-142-4-1025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Using the lacZ operon fusion technique, the transcriptional control of the Acinetobacter calcoaceticus recA gene was studied. A low (approximately twofold) inductive capacity was observed for compounds that damage DNA and/or inhibit DNA replication, e.g. methyl methanesulfonate, mitomycin C, UV light and nalidixic acid. Induction of the recA gene by DNA damage was independent of functional RecA. The presence of the recA promoter region on a multicopy plasmid had the same effect on recA transcription as the presence of DNA-damaging agents. Thus, recA expression in A. calcoaceticus appears to be regulated in a novel fashion, possibly involving a non-LexA-like repressor. Regulation of the recA gene in A. calcoaceticus appears not to be part of a regulon responsible for competence for natural transformation: in cells exhibiting extremely low transformation frequencies, the level of transcription of the recA gene was found to be comparable to the level found in cells in the state of maximal competence.
Collapse
Affiliation(s)
- Peter J G Rauch
- Department of Microbiology, E. C. Slater Institute, BioCentrum Amsterdam, Nieuwe Achtergracht 127, 1018 TV Amsterdam, The Netherlands
| | - Ronald Palmen
- Department of Microbiology, E. C. Slater Institute, BioCentrum Amsterdam, Nieuwe Achtergracht 127, 1018 TV Amsterdam, The Netherlands
| | - Aurora A Burds
- Department of Biology, Grinell College, Grinell, IA 50112, USA
| | | | - J Rob van der Zee
- Department of Microbiology, E. C. Slater Institute, BioCentrum Amsterdam, Nieuwe Achtergracht 127, 1018 TV Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Department of Microbiology, E. C. Slater Institute, BioCentrum Amsterdam, Nieuwe Achtergracht 127, 1018 TV Amsterdam, The Netherlands
| |
Collapse
|
11
|
Ferrer S, Viejo MB, Guasch JF, Enfedaque J, Regué M. Genetic evidence for an activator required for induction of colicin-like bacteriocin 28b production in Serratia marcescens by DNA-damaging agents. J Bacteriol 1996; 178:951-60. [PMID: 8576068 PMCID: PMC177753 DOI: 10.1128/jb.178.4.951-960.1996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Bacteriocin 28b production is induced by mitomycin in wild-type Serratia marcescens 2170 but not in Escherichia coli harboring the bacteriocin 28b structural gene (bss). Studies with a bss-lacZ transcriptional fusion showed that mitomycin increased the level of bss gene transcription in S. marcescens but not in the E. coli background. A S. marcescens Tn5 insertion mutant was obtained (S. marcescens 2170 reg::Tn5) whose bacteriocin 28b production and bss gene transcription were not increased by mitomycin treatment. Cloning and DNA sequencing of the mutated region showed that the Tn5 insertion was flanked by an SOS box sequence and three genes that are probably cotranscribed (regA, regB, and regC). These three genes had homology to phage holins, phage lysozymes, and the Ogr transcriptional activator of P2 and related bacteriophages, respectively. Recombinant plasmid containing this wild-type DNA region complemented the reg::Tn5 regulatory mutant. A transcriptional fusion between a 157-bp DNA fragment, containing the apparent SOS box upstream of the regA gene, and the cat gene showed increased chloramphenicol acetyltransferase activity upon mitomycin treatment. Upstream of the bss gene, a sequence similar to the consensus sequence proposed to bind Ogr protein was found, but no sequence similar to an SOS box was detected. Our results suggest that transcriptional induction of bacteriocin 28b upon mitomycin treatment is mediated by the regC gene whose own transcription would be LexA dependent.
Collapse
Affiliation(s)
- S Ferrer
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Barcelona, Spain
| | | | | | | | | |
Collapse
|
12
|
Blumenthal RM, Borst DW, Matthews RG. Experimental analysis of global gene regulation in Escherichia coli. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 55:1-86. [PMID: 8787606 DOI: 10.1016/s0079-6603(08)60189-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R M Blumenthal
- Department of Microbiology, Medical College of Ohio, Toledo 43699, USA
| | | | | |
Collapse
|
13
|
Abstract
Escherichia coli possesses an elaborate adaptive mechanism called the "SOS response" to cope with various types of DNA damage. More than 20 SOS genes, most of which are known to be involved in the functions that promote the survival of DNA-damaged cells, are induced by treatments that damage DNA or inhibit DNA synthesis. All the SOS genes share similar sequences in the regulatory regions called the "SOS box", to which LexA repressor binds to repress the transcription in the absence of DNA damage. The SOS signal appears to be the single-stranded DNA produced in vicinity of DNA damage, to which RecA protein binds to be activated as a coprotease. The activated RecA promotes autocleavage of LexA protein by allosteric interaction, which activates the latent serine protease activity of LexA. The induced products of the SOS genes repair DNA lesions by various mechanisms, including recombination, excision repair and error-prone repair, and as the consequence, the SOS signal in the cell decreases and the repression of the SOS genes is restored.
Collapse
Affiliation(s)
- H Shinagawa
- Department of Molecular Microbiology, Osaka University, Japan
| |
Collapse
|
14
|
Fernandez de Henestrosa AR, Rivera E, Barbé J. Non-reciprocal regulation of Rhodobacter capsulatus and Rhodobacter sphaeroides recA genes expression. FEMS Microbiol Lett 1995; 129:175-81. [PMID: 7607398 DOI: 10.1111/j.1574-6968.1995.tb07576.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Rhodobacter capsulatus recA gene has been isolated and sequenced. Its deduced amino acid sequence showed the closest identity with the Rhodobacter sphaeroides RecA protein (91% identity). However, the promoter regions of both R. capsulatus and R. sphaeroides recA genes are only 64% similar. An Escherichia coli-like LexA binding site was not present in the upstream region of the R. capsulatus recA gene. Nevertheless, the R. capsulatus recA gene is inducible by DNA damage in both hetero- and phototrophically growing conditions. The R. capsulatus recA gene is poorly induced when inserted into the chromosome of R. sphaeroides, indicating that the recA gene of both bacteria possess different control sequences despite their phylogenetically close relationship.
Collapse
Affiliation(s)
- A R Fernandez de Henestrosa
- Department of Genetics and Microbiology, Faculty of Sciences, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
15
|
Mackenzie C, Chidambaram M, Sodergren EJ, Kaplan S, Weinstock GM. DNA repair mutants of Rhodobacter sphaeroides. J Bacteriol 1995; 177:3027-35. [PMID: 7768798 PMCID: PMC176989 DOI: 10.1128/jb.177.11.3027-3035.1995] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The genome of the photosynthetic eubacterium Rhodobacter sphaeroides 2.4.1 comprises two chromosomes and five endogenous plasmids and has a 65% G+C base composition. Because of these characteristics of genome architecture, as well as the physiological advantages that allow this organism to live in sunlight when in an anaerobic environment, the sensitivity of R. sphaeroides to UV radiation was compared with that of the more extensively studied bacterium Escherichia coli. R. sphaeroides was found to be more resistant, being killed at about 60% of the rate of E. coli. To begin to analyze the basis for this increased resistance, a derivative of R. sphaeroides, strain 2.4.1 delta S, which lacks the 42-kb plasmid, was mutagenized with a derivative of Tn5, and the transposon insertion mutants were screened for increased UV sensitivity (UVs). Eight UVs strains were isolated, and the insertion sites were determined by contour-clamped homogeneous electric field pulsed-field gel electrophoresis. These mapped to at least five different locations in chromosome I. Preliminary analysis suggested that these mutants were deficient in the repair of DNA damage. This was confirmed for three loci by DNA sequence analysis, which showed the insertions to be within genes homologous to uvrA, uvrB, and uvrC, the subunits of the nuclease responsible for excising UV damage.
Collapse
Affiliation(s)
- C Mackenzie
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston 77225, USA
| | | | | | | | | |
Collapse
|
16
|
Fernández de Henestrosa AR, Barbé J. Autoregulation and kinetics of induction of the Rhizobium phaseoli recA gene. Mutat Res 1994; 308:99-107. [PMID: 7516490 DOI: 10.1016/0027-5107(94)90202-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A fusion between the recA gene of Rhizobium phaseoli and the lacZ gene was constructed in vitro and cloned in a mini-Tn5 transposon derivative to obtain chromosomal insertions which make it possible to quantitatively examine their transcriptional regulation in both R. phaseoli and E. coli. Likewise, and by insertion of a spectinomycin-resistance gene cassette into the recA gene of R. phaseoli and subsequent marker exchange, a RecA- derivative of this bacterial species has been obtained. Analysis of this recA-lacZ fusion showed that it was inducible by DNA damage in the RecA+ strain of R. phaseoli but not in the RecA- mutant. On the other hand, the recA-lacZ fusion of R. phaseoli was not induced in DNA-damaged RecA+ cells of E. coli. Furthermore, the range of UV doses which give rise to dose dependence in the induction of its respective recA genes is different in R. phaseoli from that in E. coli.
Collapse
Affiliation(s)
- A R Fernández de Henestrosa
- Department of Genetics and Microbiology, Faculty of Sciences, Autonomous University of Barcelona, Bellaterra, Spain
| | | |
Collapse
|
17
|
Gregg-Jolly LA, Ornston LN. Properties of Acinetobacter calcoaceticus recA and its contribution to intracellular gene conversion. Mol Microbiol 1994; 12:985-92. [PMID: 7934905 DOI: 10.1111/j.1365-2958.1994.tb01086.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Acinetobacter calcoaceticus pcaJ and catJ genes, nearly identical in DNA sequence, differ in transcriptional control and are separated by more than 20 kb of chromosomal DNA. The pcaJ3125 mutation is repaired frequently in organisms containing the wild-type catJ gene. This high-frequency repair is eliminated in strains lacking the catJ gene, which suggests that recombination between the homologous catJ and pcaJ genes contributes to the high-frequency repair of the pcaJ3125 mutation. We report here that the high-frequency repair also requires a functional recA gene. The A. calcoaceticus recA gene was cloned in Escherichia coli by complementation of a recA mutation in the host strain. The nucleotide sequence of a 1506 bp DNA fragment containing A. calcoaceticus recA was determined. The amino acid sequences of RecA from E. coli and A. calcoaceticus shared 71% identity. The DNA sequences differed in that a consensus binding site for binding of LexA repressor, represented upstream from recA in E. coli, is not evident in the corresponding region of the A. calcoaceticus DNA sequence. A Tn5 insertion was introduced into the A. calcoaceticus recA gene. Selection for Tn5-encoded kanamycin resistance allowed the inactivated recA gene to be recombined by natural transformation into the A. calcoaceticus chromosome. Strains that had acquired the mutant gene were sensitive to both MMS and u.v. light, were deficient in natural transformation, and failed to carry out catJ-dependent high-frequency repair of the pcaJ3125 mutation.
Collapse
Affiliation(s)
- L A Gregg-Jolly
- Department of Biology, Yale University, New Haven, Connecticut 06511
| | | |
Collapse
|
18
|
Calero S, Fernandez de Henestrosa AR, Barbé J. Molecular cloning, sequence and regulation of expression of the recA gene of the phototrophic bacterium Rhodobacter sphaeroides. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:116-20. [PMID: 8277942 DOI: 10.1007/bf00277356] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The recA gene of Rhodobacter sphaeroides 2.4.1 has been isolated by complementation of a UV-sensitive RecA- mutant of Pseudomonas aeruginosa. Its complete nucleotide sequence consists of 1032 bp, encoding a polypeptide of 343 amino acids. The deduced amino acid sequence displayed highest identity to the RecA proteins from Rhizobium meliloti, Rhizobium phaseoli, and Agrobacterium tumefaciens. An Escherichia coli-like SOS consensus region, which functions as a binding site for the LexA repressor molecule was not present in the 215 bp upstream region of the R. sphaeroides recA gene. Nevertheless, by using a recA-lacZ fusion, we have shown that expression of the recA gene of R. sphaeroides is inducible by DNA damage. A recA-defective strain of R. sphaeroides was obtained by replacement of the active recA gene by a gene copy inactivated in vitro. The resulting recA mutant exhibited increased sensitivity to UV irradiation, and was impaired in its ability to perform homologous recombination as well as to trigger DNA damage-mediated expression. This is the first recA gene from a Gram-negative bacterium that lacks an E. coli-like SOS box but whose expression has been shown to be DNA damage-inducible and auto-regulated.
Collapse
Affiliation(s)
- S Calero
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
19
|
Riera J, Barbé J. Sequence of the Providencia rettgeri lexA gene and its control region. Nucleic Acids Res 1993; 21:2256. [PMID: 8502572 PMCID: PMC309499 DOI: 10.1093/nar/21.9.2256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- J Riera
- Department of Genetics and Microbiology, Faculty of Sciences, Autonomous University of Barcelona, Bellaterra, Spain
| | | |
Collapse
|
20
|
Garriga X, Calero S, Barbé J. Nucleotide sequence analysis and comparison of the lexA genes from Salmonella typhimurium, Erwinia carotovora, Pseudomonas aeruginosa and Pseudomonas putida. MOLECULAR & GENERAL GENETICS : MGG 1992; 236:125-34. [PMID: 1494343 DOI: 10.1007/bf00279651] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The complete nucleotide sequences of the lexA genes from Salmonella typhimurium, Erwinia carotovora, Pseudomonas aeruginosa and Pseudomonas putida were determined; the DNA sequences of the lexA genes from these bacteria were 86%, 76%, 61% and 59% similar, respectively, to the Escherichia coli K12 gene. The predicted amino acid sequences of the S. typhimurium, E. carotovora and P. putida LexA proteins are 202 residues long whereas that of P. aeruginosa is 204. Two putative LexA repressor binding sites were localized upstream of each of the heterologous genes, the distance between them being 5 bp in S. typhimurium and E. carotovora, as in the lexA gene of E. coli, and 3 bp in P. putida and P. aeruginosa. The first lexA site present in the lexA operator of all five bacteria is very well conserved. However, the second lexA box is considerably more variable. The Ala-84--Gly-85 bond, at which the LexA repressor of E. coli is cleaved during the induction of the SOS response, is also found in the LexA proteins of S. typhimurium and E. carotovora. Likewise, the amino acids Ser-119 and Lys-156 are present in all of these three LexA repressors. These residues also exist in the LexA proteins of P. putida and P. aeruginosa, but they are displaced by 4 and 6 residues, respectively. Furthermore, the structure and sequence of the DNA-binding domain of the LexA repressor of E. coli are highly conserved in the S. typhimurium, E. carotovora, P. aeruginosa and P. putida LexA proteins.
Collapse
Affiliation(s)
- X Garriga
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
21
|
Garí E, Ollé M, Gibert I, Llagostera M, Barbé J. Isolation and characterization of a recombination defective-dependent bacteriophage ofRhodobacter sphaeroides. Curr Microbiol 1992. [DOI: 10.1007/bf01568980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Abstract
A system to isolate lexA-like genes of bacteria directly was developed. It is based upon the fact that the presence of a lexA(Def) mutation is lethal to SulA+ cells of Escherichia coli. This system is composed of a SulA- LexA(Def) HsdR- strain and a lexA-conditional killer vector (plasmid pUA165) carrying the wild-type sulA gene of E. coli and a polylinker in which foreign DNA may be inserted. By using this method, the lexA-like genes of Salmonella typhimurium, Erwinia carotovora, Pseudomonas aeruginosa, and P. putida were cloned. We also found that the LexA repressor of S. typhimurium presented the highest affinity for the SOS boxes of E. coli in vivo, whereas the LexA protein of P. aeruginosa had the lowest. Likewise, all of these LexA repressors were cleaved by the activated RecA protein of E. coli after DNA damage. Furthermore, under high-stringency conditions, the lexA gene of E. coli hybridized with the lexA genes of S. typhimurium and E. carotovora but not with those of P. aeruginosa and P. putida.
Collapse
Affiliation(s)
- S Calero
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|