1
|
Yang M, Song X, Li J, Wang S, Zhang M, Deng X, Wang H. Genome-wide identification and analysis of the EIN3/EIL gene family in broomcorn millet ( Panicum miliaceum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1440872. [PMID: 39170780 PMCID: PMC11335613 DOI: 10.3389/fpls.2024.1440872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
The EIN3/EIL gene family holds a pivotal role as it encodes a crucial transcription factor in plants. During the process of polyploidization in broomcorn millet (Panicum miliaceum L.), there is an intriguing above-average amplification observed within the EIN3/EIL gene family. Nonetheless, our current knowledge of this gene family in broomcorn millet remains limited. Hence, in this study, we conducted a comprehensive analysis of the EIN3/EIL gene family in broomcorn millet, aiming to provide a deeper understanding of the potential evolutionary changes. Additionally, we analyzed the EIN3/EIL gene family of Panicum hallii L., a close relative of broomcorn millet, to enhance our characterization efforts. Within this study, we identified a total of 15 EIN3/EIL genes specific to broomcorn millet. Through covariance analysis, it was revealed that all PmEIL genes, except PmEIL1 and PmEIL15, had duplicate copies generated through genome-wide duplication events. Importantly, the Ka/Ks values of all duplicated genes were found to be less than 1, indicating strong purifying selection. Phylogenetic analysis showed that these genes could be categorized into four distinct evolutionary branches, showcasing similar characteristics among members within the same branch. However, there appeared to be an uneven distribution of cis-acting elements amid the EIN3/EIL genes. Further examination of transcriptomic data shed light on the diverse spatiotemporal and stress-related expression patterns exhibited by the EIN3/EIL genes in broomcorn millet. Notably, under cold stress, the expression of PmEIL3/4/8/14 was significantly up-regulated, while under drought stress, PmEIL4/5/6 displayed significant up-regulation. Intriguingly, the expression pattern of PmEIL15 showed an opposite pattern in resistant and sensitive cultivars. The findings of this study augment our understanding of the EIN3/EIL gene family in broomcorn millet and offer a valuable reference for future investigations into polyploid studies. Moreover, this study establishes a theoretical foundation for further exploration of the ethylene signaling pathway in broomcorn millet.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| |
Collapse
|
2
|
Kapoor P, Rakhra G, Kumar V, Joshi R, Gupta M, Rakhra G. Insights into the functional characterization of DIR proteins through genome-wide in silico and evolutionary studies: a systematic review. Funct Integr Genomics 2023; 23:166. [PMID: 37202648 DOI: 10.1007/s10142-023-01095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Dirigent proteins (DIRs) are a new class of proteins that were identified during the 8-8' lignan biosynthetic pathway and involves the formation of ( +) or ( -)-pinoresinol through stereoselective coupling from E-coniferyl alcohol. These proteins are known to play a vital role in the development and stress response in plants. Various studies have reported the functional and structural characterization of dirigent gene family in different plants using in silico approaches. Here, we have summarized the importance of dirigent proteins in plants and their role in plant stress tolerance by analyzing the genome-wide analysis including gene structure, mapping of chromosomes, phylogenetic evolution, conserved motifs, gene structure, and gene duplications in important plants. Overall, this review would help to compare and clarify the molecular and evolutionary characteristics of dirigent gene family in different plants.
Collapse
Affiliation(s)
- Preedhi Kapoor
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Gurseen Rakhra
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Vineet Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ridhi Joshi
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Mahiti Gupta
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Gurmeen Rakhra
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
3
|
MicroRNAs Mediated Plant Responses to Salt Stress. Cells 2022; 11:cells11182806. [PMID: 36139379 PMCID: PMC9496875 DOI: 10.3390/cells11182806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/17/2022] Open
Abstract
One of the most damaging issues to cultivatable land is soil salinity. While salt stress influences plant growth and yields at low to moderate levels, severe salt stress is harmful to plant growth. Mineral shortages and toxicities frequently exacerbate the problem of salinity. The growth of many plants is quantitatively reduced by various levels of salt stress depending on the stage of development and duration of stress. Plants have developed various mechanisms to withstand salt stress. One of the key strategies is the utilization of microRNAs (miRNAs) that can influence gene regulation at the post-transcriptional stage under different environmental conditions, including salinity. Here, we have reviewed the miRNA-mediated adaptations of various plant species to salt stress and other abiotic variables. Moreover, salt responsive (SR)-miRNAs, their targets, and corresponding pathways have also been discussed. The review article concludes by suggesting that the utilization of miRNAs may be a vital strategy to generate salt tolerant crops ensuring food security in the future.
Collapse
|
4
|
Ren H, Chen S, Hou J, Li H. Genome-wide identification, expression analyses of Wuschel-related homeobox (WOX) genes in Brachypodium distachyon and functional characterization of BdWOX12. Gene X 2022; 836:146691. [PMID: 35738446 DOI: 10.1016/j.gene.2022.146691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022] Open
Abstract
As one kind of plant-specific transcription factors (TFs), WOX (Wuschel-related homeobox) plays an essential role in plant growth and development. In this study, 21 WOX TFs were identified in Brachypodium distachyon. They were divided into ancient, intermediate, and WUS clades based on phylogenetic analysis. These 21 BdWOX genes are mapped on 5 chromosomes unevenly. In the promoters, the most abundant cis-elements are ABRE, TGACG-motif, and G-box. qRT-PCR results showed that most BdWOX genes are expressed in vegetative and reproductive organs. Meanwhile, the expression of 14, 12, and 15 BdWOX genes are up-regulated by exogenous 6-BA, NAA, and GA, respectively. These results indicated that BdWOX genes participate in hormone signaling and regulate plant growth and development. Overexpression of BdWOX12 in Arabidopsis improved the root system, further indicating the functions of BdWOX genes in growth and development. This study provided a basis for the functional elucidation of BdWOX genes.
Collapse
Affiliation(s)
- Hongyu Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China
| | - Shoukun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China
| | - Jiayuan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China.
| |
Collapse
|
5
|
Tang Y, Du G, Xiang J, Hu C, Li X, Wang W, Zhu H, Qiao L, Zhao C, Wang J, Yu S, Sui J. Genome-wide identification of auxin response factor (ARF) gene family and the miR160-ARF18-mediated response to salt stress in peanut (Arachis hypogaea L.). Genomics 2021; 114:171-184. [PMID: 34933069 DOI: 10.1016/j.ygeno.2021.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Auxin response factors (ARFs) are transcription factors that regulate the transcription of auxin-responsive genes during plant growth and development. In this study, 29 and 30 ARF members were identified from the two wild peanut species, A. duranensis and A. ipaensis, respectively. The ARFs, including their classifications, conserved domains and evolutionary relationships were characterized. RNA-seq analyses revealed that some of the ARF genes were responsive to abiotic stress, particularly high salinity. In addition to abiotic stress, the expression of 2 ARF members was also regulated by biotic stress, specifically Bradyrhizobium infection in A. duranensis. The ARF gene Arahy.7DXUOK was predicted to be a potential target of miR160. Overexpression of miR160 could cause degradation of the Arahy.7DXUOK target gene transcript and increased salt tolerance in miR160OX transgenic plants. Therefore, these molecular characterization and expression profile analyses provide comprehensive information on ARF family members and will help to elucidate their functions to facilitate further research on peanuts.
Collapse
Affiliation(s)
- Yanyan Tang
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Guoning Du
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Jie Xiang
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Changli Hu
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Xiaoting Li
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Weihua Wang
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Lixian Qiao
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Chunmei Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jingshan Wang
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Shanlin Yu
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Jiongming Sui
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China..
| |
Collapse
|
6
|
Li Z, Xie Q, Yan J, Chen J, Chen Q. Genome-Wide Identification and Characterization of the Abiotic-Stress-Responsive GRF Gene Family in Diploid Woodland Strawberry ( Fragaria vesca). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10091916. [PMID: 34579449 PMCID: PMC8468544 DOI: 10.3390/plants10091916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 05/07/2023]
Abstract
Growth regulatory factors (GRF) are plant-specific transcription factors that play an important role in plant resistance to stress. This gene family in strawberry has not been investigated previously. In this study, 10 GRF genes were identified in the genome of the diploid woodland strawberry (Fragaria vesca). Chromosome analysis showed that the 10 FvGRF genes were unevenly distributed on five chromosomes. Phylogenetic analysis resolved the FvGRF proteins into five groups. Genes of similar structure were placed in the same group, which was indicative of functional redundance. Whole-genome duplication/segmental duplication and dispersed duplication events effectively promoted expansion of the strawberry GRF gene family. Quantitative reverse transcription-PCR analysis suggested that FvGRF genes played potential roles in the growth and development of vegetative organs. Expression profile analysis revealed that FvGRF3, FvGRF5, and FvGRF7 were up-regulated under low-temperature stress, FvGRF4 and FvGRF9 were up-regulated under high-temperature stress, FvGRF6 and FvGRF8 were up-regulated under drought stress, FvGRF3, FvGRF6, and FvGRF8 were up-regulated under salt stress, FvGRF2, FvGRF7, and FvGRF9 were up-regulated under salicylic acid treatment, and FvGRF3, FvGRF7, FvGRF9, and FvGRF10 were up-regulated under abscisic acid treatment. Promoter analysis indicated that FvGRF genes were involved in plant growth and development and stress response. These results provide a theoretical and empirical foundation for the elucidation of the mechanisms of abiotic stress responses in strawberry.
Collapse
Affiliation(s)
- Zhiqi Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (Q.X.); (J.Y.)
| | - Qian Xie
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (Q.X.); (J.Y.)
| | - Jiahui Yan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (Q.X.); (J.Y.)
- Horticultural Plant Biology and Metabolomices Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianqing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (Q.X.); (J.Y.)
- Correspondence: (J.C.); (Q.C.)
| | - Qingxi Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (Q.X.); (J.Y.)
- Correspondence: (J.C.); (Q.C.)
| |
Collapse
|
7
|
Rezaee S, Ahmadizadeh M, Heidari P. Genome-wide characterization, expression profiling, and post-transcriptional study of GASA gene family. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Li M, Wang R, Liang Z, Wu X, Wang J. Genome-wide identification and analysis of the EIN3/EIL gene family in allotetraploid Brassica napus reveal its potential advantages during polyploidization. BMC PLANT BIOLOGY 2019; 19:110. [PMID: 30898097 PMCID: PMC6429743 DOI: 10.1186/s12870-019-1716-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/12/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Polyploidization is a common event in the evolutionary history of angiosperms, and there will be some changes in the genomes of plants other than a simple genomic doubling after polyploidization. Allotetraploid Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are a good group for studying the problems associated with polyploidization. On the other hand, the EIN3/EIL gene family is an important gene family in plants, all members of which are key genes in the ethylene signaling pathway. Until now, the EIN3/EIL gene family in B. napus and its diploid progenitors have been largely unknown, so it is necessary to comprehensively identify and analyze this gene family. RESULTS In this study, 13, 7 and 7 EIN3/EIL genes were identified in B. napus (2n = 4x = 38, AnCn), B. rapa (2n = 2x = 20, Ar) and B. oleracea (2n = 2x = 18, Co). All of the identified EIN3/EIL proteins were divided into 3 clades and further divided into 8 sub-clades. Ka/Ks analysis showed that all identified EIN3/EIL genes underwent purifying selection after the duplication events. Moreover, gene structure analysis showed that some EIN3/EIL genes in B. napus acquired introns during polyploidization, and homolog expression bias analysis showed that B. napus was biased towards its diploid progenitor B. rapa. The promoters of the EIN3/EIL genes in B. napus contained more cis-acting elements, which were mainly involved in endosperm gene expression and light responsiveness, than its diploid progenitors. Thus, B. napus might have potential advantages in some biological aspects. CONCLUSIONS The results indicated allotetraploid B. napus might have potential advantages in some biological aspects. Moreover, our results can increase the understanding of the evolution of the EIN3/EIL gene family in B. napus, and provided more reference for future research about polyploidization.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ziwei Liang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan, 430062 China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
9
|
Liu N, Dong L, Deng X, Liu D, Liu Y, Li M, Hu Y, Yan Y. Genome-wide identification, molecular evolution, and expression analysis of auxin response factor (ARF) gene family in Brachypodium distachyon L. BMC PLANT BIOLOGY 2018; 18:336. [PMID: 30522432 PMCID: PMC6282295 DOI: 10.1186/s12870-018-1559-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/22/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND The auxin response factor (ARF) gene family is involved in plant development and hormone regulation. Although the ARF gene family has been studied in some plant species, its structural features, molecular evolution, and expression profiling in Brachypodium distachyon L. are still not clear. RESULTS Genome-wide analysis identified 19 ARF genes in B. distachyon. A phylogenetic tree constructed with 182 ARF genes from seven plant species revealed three different clades, and the ARF genes from within a clade exhibited structural conservation, although certain divergences occurred in different clades. The branch-site model identified some sites where positive selection may have occurred, and functional divergence analysis found more Type II divergence sites than Type I. In particular, both positive selection and functional divergence may have occurred in 241H, 243G, 244 L, 310 T, 340G and 355 T. Subcellular localization prediction and experimental verification indicated that BdARF proteins were present in the nucleus. Transcript expression analysis revealed that BdARFs were mainly expressed in the leaf and root tips, stems, and developing seeds. Some BdARF genes exhibited significantly upregulated expression under various abiotic stressors. Particularly, BdARF4 and BdARF8 were significantly upregulated in response to abiotic stress factors such as salicylic acid and heavy metals. CONCLUSION The ARF gene family in B. distachyon was highly conserved. Several important amino acid sites were identified where positive selection and functional divergence occurred, and they may play important roles in functional differentiation. BdARF genes had clear tissue and organ expression preference and were involved in abiotic stress response, suggesting their roles in plant growth and stress resistance.
Collapse
Affiliation(s)
- Nannan Liu
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Liwei Dong
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Xiong Deng
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Dongmiao Liu
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Yue Liu
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Mengfei Li
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Yingkao Hu
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, 100048 China
| |
Collapse
|
10
|
Wang Y, Zhang N, Li T, Yang J, Zhu X, Fang C, Li S, Si H. Genome-wide identification and expression analysis of StTCP transcription factors of potato (Solanum tuberosum L.). Comput Biol Chem 2018; 78:53-63. [PMID: 30497020 DOI: 10.1016/j.compbiolchem.2018.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022]
Abstract
The plant-specific TCP transcription factors, which play critical roles in diverse aspects of biological processes, have been identified and analyzed in various plant species. However, no systematical study of TCP family genes in potato (Solanum tuberosum L.) has been undertaken. In this study, a total of 31 non-redundant TCP transcription factors of potato were identified and divided into two subfamilies including three distinct subclades. The various orthologous TCP genes in Arabidopsis, rice, potato and tomato were identified using synteny and phylogenetic analysis. Protein motif analysis demonstrated that StTCPs in the same subclade shared similar conserved motif structures. Gene structure analysis showed that almost all StTCPs displayed highly conserved exon-intron organization. The analysis of StTCP gene promoter regions revealed that multiple cis-acting elements were involved in plant growth, development, hormone responses as well as stress responses. The result of StTCP gene expression profiles showed they had tissue-specific expression patterns which implied their differentiated functions. According to the results of quantitative RT-PCR (qRT-PCR), 7 StTCP genes were dramatically up-regulated during the release of tuber dormancy and some specific StTCP genes were strongly responding to different abiotic stresses and multiple hormones, which suggested they had important roles in potato growth and development processes. The results of our findings could provide comprehensive insights in StTCP family genes of potato for further functional investigations.
Collapse
Affiliation(s)
- Yapeng Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Ting Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jiangwei Yang
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xi Zhu
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Chenxi Fang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Shigui Li
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Huaijun Si
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
11
|
Zhao J, Zhai Z, Li Y, Geng S, Song G, Guan J, Jia M, Wang F, Sun G, Feng N, Kong X, Chen L, Mao L, Li A. Genome-Wide Identification and Expression Profiling of the TCP Family Genes in Spike and Grain Development of Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1282. [PMID: 30298074 PMCID: PMC6160802 DOI: 10.3389/fpls.2018.01282] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/16/2018] [Indexed: 05/24/2023]
Abstract
The TCP family genes are plant-specific transcription factors and play important roles in plant development. TCPs have been evolutionarily and functionally studied in several plants. Although common wheat (Triticum aestivum L.) is a major staple crop worldwide, no systematic analysis of TCPs in this important crop has been conducted. Here, we performed a genome-wide survey in wheat and found 66 TCP genes that belonged to 22 homoeologous groups. We then mapped these genes on wheat chromosomes and found that several TCP genes were duplicated in wheat including the ortholog of the maize TEOSINTE BRANCHED 1. Expression study using both RT-PCR and in situ hybridization assay showed that most wheat TCP genes were expressed throughout development of young spike and immature seed. Cis-acting element survey along promoter regions suggests that subfunctionalization may have occurred for homoeologous genes. Moreover, protein-protein interaction experiments of three TCP proteins showed that they can form either homodimers or heterodimers. Finally, we characterized two TaTCP9 mutants from tetraploid wheat. Each of these two mutant lines contained a premature stop codon in the A subgenome homoeolog that was dominantly expressed over the B subgenome homoeolog. We observed that mutation caused increased spike and grain lengths. Together, our analysis of the wheat TCP gene family provides a start point for further functional study of these important transcription factors in wheat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Long Mao
- *Correspondence: Long Mao, Aili Li,
| | - Aili Li
- *Correspondence: Long Mao, Aili Li,
| |
Collapse
|
12
|
Genome-wide analysis of dirigent gene family in pepper (Capsicum annuum L.) and characterization of CaDIR7 in biotic and abiotic stresses. Sci Rep 2018; 8:5500. [PMID: 29615685 PMCID: PMC5883049 DOI: 10.1038/s41598-018-23761-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 03/19/2018] [Indexed: 11/22/2022] Open
Abstract
The dirigent (DIR and DIR-like) proteins involved in lignification, play a pivotal role against biotic and abiotic stresses in plants. However, no information is available about DIR gene family in pepper (Capsicum annuum L.). In this study, 24 putative dirigent genes (CaDIRs) were identified, their gene structure, genome location, gene duplication and phylogenetic relationship were elucidated. Tissue-specific expression analysis displayed the highest transcription levels in flower, stem and leaf. Some CaDIRs were up-regulated by virulent (CaDIR2, 3, 6, 7, 11, 14, 16, 22 and 23) and avirulent (CaDIR3, 5, 7, 16, 20, 22, 23 and 24) Phytophthora capsici strains, as well as by Methyl jasmonate, salicylic acid, NaCl and mannitol stresses. Acid-soluble lignin content increased (103.21%) after P. capsici inoculation (48-hour). Silencing of CaDIR7 weakened plant defense by reducing (~50%) root activity and made plants more susceptible (35.7%) to P. capsici and NaCl (300 mM). Leaf discs of the CaDIR7:silenced plants exposed to NaCl and mannitol (300 mM each), exhibited a significant decrease (56.25% and 48% respectively) in the chlorophyll content. These results suggested that CaDIR7 is involved in pepper defense response against pathogen and abiotic stresses and the study will provide basic insights for future research regarding CaDIRs.
Collapse
|
13
|
Nakata M, Fukamatsu Y, Miyashita T, Hakata M, Kimura R, Nakata Y, Kuroda M, Yamaguchi T, Yamakawa H. High Temperature-Induced Expression of Rice α-Amylases in Developing Endosperm Produces Chalky Grains. FRONTIERS IN PLANT SCIENCE 2017; 8:2089. [PMID: 29270189 PMCID: PMC5723670 DOI: 10.3389/fpls.2017.02089] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/23/2017] [Indexed: 05/05/2023]
Abstract
Global warming impairs grain filling in rice and reduces starch accumulation in the endosperm, leading to chalky-appearing grains, which damages their market value. We found previously that high temperature-induced expression of starch-lytic α-amylases during ripening is crucial for grain chalkiness. Because the rice genome carries at least eight functional α-amylase genes, identification of the α-amylase(s) that contribute most strongly to the production of chalky grains could accelerate efficient breeding. To identify α-amylase genes responsible for the production of chalky grains, we characterized the histological expression pattern of eight α-amylase genes and the influences of their overexpression on grain appearance and carbohydrate components through a series of experiments with transgenic rice plants. The promoter activity of most α-amylase genes was elevated to various extents at high temperature. Among them, the expression of Amy1A and Amy3C was induced in the internal, especially basal to dorsal, region of developing endosperm, whereas that of Amy3D was confined near the ventral aleurone. These regions coincided with the site of occurrence of chalkiness, which was in clear contrast to conventionally known expression patterns of the enzyme in the scutellum and aleurone during seed germination. Furthermore, overexpression of α-amylase genes, except for Amy3E, in developing endosperm produced various degrees of chalky grains without heat exposure, whereas that of Amy3E yielded normal translucent grains, as was the case in the vector control, even though Amy3E-overexpressing grains contained enhanced α-amylase activities. The weight of the chalky grains was decreased due to reduced amounts of starch, and microscopic observation of the chalky part of these grains revealed that their endosperm consisted of loosely packed round starch granules that had numerous pits on their surface, confirming the hydrolysis of the starch reserve by α-amylases. Moreover, the chalky grains contained increased amounts of soluble sugars including maltooligosaccharides at the expense of starch. The integrated analyses proposed that expression of Amy1A, Amy3C, and Amy3D at the specific regions of the developing endosperm could generate the chalkiness. This finding provides the fundamental knowledge to narrow down the targets for the development of high temperature-tolerant premium rice.
Collapse
|
14
|
Wei W, Hu Y, Cui MY, Han YT, Gao K, Feng JY. Identification and Transcript Analysis of the TCP Transcription Factors in the Diploid Woodland Strawberry Fragaria vesca. FRONTIERS IN PLANT SCIENCE 2016; 7:1937. [PMID: 28066489 PMCID: PMC5177655 DOI: 10.3389/fpls.2016.01937] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/06/2016] [Indexed: 05/18/2023]
Abstract
Plant-specific TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) transcription factors play versatile functions in multiple processes of plant growth and development. However, no systematic study has been performed in strawberry. In this study, 19 FvTCP genes were identified in the diploid woodland strawberry (Fragaria vesca) accession Heilongjiang-3. Phylogenetic analysis suggested that the FvTCP genes were classified into two main classes, with the second class further divided into two subclasses, which was supported by the exon-intron organizations and the conserved motif structures. Promoter analysis revealed various cis-acting elements related to growth and development, hormone and/or stress responses. We analyzed FvTCP gene transcript accumulation patterns in different tissues and fruit developmental stages. Among them, 12 FvTCP genes exhibited distinct tissue-specific transcript accumulation patterns. Eleven FvTCP genes were down-regulated in different fruit developmental stages, while five FvTCP genes were up-regulated. Transcripts of FvTCP genes also varied with different subcultural propagation periods and were induced by hormone treatments and biotic and abiotic stresses. Subcellular localization analysis showed that six FvTCP-GFP fusion proteins showed distinct localizations in Arabidopsis mesophyll protoplasts. Notably, transient over-expression of FvTCP9 in strawberry fruits dramatically affected the expression of a series of genes implicated in fruit development and ripening. Taken together, the present study may provide the basis for functional studies to reveal the role of this gene family in strawberry growth and development.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityShaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of AgricultureShaanxi, China
| | - Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityShaanxi, China
| | - Meng-Yuan Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityShaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of AgricultureShaanxi, China
| | - Yong-Tao Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityShaanxi, China
| | - Kuan Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityShaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of AgricultureShaanxi, China
| | - Jia-Yue Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityShaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of AgricultureShaanxi, China
- *Correspondence: Jia-Yue Feng,
| |
Collapse
|
15
|
Wang L, Wu N, Zhu Y, Song W, Zhao X, Li Y, Hu Y. The divergence and positive selection of the plant-specific BURP-containing protein family. Ecol Evol 2015; 5:5394-5412. [PMID: 30151141 PMCID: PMC6102523 DOI: 10.1002/ece3.1792] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/13/2015] [Accepted: 09/17/2015] [Indexed: 11/21/2022] Open
Abstract
BURP domain-containing proteins belong to a plant-specific protein family and have diverse roles in plant development and stress responses. However, our understanding about the genetic divergence patterns and evolutionary rates of these proteins remain inadequate. In this study, 15 plant genomes were explored to elucidate the genetic origins, divergence, and functions of these proteins. One hundred and twenty-five BURP protein-encoding genes were identified from four main plant lineages, including 13 higher plant species. The absence of BURP family genes in unicellular and multicellular algae suggests that this family (1) appeared when plants shifted from relatively stable aquatic environments to land, where conditions are more variable and stressful, and (2) is critical in the adaptation of plants to adverse environments. Promoter analysis revealed that several responsive elements to plant hormones and external environment stresses are concentrated in the promoter region of BURP protein-encoding genes. This finding confirms that these genes influence plant stress responses. Several segmentally and tandem-duplicated gene pairs were identified from eight plant species. Thus, in general, BURP domain-containing genes have been subject to strong positive selection, even though these genes have conformed to different expansion models in different species. Our study also detected certain critical amino acid sites that may have contributed to functional divergence among groups or subgroups. Unexpectedly, all of the critical amino acid residues of functional divergence and positive selection were exclusively located in the C-terminal region of the BURP domain. In conclusion, our results contribute novel insights into the genetic divergence patterns and evolutionary rates of BURP proteins.
Collapse
Affiliation(s)
- Lihui Wang
- College of Life SciencesCapital Normal UniversityBeijing100048China
| | - Ningning Wu
- College of Life SciencesCapital Normal UniversityBeijing100048China
| | - Yan Zhu
- College of Life SciencesCapital Normal UniversityBeijing100048China
| | - Wanlu Song
- College of Life SciencesCapital Normal UniversityBeijing100048China
| | - Xin Zhao
- College of Life SciencesCapital Normal UniversityBeijing100048China
| | - Yaxuan Li
- College of Life SciencesCapital Normal UniversityBeijing100048China
| | - Yingkao Hu
- College of Life SciencesCapital Normal UniversityBeijing100048China
| |
Collapse
|
16
|
Wang M, Vannozzi A, Wang G, Zhong Y, Corso M, Cavallini E, Cheng ZM(M. A comprehensive survey of the grapevine VQ gene family and its transcriptional correlation with WRKY proteins. FRONTIERS IN PLANT SCIENCE 2015; 6:417. [PMID: 26124765 PMCID: PMC4464145 DOI: 10.3389/fpls.2015.00417] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/23/2015] [Indexed: 05/19/2023]
Abstract
WRKY proteins are a class of transcription factors (TFs) involved in the regulation of various physiological processes, including the plant response to biotic and abiotic stresses. Recent studies in Arabidopsis have revealed that some WRKY TFs interact with a class of proteins designed as VQ proteins because of their typical conserved motif (FxxxVQxLTG). So far, no information is available about the genomic organization and the function of VQ motif-containing protein in grapevine (Vitis vinifera L). In the current study, we analyzed the 12X V1 prediction of the nearly homozygous PN40024 genotype identifying up to 18 predicted VQ genes (VvVQ). VvVQs phylogenetic and bioinformatic analyses indicated that the intron-exon structures and motif distribution are highly divergent between different members of the grapevine VQ family. Moreover, the analysis of the V. vinifera cv. Corvina expression atlas revealed a tissue- and stage-specific expression of several members of the family which also showed a significant correlation with WRKY TFs. Grapevine VQ genes also exhibited altered expression in response to drought, powdery mildew infection, salicylic acid (SA) and ethylene (ETH) treatments. The present study represents the first characterization of VQ genes in a grapevine genotype and it is a pivotal foundation for further studies aimed at functionally characterizing this mostly unknown grapevine multigenic family.
Collapse
Affiliation(s)
- Min Wang
- Fruit Crop Systems Biology Laboratory, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Institute of Botany, Jiangsu Province and the Chinese Academy of SciencesNanjing, China
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of PadovaLegnaro, Italy
| | - Gang Wang
- Fruit Crop Systems Biology Laboratory, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yan Zhong
- Fruit Crop Systems Biology Laboratory, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Massimiliano Corso
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of PadovaLegnaro, Italy
| | - Erika Cavallini
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Zong-Ming (Max) Cheng
- Fruit Crop Systems Biology Laboratory, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Zong-Ming (Max) Cheng, Fruit Crop Systems Biology Laboratory, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| |
Collapse
|
17
|
Zhu Y, Wu N, Song W, Yin G, Qin Y, Yan Y, Hu Y. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC PLANT BIOLOGY 2014; 14:93. [PMID: 24720629 PMCID: PMC4021193 DOI: 10.1186/1471-2229-14-93] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/27/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Expansins are plant cell wall loosening proteins that are involved in cell enlargement and a variety of other developmental processes. The expansin superfamily contains four subfamilies; namely, α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). Although the genome sequencing of soybeans is complete, our knowledge about the pattern of expansion and evolutionary history of soybean expansin genes remains limited. RESULTS A total of 75 expansin genes were identified in the soybean genome, and grouped into four subfamilies based on their phylogenetic relationships. Structural analysis revealed that the expansin genes are conserved in each subfamily, but are divergent among subfamilies. Furthermore, in soybean and Arabidopsis, the expansin gene family has been mainly expanded through tandem and segmental duplications; however, in rice, segmental duplication appears to be the dominant process that generates this superfamily. The transcriptome atlas revealed notable differential expression in either transcript abundance or expression patterns under normal growth conditions. This finding was consistent with the differential distribution of the cis-elements in the promoter region, and indicated wide functional divergence in this superfamily. Moreover, some critical amino acids that contribute to functional divergence and positive selection were detected. Finally, site model and branch-site model analysis of positive selection indicated that the soybean expansin gene superfamily is under strong positive selection, and that divergent selection constraints might have influenced the evolution of the four subfamilies. CONCLUSION This study demonstrated that the soybean expansin gene superfamily has expanded through tandem and segmental duplication. Differential expression indicated wide functional divergence in this superfamily. Furthermore, positive selection analysis revealed that divergent selection constraints might have influenced the evolution of the four subfamilies. In conclusion, the results of this study contribute novel detailed information about the molecular evolution of the expansin gene superfamily in soybean.
Collapse
Affiliation(s)
- Yan Zhu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ningning Wu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wanlu Song
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Guangjun Yin
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yajuan Qin
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yueming Yan
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yingkao Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
18
|
Zhang J, Yan G, Wen Z, An YQ, Singer SD, Liu Z. Two tobacco AP1-like gene promoters drive highly specific, tightly regulated and unique expression patterns during floral transition, initiation and development. PLANTA 2014; 239:469-78. [PMID: 24221021 DOI: 10.1007/s00425-013-1995-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/30/2013] [Indexed: 05/13/2023]
Abstract
The genetic engineering of agronomic traits requires an array of highly specific and tightly regulated promoters that drive expression in floral tissues. In this study, we isolated and characterized two tobacco APETALA1-like (AP1-like) promoters (termed NtAP1La and NtAP1Lb1) in transgenic plants using the GUS reporter system, along with tissue-specific ablation analyses. Our results demonstrated that the two promoters are active in floral inflorescences but not in vegetative apical meristems or other vegetative tissues, as reflected by strong GUS staining and DT-A-mediated ablation of apical shoot tips during reproductive but not vegetative growth. We also showed that the NtAP1Lb1 promoter was more active than NtAP1La in inflorescences, as the former yielded higher frequencies and greater phenotypic evidence of tissue ablation compared to the latter. We further revealed that both promoters were uniformly expressed in the meristems of stage 1 and 2 floral buds, but were differentially expressed in floral organs later during development. While NtAP1La was found to be active in stage 4-5 carpels, later becoming confined to ovary tissue from stage 9 onwards, NtAP1Lb1 activity was apparent in all floral organs from stages 3 to 7, becoming completely absent in all floral organs from stage 11 onward. Therefore, it seems that the two tobacco promoters have acquired similar but distinct inflorescence-, floral meristem- and floral organ-specific and development-dependent regulatory features without any leaky activity in vegetative tissues. These features are novel and have rarely been observed in other flower-specific promoters characterized to date. The potential application of these promoters for engineering sterility, increasing biomass production and modifying flower architecture, as well as their putative use in flower-specific transgene excision, will be discussed.
Collapse
Affiliation(s)
- Jinjin Zhang
- Appalachian Fruit Research Station, USDA-ARS, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | | | | | | | | | | |
Collapse
|
19
|
Yin G, Xu H, Xiao S, Qin Y, Li Y, Yan Y, Hu Y. The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups. BMC PLANT BIOLOGY 2013; 13:148. [PMID: 24088323 PMCID: PMC3850935 DOI: 10.1186/1471-2229-13-148] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/01/2013] [Indexed: 05/02/2023]
Abstract
BACKGROUND WRKY genes encode one of the most abundant groups of transcription factors in higher plants, and its members regulate important biological process such as growth, development, and responses to biotic and abiotic stresses. Although the soybean genome sequence has been published, functional studies on soybean genes still lag behind those of other species. RESULTS We identified a total of 133 WRKY members in the soybean genome. According to structural features of their encoded proteins and to the phylogenetic tree, the soybean WRKY family could be classified into three groups (groups I, II, and III). A majority of WRKY genes (76.7%; 102 of 133) were segmentally duplicated and 13.5% (18 of 133) of the genes were tandemly duplicated. This pattern was not apparent in Arabidopsis or rice. The transcriptome atlas revealed notable differential expression in either transcript abundance or in expression patterns under normal growth conditions, which indicated wide functional divergence in this family. Furthermore, some critical amino acids were detected using DIVERGE v2.0 in specific comparisons, suggesting that these sites have contributed to functional divergence among groups or subgroups. In addition, site model and branch-site model analyses of positive Darwinian selection (PDS) showed that different selection regimes could have affected the evolution of these groups. Sites with high probabilities of having been under PDS were found in groups I, II c, II e, and III. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene family in soybean. CONCLUSIONS In this work, all the WRKY genes, which were generated mainly through segmental duplication, were identified in the soybean genome. Moreover, differential expression and functional divergence of the duplicated WRKY genes were two major features of this family throughout their evolutionary history. Positive selection analysis revealed that the different groups have different evolutionary rates. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene family in soybean.
Collapse
Affiliation(s)
- Guangjun Yin
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hongliang Xu
- Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shuyang Xiao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yajuan Qin
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yaxuan Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yueming Yan
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yingkao Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
20
|
Lu L, Zhou F, Zhou Y, Fan X, Ye S, Wang L, Chen H, Lin Y. Expression profile analysis of the polygalacturonase-inhibiting protein genes in rice and their responses to phytohormones and fungal infection. PLANT CELL REPORTS 2012; 31:1173-87. [PMID: 22362377 DOI: 10.1007/s00299-012-1239-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/01/2012] [Accepted: 02/10/2012] [Indexed: 05/10/2023]
Abstract
UNLABELLED Polygalacturonase-inhibiting proteins (PGIPs) are typically leucine-rich repeat (LRR) proteins that can inhibit the activity of fungal polygalacturonases (PGs). In this study, two new Ospgip genes, named Ospgip6 and Ospgip7 with consensus sequence of ten imperfect LRR motif located on rice chromosomes 8 and 9, were identified using BLAST analysis. Both of them appear to be extracellular glycoproteins. To have a global view of the dynamic gene expression pattern, seven Ospgip genes were first analyzed using the Affymetrix rice genome array data from online resource. All of these seven Ospgip genes showed variable expression patterns among tissues/organs. In order to further investigate the potential function of these Ospgip genes, the responses of Ospgip genes to the treatment of various phytohormones (abscisic acid, brassinosteroid, gibberellic acid, 3-indole acetic acid, jasmonic acid, kinetin, naphthalene acetic acid and salicylic acid) as well as fungal infection were analyzed by real-time PCR using time course array. Generally, all the Ospgip genes were slightly up-regulated in the indica rice cultivar Minghui 63 under GA(3), KT and NAA treatments (except Ospgip2, which was down-regulated under KT treatment). In the japonica rice cultivar Zhonghua 11, Ospgip genes were regulated by most treatments with the response time variability. We also analyzed putative cis-elements in the promoter regions of Ospgip genes. This dataset provided a versatile resource to understand the regulatory network of Ospgip genes during the process of phytohormones treatment and fungal infection in the model monocotyledonous plant, rice, and could aid in the transgenic breeding against rice fungal diseases. KEY MESSAGE All the seven Ospgip genes showed variable expression patterns in Minghui 63 and their expressions were regulated by different phytohormone treatments or fungal infection in Minghui 63 and Zhonghua 11.
Collapse
Affiliation(s)
- Liaoxun Lu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Xu W, Yu Y, Zhou Q, Ding J, Dai L, Xie X, Xu Y, Zhang C, Wang Y. Expression pattern, genomic structure, and promoter analysis of the gene encoding stilbene synthase from Chinese wild Vitis pseudoreticulata. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2745-61. [PMID: 21504880 DOI: 10.1093/jxb/erq447] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The gene encoding stilbene synthase (STS) plays a central role in many biochemical and physiological actions, and its metabolite resveratrol possesses broad-spectrum resistance to pathogens, as well as diverse pharmacological properties, notably an anticancer effect. Here, we report the expression analysis of the gene encoding STS and its promoter function from a powdery mildew (PM)-resistant Chinese wild Vitis pseudoreticulata, and compare it with two PM-susceptible cultivated grapevines, Vitis vinifera cvs. Carignane and Thompson Seedless. We show an unusual expression pattern of STS in V. pseudoreticulata, which differs markedly from that of the cultivated species. Sequence comparisons reveal that the genomic DNA sequences encoding STS in the three grapevines are highly conserved, but a novel residue mutation within the key motif of STS is solely present in V. pseudoreticulata. Moreover, the STS promoter in V. pseudoreticulata displays a significantly different structure from that found in the two V. vinifera. The three promoter-driven GUS differential expression patterns in transformed tobacco plants induced with Alternaria alternata, methyl jasmonate, and wounding indicated that the structurally different STS promoter of V. pseudoreticulata is responsible for its specific regulatory function. We also demonstrate that the expression of STS genes from their native promoters are functional in transformed tobacco and retain pathogen inducibility. Importantly, the genomic DNA-2 of V. pseudoreticulata under its native promoter shows good induction and the maximum level of resveratrol content. These findings further our understanding of the regulation of STS expression in a resistant grapevine and provide a new pathogen-inducible promoter system for the genetic improvement of plant disease resistance.
Collapse
Affiliation(s)
- Weirong Xu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu Q, Wang H, Zhang Z, Wu J, Feng Y, Zhu Z. Divergence in function and expression of the NOD26-like intrinsic proteins in plants. BMC Genomics 2009; 10:313. [PMID: 19604350 PMCID: PMC2726226 DOI: 10.1186/1471-2164-10-313] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 07/15/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND NOD26-like intrinsic proteins (NIPs) that belong to the aquaporin superfamily are plant-specific and exhibit a similar three-dimensional structure. Experimental evidences however revealed that functional divergence should have extensively occurred among NIP genes. It is therefore intriguing to further investigate the evolutionary mechanisms being responsible for the functional diversification of the NIP genes. To better understand this process, a comprehensive analysis including the phylogenetic, positive selection, functional divergence, and transcriptional analysis was carried out. RESULTS The origination of NIPs could be dated back to the primitive land plants, and their diversification would be no younger than the emergence time of the moss P. patens. The rapid proliferation of NIPs in plants may be primarily attributed to the segmental chromosome duplication produced by polyploidy and tandem duplications. The maximum likelihood analysis revealed that NIPs should have experienced strong selective pressure for adaptive evolution after gene duplication and/or speciation, prompting the formation of distinct NIP groups. Functional divergence analysis at the amino acid level has provided strong statistical evidence for shifted evolutionary rate and/or radical change of the physiochemical properties of amino acids after gene duplication, and DIVERGE2 has identified the critical amino acid sites that are thought to be responsible for the divergence for further investigation. The expression of plant NIPs displays a distinct tissue-, cell-type-, and developmental specific pattern, and their responses to various stress treatments are quite different also. The differences in organization of cis-acting regulatory elements in the promoter regions may partially explain their distinction in expression. CONCLUSION A number of analyses both at the DNA and amino acid sequence levels have provided strong evidences that plant NIPs have suffered a high divergence in function and expression during evolution, which is primarily attributed to the strong positive selection or a rapid change of evolutionary rate and/or physiochemical properties of some critical amino acid sites.
Collapse
Affiliation(s)
- Qingpo Liu
- School of Agriculture and Food Science, Zhejiang Forestry University, Lin'an, Hangzhou 311300, PR China
| | - Huasen Wang
- School of Agriculture and Food Science, Zhejiang Forestry University, Lin'an, Hangzhou 311300, PR China
| | - Zhonghua Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jiasheng Wu
- School of Forestry and Biotechnology, Zhejiang Forestry University, Lin'an, Hangzhou 311300, PR China
| | - Ying Feng
- College of Environmental and Resources Science, Zhejiang University, Hangzhou 310029, PR China
| | - Zhujun Zhu
- School of Agriculture and Food Science, Zhejiang Forestry University, Lin'an, Hangzhou 311300, PR China
| |
Collapse
|
23
|
Chawla R, DeMason DA. Molecular expression of PsPIN1, a putative auxin efflux carrier gene from pea (Pisum sativum L.). PLANT GROWTH REGULATION 2004. [PMID: 0 DOI: 10.1007/s10725-004-2139-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
24
|
Affiliation(s)
- J J Finer
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, Ohio State University, Wooster 44691, USA
| | | | | |
Collapse
|
25
|
Wang SM, Lue WL, Eimert K, Chen J. Phytohormone-regulated beta-amylase gene expression in rice. PLANT MOLECULAR BIOLOGY 1996; 31:975-982. [PMID: 8843940 DOI: 10.1007/bf00040716] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The expression of beta-amylase genes in rice (Oryza sativa) and its regulation by phytohormones gibberellic acid (GA) and abscisic acid (ABA) were examined. Upon germination beta-amylase is synthesized de novo in aleurone cells and (GA) is not required. Exogenous addition of GA does not enhance the beta-amylase activity, while ABA inhibits the beta-amylase activity, mRNA accumulation, and the germination of rice seeds. GA can reverse ABA inhibition of beta-amylase expression, but not ABA inhibition of seed germination. Such regulation represents a new interaction of ABA and GA.
Collapse
Affiliation(s)
- S M Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
26
|
Suoniemi A, Narvanto A, Schulman AH. The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. PLANT MOLECULAR BIOLOGY 1996; 31:295-306. [PMID: 8756594 DOI: 10.1007/bf00021791] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The BARE-1 retrotransposon occurs in more than 10(4) copies in the barley genome. The element is bounded by long terminal repeats (LTRs, 1829 bp) containing motifs typical of retrotransposon promoters. These, the presence of predicted priming sites for reverse transcription, and the high conservation for all key functional domains of the coding region suggest that copies within the genome could be active retrotransposons. In view of this, we looked for transcription of BARE-1 within barley tissues and examined the promoter function of the BARE-1 LTR. We demonstrate here that BARE-1-like elements are transcribed in barley tissues, and that the transcripts begin within the BARE-1 LTR downstream of TATA boxes. The LTR can drive expression of reporter genes in transiently transformed barley protoplasts. This is dependent on the presence of a TATA box functional in planta as well. Furthermore, we identify regions within the LTR responsible for expression within protoplasts by deletion analyses of LTR-luc constructs. Similarities between promoter regulatory motifs and regions of the LTR were identified by comparisons to sequence libraries. The activity of the LTR as a promoter, combined with the abundance of BARE-1 in the genome, suggests that BARE-1 may retain the potential for propagation in the barley genome.
Collapse
Affiliation(s)
- A Suoniemi
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | |
Collapse
|
27
|
Tregear JW, Primavesi LF, Huttly AK. Functional analysis of linker insertions and point mutations in the alpha-Amy2/54 GA-regulated promoter. PLANT MOLECULAR BIOLOGY 1995; 29:749-758. [PMID: 8541501 DOI: 10.1007/bf00041165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Functional analysis of a gibberellin-regulated wheat alpha-amylase promoter, alpha-Amy2/54, has indicated that three regions were essential for expression. By studying the ability of mutant promoters, containing a randomly inserted 22 bp excision linker, to direct expression in oat aleurone protoplasts we have refined the positions and extents of these three cis elements and also demonstrated the presence of two additional elements. By converting the linker insertions to either single base point mutations or deletions using the class IIS restriction endonuclease BsmI we have shown that nucleotides -119 and -109 within the GARE -121GTAACAGAGTCTGG-108 and nucleotide -152 within the proposed element -156GATTGACTTGACC-144 are essential for high level expression from this promoter.
Collapse
Affiliation(s)
- J W Tregear
- Department of Agricultural Sciences, University of Bristol, Long Ashton, UK
| | | | | |
Collapse
|
28
|
Hooley R. Gibberellins: perception, transduction and responses. PLANT MOLECULAR BIOLOGY 1994; 26:1529-1555. [PMID: 7858203 DOI: 10.1007/bf00016489] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- R Hooley
- Department of Agricultural Sciences, University of Bristol, Long Ashton, UK
| |
Collapse
|
29
|
Tanida I, Kim JK, Wu R. Functional dissection of a rice high-pI alpha-amylase gene promoter. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:127-34. [PMID: 8052231 DOI: 10.1007/bf00283513] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Deletion analysis has previously shown that a 260 bp fragment, located between positions -230 and +29 of the 5' end of a rice high-pI alpha--amylase gene, OSamy-c, is required for gibberellic acid (GA3)-dependent transcriptional activation. We have since established a quantitative transient assay based on expression of a luciferase reporter gene in rice aleurone cells and continued to characterize the OSamy-c promoter for GA3-dependent regulatory sequences. Using this method, we have shown that the DNA sequence between -158 and -46 (sequence I) is sufficient to confer GA3-responsive activation on OSamy-c. We have also shown that this sequence is capable of directing GA3-dependent expression from a heterologous minimal promoter. Our results also showed that sequence I confers GA3 regulatory control in an orientation-dependent manner and interacts with two further upstream DNA sequences, II and III, in a combination which mildly enhances the level of the GA3 response exhibited by sequence I. Thus, we propose that sequence I confers the fundamental GA3-responsive character on OSamy-c, and that regulatory proteins that bind sequences II and III interact with each other and with regulatory proteins that bind sequence I, effectively to modulate the GA3 response.
Collapse
Affiliation(s)
- I Tanida
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853-2703
| | | | | |
Collapse
|
30
|
Mitsunaga S, Rodriguez RL, Yamaguchi J. Sequence-specific interactions of a nuclear protein factor with the promoter region of a rice gene for alpha-amylase, RAmy3D. Nucleic Acids Res 1994; 22:1948-53. [PMID: 8028999 PMCID: PMC308105 DOI: 10.1093/nar/22.11.1948] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The expression of a rice gene for alpha-amylase, RAmy3D, in suspension-cultured cells is induced at the transcriptional level by the deprivation of sugars. Binding of a nuclear protein from suspension-cultured rice cells to the promoter region of the RAmy3D gene was studied by gel-retardation and DNase I footprinting assays. Gel-retardation assays indicated that a 358-bp fragment of the promoter region interacted specifically with a protein factor from suspension-cultured cells. DNase I footprinting analysis allowed us to define three protein-binding regions. Each of these protein-binding sequences contained the GCCG G/C CG motif, which is specifically present in the promoter region of the sugar-regulated gene, RAmy3D, for rice alpha-amylase and not in that of the gibberellin-regulated RAmy1A gene. Subsequent cross-competition experiments using gel-retardation assay and synthetic oligonucleotides showed that the GCCG G/C CG motifs directly mediated the binding of a nuclear protein. These observations are discussed in relation to expression of the gene for alpha-amylase in suspension-cultured cells.
Collapse
|