1
|
Theiner T, Ortner NJ, Oberacher H, Stojanovic G, Tuluc P, Striessnig J. Novel protocol for multiple-dose oral administration of the L-type Ca 2+ channel blocker isradipine in mice: A dose-finding pharmacokinetic study. Channels (Austin) 2024; 18:2335469. [PMID: 38564754 PMCID: PMC10989688 DOI: 10.1080/19336950.2024.2335469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Studies in genetically modified animals and human genetics have recently provided new insight into the role of voltage-gated L-type Ca2+ channels in human disease. Therefore, the inhibition of L-type Ca2+ channels in vivo in wildtype and mutant mice by potent dihydropyridine (DHP) Ca2+ channel blockers serves as an important pharmacological tool. These drugs have a short plasma half-life in humans and especially in rodents and show high first-pass metabolism upon oral application. In the vast majority of in vivo studies, they have therefore been delivered through parenteral routes, mostly subcutaneously or intraperitoneally. High peak plasma concentrations of DHPs cause side effects, evident as DHP-induced aversive behaviors confounding the interpretation of behavioral readouts. Nevertheless, pharmacokinetic data measuring the exposure achieved with these applications are sparse. Moreover, parenteral injections require animal handling and can be associated with pain, discomfort and stress which could influence a variety of physiological processes, behavioral and other functional readouts. Here, we describe a noninvasive oral application of the DHP isradipine by training mice to quickly consume small volumes of flavored yogurt that can serve as drug vehicle. This procedure does not require animal handling, allows repeated drug application over several days and reproducibly achieves peak plasma concentrations over a wide range previously shown to be well-tolerated in humans. This protocol should facilitate ongoing nonclinical studies in mice exploring new indications for DHP Ca2+ channel blockers.
Collapse
Affiliation(s)
- Tamara Theiner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Nadine J. Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Gospava Stojanovic
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Abstract
Tightly controlled Ca2+ influx through voltage-gated Ca2+ channels (Cavs) is indispensable for proper physiological function. Thus, it is not surprising that Cav loss and/or gain of function have been implicated in human pathology. Deficiency of Cav1.3 L-type Ca2+ channels (LTCCs) causes deafness and bradycardia, whereas several genetic variants of CACNA1D, the gene encoding the pore-forming α1 subunit of Cav1.3, have been linked to various disease phenotypes, such as hypertension, congenital hypoglycemia, or autism. These variants include not only common polymorphisms associated with an increased disease risk, but also rare de novo missense variants conferring high risk. This review provides a concise summary of disease-associated CACNA1D variants, whereas the main focus lies on de novo germline variants found in individuals with a neurodevelopmental disorder of variable severity. Electrophysiological recordings revealed activity-enhancing gating changes induced by these de novo variants, and tools to predict their pathogenicity and to study the resulting pathophysiological consequences will be discussed. Despite the low number of affected patients, potential phenotype-genotype correlations and factors that could impact the severity of symptoms will be covered. Since increased channel activity is assumed as the disease-underlying mechanism, pharmacological inhibition could be a treatment option. In the absence of Cav1.3-selective blockers, dihydropyridine LTCC inhibitors clinically approved for the treatment of hypertension may be used for personalized off-label trials. Findings from in vitro studies and treatment attempts in some of the patients seem promising as outlined. Taken together, due to advances in diagnostic sequencing techniques the number of reported CACNA1D variants in human diseases is constantly rising. Evidence from in silico, in vitro, and in vivo disease models can help to predict the pathogenic potential of such variants and to guide diagnosis and treatment in the clinical practice when confronted with patients harboring CACNA1D variants.
Collapse
Affiliation(s)
- Nadine J Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Shin J, Kovacheva L, Thomas D, Stojanovic S, Knowlton CJ, Mankel J, Boehm J, Farassat N, Paladini C, Striessnig J, Canavier CC, Geisslinger G, Roeper J. Ca v1.3 calcium channels are full-range linear amplifiers of firing frequencies in lateral DA SN neurons. SCIENCE ADVANCES 2022; 8:eabm4560. [PMID: 35675413 PMCID: PMC9177074 DOI: 10.1126/sciadv.abm4560] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/22/2022] [Indexed: 05/12/2023]
Abstract
The low-threshold L-type calcium channel Cav1.3 accelerates the pacemaker rate in the heart, but its functional role for the extended dynamic range of neuronal firing is still unresolved. Here, we show that Cav1.3 calcium channels act as unexpectedly simple, full-range linear amplifiers of firing rates for lateral dopamine substantia nigra (DA SN) neurons in mice. This means that they boost in vitro or in vivo firing frequencies between 2 and 50 hertz by about 30%. Furthermore, we demonstrate that clinically relevant, low nanomolar concentrations of the L-type channel inhibitor isradipine selectively reduce the in vivo firing activity of these nigrostriatal DA SN neurons at therapeutic plasma concentrations. Thus, our study identifies the pacemaker function of neuronal Cav1.3 channels and provides direct evidence that repurposing dihydropyridines such as isradipine is feasible to selectively modulate the in vivo activity of highly vulnerable DA SN subpopulations in Parkinson's disease.
Collapse
Affiliation(s)
- Josef Shin
- Goethe University, Institute of Neurophysiology, Neuroscience Center, Frankfurt am Main, Germany
| | - Lora Kovacheva
- Goethe University, Institute of Neurophysiology, Neuroscience Center, Frankfurt am Main, Germany
| | - Dominique Thomas
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Strahinja Stojanovic
- Goethe University, Institute of Neurophysiology, Neuroscience Center, Frankfurt am Main, Germany
| | - Christopher J. Knowlton
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Johanna Mankel
- Goethe University, Institute of Neurophysiology, Neuroscience Center, Frankfurt am Main, Germany
| | - Johannes Boehm
- Goethe University, Institute of Neurophysiology, Neuroscience Center, Frankfurt am Main, Germany
| | - Navid Farassat
- Goethe University, Institute of Neurophysiology, Neuroscience Center, Frankfurt am Main, Germany
| | - Carlos Paladini
- UTSA Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jörg Striessnig
- University of Innsbruck, Department of Pharmacology and Toxicology, Center for Molecular Biosciences, Innsbruck, Austria
| | - Carmen C. Canavier
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Jochen Roeper
- Goethe University, Institute of Neurophysiology, Neuroscience Center, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Liss B, Striessnig J. The Potential of L-Type Calcium Channels as a Drug Target for Neuroprotective Therapy in Parkinson's Disease. Annu Rev Pharmacol Toxicol 2019; 59:263-289. [PMID: 30625283 DOI: 10.1146/annurev-pharmtox-010818-021214] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The motor symptoms of Parkinson's disease (PD) mainly arise from degeneration of dopamine neurons within the substantia nigra. As no disease-modifying PD therapies are available, and side effects limit long-term benefits of current symptomatic therapies, novel treatment approaches are needed. The ongoing phase III clinical study STEADY-PD is investigating the potential of the dihydropyridine isradipine, an L-type Ca2+ channel (LTCC) blocker, for neuroprotective PD therapy. Here we review the clinical and preclinical rationale for this trial and discuss potential reasons for the ambiguous outcomes of in vivo animal model studies that address PD-protective dihydropyridine effects. We summarize current views about the roles of Cav1.2 and Cav1.3 LTCC isoforms for substantia nigra neuron function, and their high vulnerability to degenerative stressors, and for PD pathophysiology. We discuss different dihydropyridine sensitivities of LTCC isoforms in view of their potential as drug targets for PD neuroprotection, and we conclude by considering how these aspects could guide further drug development.
Collapse
Affiliation(s)
- Birgit Liss
- Institut für Angewandte Physiologie, Universität Ulm, 89081 Ulm, Germany;
| | - Jörg Striessnig
- Abteilung Pharmakologie und Toxikologie, Institut für Pharmazie, and Center for Molecular Biosciences Innsbruck, Universität Innsbruck, A-6020 Innsbruck, Austria;
| |
Collapse
|
5
|
Ilijic E, Guzman JN, Surmeier DJ. The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson's disease. Neurobiol Dis 2011; 43:364-71. [PMID: 21515375 PMCID: PMC3235730 DOI: 10.1016/j.nbd.2011.04.007] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/26/2011] [Accepted: 04/07/2011] [Indexed: 12/31/2022] Open
Abstract
The motor symptoms of Parkinson's disease (PD) are due to the progressive loss of dopamine (DA) neurons in substantia nigra pars compacta (SNc). Nothing is known to slow the progression of the disease, making the identification of potential neuroprotective agents of great clinical importance. Previous studies using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD have shown that antagonism of L-type Ca2+ channels protects SNc DA neurons. However, this was not true in a 6-hydroxydopamine (6-OHDA) model. One potential explanation for this discrepancy is that protection in the 6-OHDA model requires greater antagonism of Cav1.3 L-type Ca2+ channels thought to underlie vulnerability and this was not achievable with the low affinity dihydropyridine (DHP) antagonist used. To test this hypothesis, the DHP with the highest affinity for Cav1.3L-type channels-isradipine-was systemically administered and then the DA toxin 6-OHDA injected intrastriatally. Twenty-five days later, neuroprotection and plasma concentration of isradipine were determined. This analysis revealed that isradipine produced a dose-dependent sparing of DA fibers and cell bodies at concentrations achievable in humans, suggesting that isradipine is a potentially viable neuroprotective agent for PD.
Collapse
Affiliation(s)
- E Ilijic
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
6
|
Christensen HR, Simonsen K, Kampmann JP. Pharmacokinetics and dynamic response of plain and slow release isradipine formulations in moderately hypertensive patients. PHARMACOLOGY & TOXICOLOGY 1993; 73:279-84. [PMID: 8115311 DOI: 10.1111/j.1600-0773.1993.tb00585.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The pharmacokinetic variables and antihypertensive effect of the calcium antagonist isradipine, were investigated in 30 hypertensive patients. Isradipine was given orally in parallel group design in plain and slow release formulations in doses of 2.5 mg twice daily and 5.0 mg once daily, respectively. Isradipine concentration in serum was measured by a sensitive RIA method after the first dose and after 6 weeks of treatment. The pharmacokinetics and concentration/effect relationship after the first dose and after 6 weeks of treatment were compared. No differences in pharmacokinetics were observed between single and multiple dosing. Data were in accordance with results from studies in healthy volunteers. Rate, but not extent of bioavailability differs between the two isradipine formulations. Antihypertensive efficacy of the two formulations was similar (16/11 and 19/15 mmHg), and a significant time dependent increase in Emax from 10/3 mmHg to 23/14 mmHg after 6 weeks of treatment was observed.
Collapse
Affiliation(s)
- H R Christensen
- Medical Department P, Bispebjerg Hospital, Copenhagen, Denmark
| | | | | |
Collapse
|