1
|
Fernandes GDC, Turchetto‐Zolet AC, Passaglia LMP. Glutamine synthetase evolutionary history revisited: tracing back beyond the Last Universal Common Ancestor. Evolution 2022; 76:605-622. [DOI: 10.1111/evo.14434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriela de Carvalho Fernandes
- Departamento de Genética and Programa de Pós‐graduação em Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul (UFRGS) Av. Bento Gonçalves, 9500, Prédio 43312, Mailbox 15053 Porto Alegre RS 91‐501‐970 Brazil
| | - Andreia Carina Turchetto‐Zolet
- Departamento de Genética and Programa de Pós‐graduação em Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul (UFRGS) Av. Bento Gonçalves, 9500, Prédio 43312, Mailbox 15053 Porto Alegre RS 91‐501‐970 Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós‐graduação em Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul (UFRGS) Av. Bento Gonçalves, 9500, Prédio 43312, Mailbox 15053 Porto Alegre RS 91‐501‐970 Brazil
| |
Collapse
|
2
|
Ronneau S, Moussa S, Barbier T, Conde-Álvarez R, Zuniga-Ripa A, Moriyon I, Letesson JJ. Brucella, nitrogen and virulence. Crit Rev Microbiol 2014; 42:507-25. [PMID: 25471320 DOI: 10.3109/1040841x.2014.962480] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The brucellae are α-Proteobacteria causing brucellosis, an important zoonosis. Although multiplying in endoplasmic reticulum-derived vacuoles, they cause no cell death, suggesting subtle but efficient use of host resources. Brucellae are amino-acid prototrophs able to grow with ammonium or use glutamate as the sole carbon-nitrogen source in vitro. They contain more than twice amino acid/peptide/polyamine uptake genes than the amino-acid auxotroph Legionella pneumophila, which multiplies in a similar vacuole, suggesting a different nutritional strategy. During these two last decades, many mutants of key actors in nitrogen metabolism (transporters, enzymes, regulators, etc.) have been described to be essential for full virulence of brucellae. Here, we review the genomic and experimental data on Brucella nitrogen metabolism and its connection with virulence. An analysis of various aspects of this metabolism (transport, assimilation, biosynthesis, catabolism, respiration and regulation) has highlighted differences and similarities in nitrogen metabolism with other α-Proteobacteria. Together, these data suggest that, during their intracellular life cycle, the brucellae use various nitrogen sources for biosynthesis, catabolism and respiration following a strategy that requires prototrophy and a tight regulation of nitrogen use.
Collapse
Affiliation(s)
| | - Simon Moussa
- a UNamur, URBM 61 rue de Bruxelles , Namur , Belgium and
| | | | - Raquel Conde-Álvarez
- b Departamento de Microbiología , Edificio de Investigación, Universidad de Navarra , Pamplona , Spain
| | - Amaia Zuniga-Ripa
- b Departamento de Microbiología , Edificio de Investigación, Universidad de Navarra , Pamplona , Spain
| | - Ignacio Moriyon
- b Departamento de Microbiología , Edificio de Investigación, Universidad de Navarra , Pamplona , Spain
| | | |
Collapse
|
3
|
Abstract
Rhizobia are bacteria in the α-proteobacterial genera Rhizobium, Sinorhizobium, Mesorhizobium, Azorhizobium and Bradyrhizobium that reduce (fix) atmospheric nitrogen in symbiotic association with a compatible host plant. In free-living and/or symbiotically associated rhizobia, amino acids may, in addition to their incorporation into proteins, serve as carbon, nitrogen or sulfur sources, signals of cellular nitrogen status and precursors of important metabolites. Depending on the rhizobia-host plant combination, microsymbiont amino acid metabolism (biosynthesis, transport and/or degradation) is often crucial to the establishment and maintenance of an effective nitrogen-fixing symbiosis and is intimately interconnected with the metabolism of the plant. This review summarizes past findings and current research directions in rhizobial amino acid metabolism and evaluates the genetic, biochemical and genome expression studies from which these are derived. Specific sections deal with the regulation of rhizobial amino acid metabolism, amino acid transport, and finally the symbiotic roles of individual amino acids in different plant-rhizobia combinations.
Collapse
|
4
|
Huerta-Saquero A, Calderón-Flores A, Díaz-Villaseñor A, Du Pont G, Durán S. Regulation of transcription and activity of Rhizobium etli glutaminase A. Biochim Biophys Acta Gen Subj 2004; 1673:201-7. [PMID: 15279892 DOI: 10.1016/j.bbagen.2004.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 02/16/2004] [Accepted: 05/06/2004] [Indexed: 10/26/2022]
Abstract
The present study determines the regulatory mechanisms that operate on Rhizobium etli glutaminase A. glsA gene expression levels were evaluated under several metabolic conditions by fusions of the glsA gene promoter and the transcriptional reporter cassette uidA2-aad. glsA expression was directly correlated to the glutaminase A activity found under the tested growth conditions, reaching its maximum level in the presence of glutamine and during exponential growth phase. Glutamine induces glsA expression. The influence of allosteric metabolites on glutaminase A activity was also determined. The purified enzyme was inhibited by 2-oxoglutarate and pyruvate, whereas oxaloacetate and glyoxylate modulate it positively. Glutaminase A is not inhibited by glutamate and is activated by ammonium. Glutaminase A participates in an ATP-consuming cycle where glutamine is continually degraded and resynthesized by glutamine synthetase (GS). GS and glutaminase A activities appear simultaneously during bacterial growth under different metabolic conditions and their control mechanisms are not reciprocal. Slight overproduction in glutaminase A expression causes a reduction in growth yield and a dramatic decrease in bacterial growth. We propose a model for regulation of glutaminase A, and discuss its contribution to glutamine cycle regulation.
Collapse
Affiliation(s)
- Alejandro Huerta-Saquero
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, México D.F. 04510, Mexico
| | | | | | | | | |
Collapse
|
5
|
Patriarca EJ, Tatè R, Iaccarino M. Key role of bacterial NH(4)(+) metabolism in Rhizobium-plant symbiosis. Microbiol Mol Biol Rev 2002; 66:203-22. [PMID: 12040124 PMCID: PMC120787 DOI: 10.1128/mmbr.66.2.203-222.2002] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Symbiotic nitrogen fixation is carried out in specialized organs, the nodules, whose formation is induced on leguminous host plants by bacteria belonging to the family Rhizobiaceae: Nodule development is a complex multistep process, which requires continued interaction between the two partners and thus the exchange of different signals and metabolites. NH(4)(+) is not only the primary product but also the main regulator of the symbiosis: either as ammonium and after conversion into organic compounds, it regulates most stages of the interaction, from the production of nodule inducers to the growth, function, and maintenance of nodules. This review examines the adaptation of bacterial NH(4)(+) metabolism to the variable environment generated by the plant, which actively controls and restricts bacterial growth by affecting oxygen and nutrient availability, thereby allowing a proficient interaction and at the same time preventing parasitic invasion. We describe the regulatory circuitry responsible for the downregulation of bacterial genes involved in NH(4)(+) assimilation occurring early during nodule invasion. This is a key and necessary step for the differentiation of N(2)-fixing bacteroids (the endocellular symbiotic form of rhizobia) and for the development of efficient nodules.
Collapse
Affiliation(s)
- Eduardo J Patriarca
- International Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, 80125 Naples, Italy.
| | | | | |
Collapse
|
6
|
Spinosa M, Riccio A, Mandrich L, Manco G, Lamberti A, Iaccarino M, Merrick M, Patriarca EJ. Inhibition of glutamine synthetase II expression by the product of the gstI gene. Mol Microbiol 2000; 37:443-52. [PMID: 10931338 DOI: 10.1046/j.1365-2958.2000.02018.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the identification of a previously unrecognized gene that is involved in the regulation of the Rhizobium leguminosarum glnII (glutamine synthetase II) gene. This gene, which is situated immediately upstream of glnII, was identified by means of a deletion/complementation analysis performed in the heterologous background of Klebsiella pneumoniae. It has been designated gstI (glutamine synthetase translational Inhibitor) because, when a complete version of gstI is present, it is possible to detect glnII-specific mRNA, but neither GSII activity nor GSII protein. The gstI gene encodes a small (63 amino acids) protein, which acts in cis or in trans with respect to glnII and is transcribed divergently with respect to glnII from a promoter that was found to be strongly repressed by the nitrogen transcriptional regulator NtrC. A mutated version of GstI lacking the last 14 amino acids completely lost its capacity to repress glnII expression. Our results indicate that gstI mediates the translation inhibition of glnII mRNA and, based on in silico analyses, a mechanism for GstI action is proposed.
Collapse
Affiliation(s)
- M Spinosa
- International Institute of Genetics and Biophysics, CNR, Via G. Marconi 10, 80125 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Encarnación S, Calderón J, Gelbard AS, Cooper AJL, Mora J. Glutamine biosynthesis and the utilization of succinate and glutamine by Rhizobium etli and Sinorhizobium meliloti. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 9):2629-2638. [PMID: 9782512 DOI: 10.1099/00221287-144-9-2629] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sinorhizobium meliloti 1021 and Rhizobium etli CE3 turn over nitrogen and carbon from glutamine to ammonium and CO2, respectively. Some of the ammonium released is assimilated back into glutamine, indicating that a glutamine cycle similar to that in Neurospora operates in Rhizobium. In addition, a previously unrecognized metabolic pathway in Rhizobium was discovered--namely, conversion of glutamine-carbon to gamma-hydroxybutyric acid and beta-hydroxybutyric acid. Additionally, some of the 2-oxoglutarate derived from glutamine catabolism in Rhizobium is converted to succinate in glutamine-containing medium. Both S. meliloti 1021 and R. etli CE3 oxidize succinate preferentially over glutamine when provided with both carbon sources. In contrast to Sinorhizobium meliloti 1021 and Rhizobium etli CE3, an S. meliloti double mutant that lacks both glutamine synthetase (GS) I and II preferentially oxidizes glutamine over succinate when supplied with both substrates. GSII activity is induced in wild-type S. meliloti 1021 and R. etli CE3 grown in succinate-glutamine medium, and this enzyme participates in the cycling of glutamine-carbon and -nitrogen. On the other hand, GSII activity is repressed in both micro-organisms when glutamine is the only carbon source. These findings show that, in medium containing both glutamine and succinate, glutamine synthesis helps drive the utilization of succinate. When glutamine is in excess as an energy-providing substrate its synthesis is restricted, allowing for more effective utilization of glutamine as an energy source.
Collapse
Affiliation(s)
- Sergio Encarnación
- Departamento de Ecologie Molecular, Centro de Investigación Sobre Fijación de N itrogeno, Universidad National Autónoma de MexicoApartado Postal 56 5-A, Cuernavaca, MorelosMexico
| | - Jorge Calderón
- Departamento de Biotecnologia, Instituto de lnvestigaciones Biomedicas, Universidad Nacional Autónoma de MexicoAparto Postal 70228Mexico
| | - Alan S Gelbard
- Departments of Biochemistry3 and Cornell University Medical CollegeNew York, NYUSA
| | - Arthur J L Cooper
- Neurology and Neuroscience4, Cornell University Medical CollegeNew York, NYUSA
| | - Jaime Mora
- Departamento de Ecologie Molecular, Centro de Investigación Sobre Fijación de N itrogeno, Universidad National Autónoma de MexicoApartado Postal 56 5-A, Cuernavaca, MorelosMexico
| |
Collapse
|
8
|
Taté R, Riccio A, Merrick M, Patriarca EJ. The Rhizobium etli amtB gene coding for an NH4+ transporter is down-regulated early during bacteroid differentiation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:188-198. [PMID: 9487694 DOI: 10.1094/mpmi.1998.11.3.188] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
During development of root nodules, Rhizobium bacteria differentiate inside the invaded plant cells into N2-fixing bacteroids. Terminally differentiated bacteroids are unable to grow using the ammonia (NH3) produced therein by the nitrogenase complex. Therefore, the nitrogen assimilation activities of bacteroids, including the ammonium (NH4+) uptake activity, are expected to be repressed during symbiosis. By sequence homology the R. etli amtB (ammonium transport) gene was cloned and sequenced. As previously shown for its counterpart in other organisms, the R. etli amtB gene product mediates the transport of NH4+. The amtB gene is cotranscribed with the glnK gene (coding for a PII-like protein) from a nitrogen-regulated sigma 54-dependent promoter, which requires the transcriptional activator NtrC. Expression of the glnKamtB operon was found to be activated under nitrogen-limiting, free-living conditions, but down-regulated just when bacteria are released from the infection threads and before transcription of the nitrogenase genes. Our data suggest that the uncoupling between N2-fixation and NH3 assimilation observed in symbiosomes is generated by a transcriptional regulatory mechanism(s) beginning with the inactivation of NtrC in younger bacteroids.
Collapse
Affiliation(s)
- R Taté
- International Institute of Genetics and Biophysics, CNR, Naples, Italy
| | | | | | | |
Collapse
|
9
|
Mendoza A, Valderrama B, Leija A, Mora J. NifA-dependent expression of glutamate dehydrogenase in Rhizobium etli modifies nitrogen partitioning during symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:83-90. [PMID: 9450332 DOI: 10.1094/mpmi.1998.11.2.83] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Constitutive expression of foreign glutamate dehydrogenase in Rhizobium etli inhibits bean plant nodulation (A. Mendoza, A. Leija, E. Martínez-Romero, G. Hernández, and J. Mora. Mol. Plant-Microbe Interact. 8:584-592, 1995). Here we report that this inhibition is overcome when controlling gdhA expression by NifA, thus delaying the GDH activity onset after nodule establishment. Expression of gdhA modifies the nitrogen partitioning inside the bacteroid, where newly synthesized ammonia is preferentially incorporated into the amino acid pool instead of being exported to the infected cells. As a consequence, the fixed nitrogen transport to the leaves, measured as the ureides content in xylem sap, is significantly reduced. Nitrogenase activity, although not nifHDK expression, is significantly reduced in bacteroids expressing gdhA, probably due to the utilization of energy and reducing power for nitrogen assimilation. Here we show that ammonia assimilation inside R. etli bacteroids is active, albeit at low levels, and when enhanced is deleterious to the symbiotic performance. This leads us to believe that further reduction of the basal nitrogen metabolism in the bacteroid might stimulate the nitrogenase activity and increase the nitrogen supply to the plant.
Collapse
Affiliation(s)
- A Mendoza
- Departamento de Ecología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | | | | | | |
Collapse
|
10
|
Abstract
Nitrogen metabolism in prokaryotes involves the coordinated expression of a large number of enzymes concerned with both utilization of extracellular nitrogen sources and intracellular biosynthesis of nitrogen-containing compounds. The control of this expression is determined by the availability of fixed nitrogen to the cell and is effected by complex regulatory networks involving regulation at both the transcriptional and posttranslational levels. While the most detailed studies to date have been carried out with enteric bacteria, there is a considerable body of evidence to show that the nitrogen regulation (ntr) systems described in the enterics extend to many other genera. Furthermore, as the range of bacteria in which the phenomenon of nitrogen control is examined is being extended, new regulatory mechanisms are also being discovered. In this review, we have attempted to summarize recent research in prokaryotic nitrogen control; to show the ubiquity of the ntr system, at least in gram-negative organisms; and to identify those areas and groups of organisms about which there is much still to learn.
Collapse
Affiliation(s)
- M J Merrick
- Nitrogen Fixation Laboratory, John Innes Centre, Norwich, United Kingdom
| | | |
Collapse
|
11
|
Abstract
The control of glutamine synthetase (GS), the first enzyme in the main pathway used by Rhizobium meliloti to assimilate ammonia, is central to cellular nitrogen metabolism. R. meliloti is unusual in having three distinct types of GS, including a unique GS, GSIII, that differs considerably from both GSI, which resembles other bacterial GS proteins and GSII, which resembles the GS found in eukaryotes. We show here that GSIII can be post-translationally modified in vivo by ADP-ribosylation at an arginine residue. 32PO4 attached to GSIII during bacterial growth as part of the modifying group could be removed by treatment with snake venom phosphodiesterase or by turkey erythrocyte ADP-ribosylarginine hydrolase. Treatment of modified GSIII with hydroxylamine at neutral pH releases a chromophore that has the retention time of ADP-ribose when analyzed by reversed-phase high performance liquid chromatography. ADP-ribosylation inhibits GSIII activity.
Collapse
Affiliation(s)
- Y Liu
- Department of Microbiology, Washington State University, Pullman 99164-6340
| | | |
Collapse
|
12
|
Reyes JC, Florencio FJ. A new type of glutamine synthetase in cyanobacteria: the protein encoded by the glnN gene supports nitrogen assimilation in Synechocystis sp. strain PCC 6803. J Bacteriol 1994; 176:1260-7. [PMID: 7906687 PMCID: PMC205187 DOI: 10.1128/jb.176.5.1260-1267.1994] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A new glutamine synthetase gene, glnN, which encodes a polypeptide of 724 amino acid residues (M(r), 79,416), has been identified in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803; this is the second gene that encodes a glutamine synthetase (GS) in this cyanobacterium. The functionality of this gene was evidenced by its ability to complement an Escherichia coli glnA mutant and to support Synechocystis growth in a strain whose glnA gene was inactivated by insertional mutagenesis. In this mutant (strain SJCR3), as well as in the wild-type strain, the second GS activity was subject to regulation by the nitrogen source, being strongly enhanced in nitrogen-free medium. Transcriptional fusion of a chloramphenicol acetyltransferase (cat) gene with the 5'-upstream region of glnN suggested that synthesis of the second Synechocystis GS is regulated at the transcriptional level. Furthermore, the level of glnN mRNA, a transcript of about 2,300 bases, was found to be strongly increased in nitrogen-free medium. The glnN product is similar to the GS subunits of Bacteroides fragilis and Butyrivibrio fibrisolvens, two obligate anaerobic bacteria whose GSs are markedly different from other prokaryotic and eukaryotic GSs. However, significant similarity is evident in the five regions which are homologous in all of the GSs so far described. The new GS gene was also found in other cyanobacteria but not in N2-fixing filamentous species.
Collapse
Affiliation(s)
- J C Reyes
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla-CSIC, Spain
| | | |
Collapse
|
13
|
Abstract
Rhizobia are gram-negative bacteria with two distinct habitats: the soil rhizosphere in which they have a saprophytic and, usually, aerobic life and a plant ecological niche, the legume nodule, which constitutes a microoxic environment compatible with the operation of the nitrogen reducing enzyme nitrogenase. The purpose of this review is to summarize the present knowledge of the changes induced in these bacteria when shifting to a microoxic environment. Oxygen concentration regulates the expression of two major metabolic pathways: energy conservation by respiratory chains and nitrogen fixation. After reviewing the genetic data on these metabolic pathways and their response to oxygen we will put special emphasis on the regulatory molecules which are involved in the control of gene expression. We will show that, although homologous regulatory molecules allow response to oxygen in different species, they are assembled in various combinations resulting in a variable regulatory coupling between genes for microaerobic respiration and nitrogen fixation genes. The significance of coordinated regulation of genes not essential for nitrogen fixation with nitrogen fixation genes will also be discussed.
Collapse
Affiliation(s)
- J Batut
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS INRA, Castanet-Tolosan, France
| | | |
Collapse
|
14
|
Espín G, Moreno S, Guzman J. Molecular genetics of the glutamine synthetases in Rhizobium species. Crit Rev Microbiol 1994; 20:117-23. [PMID: 7915906 DOI: 10.3109/10408419409113551] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Soil bacteria of the genus Rhizobium and Bradyrhizobium establish symbiotic interactions with leguminous plants that result in the formation of specialized structures, the nodules, in which the bacteria differentiate into bacteroids and fix nitrogen. Rhizobial glutamine synthetase (GS) activity is very low in the nodule. The ammonia produced by the bacteroids is exported to the plant cell, where it is assimilated by the GS from the plant, whereas in the free-living state, Rhizobium and Bradyrhizobium species assimilate ammonia for growth. Another characteristic of these species is that they possess two glutamine synthetase isozymes, known as GSI and GSII. A third glutamine synthetase isozyme, called GSIII, has been found in R. meliloti and R. etli.
Collapse
Affiliation(s)
- G Espín
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos
| | | | | |
Collapse
|
15
|
Shatters R, Liu Y, Kahn M. Isolation and characterization of a novel glutamine synthetase from Rhizobium meliloti. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54175-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Chiurazzi M, Meza R, Lara M, Lahm A, Defez R, Iaccarino M, Espín G. The Rhizobium leguminosarum biovar phaseoli glnT gene, encoding glutamine synthetase III. Gene 1992; 119:1-8. [PMID: 1356885 DOI: 10.1016/0378-1119(92)90060-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasmid pGE203 contains the Rhizobium leguminosarum biovar phaseoli glnT locus. Glutamine synthetase III (GSIII) was purified from a glutamine auxotrophic strain of Klebsiella pneumoniae carrying this plasmid. Sequencing of a 2.4-kb fragment containing the glnT locus reveals an open reading frame of 435 amino acids (aa), whose first eight aa are identical to those determined from pure GSIII by direct aa sequencing, thus confirming that glnT indeed codes for GSIII activity. The comparison of the GSIII aa sequence with the reported sequence of GSs from other organisms shows a significant degree of homology. Since the three-dimensional structure of GS from Salmonella typhimurium is known, a three-dimensional model of GSIII was built by homology.
Collapse
Affiliation(s)
- M Chiurazzi
- Istituto Internazionale di Genetica e Biofisica, CNR, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The synthesis of glutamine synthetase (GS), a key enzyme in ammonium (NH4+) assimilation, is regulated by nitrogen availability in several Streptomyces strains. In addition, the enzymatic activity of the GS enzyme is post-translationally regulated by adenylylation. Nitrogen regulation of GS synthesis is mediated at the transcriptional level in S. coelicolor, and transcription of the GS structural gene (glnA) requires a positive regulatory protein, GlnR. The amino acid sequence of the GlnR protein is similar to that of the Escherichia coli positive regulatory proteins, OmpR and PhoB, which belong to the family of bacterial two-component regulatory systems. DNA encoding a GSII-like enzyme has been cloned from S. viridochromogenes and S. hygroscopicus, but the role of this GS isoenzyme in NH4+ assimilation in Streptomyces is unclear.
Collapse
Affiliation(s)
- S H Fisher
- Department of Microbiology, Boston University School of Medicine, MA 02118
| |
Collapse
|