1
|
Sečnik A, Štajner N, Radišek S, Kunej U, Križman M, Jakše J. Cytosine Methylation in Genomic DNA and Characterization of DNA Methylases and Demethylases and Their Expression Profiles in Viroid-Infected Hop Plants ( Humulus lupulus Var. 'Celeia'). Cells 2022; 11:cells11162592. [PMID: 36010668 PMCID: PMC9406385 DOI: 10.3390/cells11162592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Abiotic and biotic stresses can lead to changes in host DNA methylation, which in plants is also mediated by an RNA-directed DNA methylation mechanism. Infections with viroids have been shown to affect DNA methylation dynamics in different plant hosts. The aim of our research was to determine the content of 5-methylcytosine (5-mC) in genomic DNA at the whole genome level of hop plants (Humulus lupulus Var. 'Celeia') infected with different viroids and their combinations and to analyse the expression of the selected genes to improve our understanding of DNA methylation dynamics in plant-viroid systems. The adapted HPLC-UV method used proved to be suitable for this purpose, and thus we were able to estimate for the first time that the cytosine methylation level in viroid-free hop plants was 26.7%. Interestingly, the observed 5-mC level was the lowest in hop plants infected simultaneously with CBCVd, HLVd and HSVd (23.7%), whereas the highest level was observed in plants infected with HLVd (31.4%). In addition, we identified three DNA methylases and one DNA demethylase gene in the hop's draft genome. The RT-qPCR revealed upregulation of all newly identified genes in hop plants infected with all three viroids, while no altered expression was observed in any of the other hop plants tested, except for CBCVd-infected hop plants, in which one DNA methylase was also upregulated.
Collapse
Affiliation(s)
- Andrej Sečnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nataša Štajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sebastjan Radišek
- Plant Protection Department, Slovenian Institute of Hop Research and Brewing, 3310 Žalec, Slovenia
| | - Urban Kunej
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mitja Križman
- Laboratory for Food Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-3203280
| |
Collapse
|
2
|
Kang DR, Zhu Y, Li SL, Ai PH, Khan MA, Ding HX, Wang Y, Wang ZC. Transcriptome analysis of differentially expressed genes in chrysanthemum MET1 RNA interference lines. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1455-1468. [PMID: 34366589 PMCID: PMC8295425 DOI: 10.1007/s12298-021-01022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 05/14/2023]
Abstract
UNLABELLED DNA methylation is the most important epigenetic modification involved in many essential biological processes. MET1 is one of DNA methyltransferases that affect the level of methylation in the entire genome. To explore the effect of MET1 gene silencing on gene expression profile of Chrysanthemum × morifolium 'Zijingling'. The stem section and leaves at the young stage were taken for transcriptome sequencing. MET1-RNAi leaves had 8 differentially expressed genes while 156 differentially expressed genes were observed in MET1-RNAi stem compared with control leaves and stem. These genes encode many key proteins in plant biological processes, such as transcription factors, signal transduction mechanisms, secondary metabolite synthesis, transport and catabolism and interaction. In general, 34.58% of the differentially expressed genes in leaves and stems were affected by the reduction of the MET1 gene. The differentially expressed genes in stem and leaves of transgenic plants went through significant changes. We found adequate amount of candidate genes associated with flowering, however, the number of genes with significant differences between transgenic and control lines was not too high. Several flowering related genes were screened out for gene expression verification and all of them were obseved as consistent with transcriptome data. These candidate genes may play important role in flowering variation of chrysanthemum. This study reveals the mechanism of CmMET1 interference on the growth and development of chrysanthemum at the transcriptional level, which provides the basis for further research on the epigenetic regulation mechanism in flower induction and development. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01022-1.
Collapse
Affiliation(s)
- Dong-ru Kang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Yi Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Shuai-lei Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Peng-hui Ai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Muhammad Ayoub Khan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Hong-xu Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Ying Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Zi-cheng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| |
Collapse
|
3
|
Gurdon C, Kozik A, Tao R, Poulev A, Armas I, Michelmore RW, Raskin I. Isolating an active and inactive CACTA transposon from lettuce color mutants and characterizing their family. PLANT PHYSIOLOGY 2021; 186:929-944. [PMID: 33768232 PMCID: PMC8195511 DOI: 10.1093/plphys/kiab143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 06/01/2023]
Abstract
Dietary flavonoids play an important role in human nutrition and health. Flavonoid biosynthesis genes have recently been identified in lettuce (Lactuca sativa); however, few mutants have been characterized. We now report the causative mutations in Green Super Lettuce (GSL), a natural light green mutant derived from red cultivar NAR; and GSL-Dark Green (GSL-DG), an olive-green natural derivative of GSL. GSL harbors CACTA 1 (LsC1), a 3.9-kb active nonautonomous CACTA superfamily transposon inserted in the 5' untranslated region of anthocyanidin synthase (ANS), a gene coding for a key enzyme in anthocyanin biosynthesis. Both terminal inverted repeats (TIRs) of this transposon were intact, enabling somatic excision of the mobile element, which led to the restoration of ANS expression and the accumulation of red anthocyanins in sectors on otherwise green leaves. GSL-DG harbors CACTA 2 (LsC2), a 1.1-kb truncated copy of LsC1 that lacks one of the TIRs, rendering the transposon inactive. RNA-sequencing and reverse transcription quantitative PCR of NAR, GSL, and GSL-DG indicated the relative expression level of ANS was strongly influenced by the transposon insertions. Analysis of flavonoid content indicated leaf cyanidin levels correlated positively with ANS expression. Bioinformatic analysis of the cv Salinas lettuce reference genome led to the discovery and characterization of an LsC1 transposon family with a putative transposon copy number greater than 1,700. Homologs of tnpA and tnpD, the genes encoding two proteins necessary for activation of transposition of CACTA elements, were also identified in the lettuce genome.
Collapse
Affiliation(s)
- Csanad Gurdon
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| | | | - Rong Tao
- UC Davis Genome Center, Davis, California 95616, USA
| | - Alexander Poulev
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| | - Isabel Armas
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| | | | - Ilya Raskin
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| |
Collapse
|
4
|
Azizi P, Hanafi MM, Sahebi M, Harikrishna JA, Taheri S, Yassoralipour A, Nasehi A. Epigenetic changes and their relationship to somaclonal variation: a need to monitor the micropropagation of plantation crops. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:508-523. [PMID: 32349860 DOI: 10.1071/fp19077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/23/2020] [Indexed: 06/11/2023]
Abstract
Chromatin modulation plays important roles in gene expression regulation and genome activities. In plants, epigenetic changes, including variations in histone modification and DNA methylation, are linked to alterations in gene expression. Despite the significance and potential of in vitro cell and tissue culture systems in fundamental research and marketable applications, these systems threaten the genetic and epigenetic networks of intact plant organs and tissues. Cell and tissue culture applications can lead to DNA variations, methylation alterations, transposon activation, and finally, somaclonal variations. In this review, we discuss the status of the current understanding of epigenomic changes that occur under in vitro conditions in plantation crops, including coconut, oil palm, rubber, cotton, coffee and tea. It is hoped that comprehensive knowledge of the molecular basis of these epigenomic variations will help researchers develop strategies to enhance the totipotent and embryogenic capabilities of tissue culture systems for plantation crops.
Collapse
Affiliation(s)
- Parisa Azizi
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamed M Hanafi
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Corresponding author.
| | - Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Jennifer A Harikrishna
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sima Taheri
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ali Yassoralipour
- Department of Agricultural and Food Science, Faculty of Science (Kampar Campus), Universiti Tunku Abdul Rahman (UTAR), Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Abbas Nasehi
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Machczyńska J, Zimny J, Bednarek PT. Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants. PLANT MOLECULAR BIOLOGY 2015; 89:279-92. [PMID: 26337939 PMCID: PMC4579263 DOI: 10.1007/s11103-015-0368-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 08/22/2015] [Indexed: 05/26/2023]
Abstract
Plant regeneration via in vitro culture can induce genetic and epigenetic variation; however, the extent of such changes in triticale is not yet understood. In the present study, metAFLP, a variation of methylation-sensitive amplified fragment length polymorphism analysis, was used to investigate tissue culture-induced variation in triticale regenerants derived from four distinct genotypes using androgenesis and somatic embryogenesis. The metAFLP technique enabled identification of both sequence and DNA methylation pattern changes in a single experiment. Moreover, it was possible to quantify subtle effects such as sequence variation, demethylation, and de novo methylation, which affected 19, 5.5, 4.5% of sites, respectively. Comparison of variation in different genotypes and with different in vitro regeneration approaches demonstrated that both the culture technique and genetic background of donor plants affected tissue culture-induced variation. The results showed that the metAFLP approach could be used for quantification of tissue culture-induced variation and provided direct evidence that in vitro plant regeneration could cause genetic and epigenetic variation.
Collapse
Affiliation(s)
- Joanna Machczyńska
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, 05-870, Błonie, Radzików, Poland
| | - Janusz Zimny
- Department of Plant Biotechnology and Cytogenetics, Plant Breeding and Acclimatization Institute-National Research Institute, 05-870, Błonie, Radzików, Poland
| | - Piotr Tomasz Bednarek
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, 05-870, Błonie, Radzików, Poland.
| |
Collapse
|
6
|
Hilker M, Schwachtje J, Baier M, Balazadeh S, Bäurle I, Geiselhardt S, Hincha DK, Kunze R, Mueller-Roeber B, Rillig MC, Rolff J, Romeis T, Schmülling T, Steppuhn A, van Dongen J, Whitcomb SJ, Wurst S, Zuther E, Kopka J. Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev Camb Philos Soc 2015; 91:1118-1133. [PMID: 26289992 DOI: 10.1111/brv.12215] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 06/26/2015] [Accepted: 07/23/2015] [Indexed: 12/12/2022]
Abstract
Experience and memory of environmental stimuli that indicate future stress can prepare (prime) organismic stress responses even in species lacking a nervous system. The process through which such organisms prepare their phenotype for an improved response to future stress has been termed 'priming'. However, other terms are also used for this phenomenon, especially when considering priming in different types of organisms and when referring to different stressors. Here we propose a conceptual framework for priming of stress responses in bacteria, fungi and plants which allows comparison of priming with other terms, e.g. adaptation, acclimation, induction, acquired resistance and cross protection. We address spatial and temporal aspects of priming and highlight current knowledge about the mechanisms necessary for information storage which range from epigenetic marks to the accumulation of (dormant) signalling molecules. Furthermore, we outline possible patterns of primed stress responses. Finally, we link the ability of organisms to become primed for stress responses (their 'primability') with evolutionary ecology aspects and discuss which properties of an organism and its environment may favour the evolution of priming of stress responses.
Collapse
Affiliation(s)
- Monika Hilker
- Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences (DCPS), Institute of Biology, Freie Universität (FU) Berlin, Haderslebener Straße 9, 12163, Berlin, Germany. .,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany.
| | - Jens Schwachtje
- Applied Metabolome Analysis, Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Margarete Baier
- Plant Physiology, DCPS, Institute of Biology, FU Berlin, Königin-Luise-Straße 12-16, 14195, Berlin, Germany
| | - Salma Balazadeh
- Institute for Biochemistry and Biology, Universität Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam-Golm, Germany
| | - Isabel Bäurle
- Institute for Biochemistry and Biology, Universität Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam-Golm, Germany
| | - Sven Geiselhardt
- Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences (DCPS), Institute of Biology, Freie Universität (FU) Berlin, Haderslebener Straße 9, 12163, Berlin, Germany
| | - Dirk K Hincha
- Central Infrastructure Group Transcript Profiling, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Reinhard Kunze
- Applied Genetics/Molecular Plant Genetics, DCPS, Institute of Biology, FU Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Bernd Mueller-Roeber
- Institute for Biochemistry and Biology, Universität Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam-Golm, Germany
| | - Matthias C Rillig
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany.,Plant Ecology, DCPS, Institute of Biology, FU Berlin, Altensteinstraße 6, 14195, Berlin, Germany
| | - Jens Rolff
- Evolutionary Biology, Institute of Biology, FU Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Tina Romeis
- Plant Biochemistry, DCPS, Institute of Biology, FU Berlin, Königin-Luise-Straße 12-16, 14195, Berlin, Germany
| | - Thomas Schmülling
- Applied Genetics, DCPS, Institute of Biology, FU Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Anke Steppuhn
- Molecular Ecology, DCPS, Institute of Biology, FU Berlin, Haderslebener Straße 9, 12163, Berlin, Germany
| | - Joost van Dongen
- Rhizosphere Molecular Ecology, Institute of Biology, RWTH Aachen, Worringerweg 1, 52074, Aachen, Germany
| | - Sarah J Whitcomb
- Applied Metabolome Analysis, Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Susanne Wurst
- Functional Ecology, DCPS, Institute of Biology, FU Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Ellen Zuther
- Central Infrastructure Group Transcript Profiling, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Joachim Kopka
- Applied Metabolome Analysis, Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
7
|
Zhang D, Wang Z, Wang N, Gao Y, Liu Y, Wu Y, Bai Y, Zhang Z, Lin X, Dong Y, Ou X, Xu C, Liu B. Tissue culture-induced heritable genomic variation in rice, and their phenotypic implications. PLoS One 2014; 9:e96879. [PMID: 24804838 PMCID: PMC4013045 DOI: 10.1371/journal.pone.0096879] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/12/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Somaclonal variation generally occurs in plants regenerated from tissue culture. However, fundamental issues regarding molecular characteristics, mutation rates and mutation spectra of plant somatic variation as well as their phenotypic relevance have been addressed only recently. Moreover, these studies have reported highly discrepant results in different plant species and even in the same plant genotype. METHODOLOGY/PRINCIPAL FINDINGS We investigated heritable genomic variation induced by tissue culture in rice by whole genome re-sequencing of an extensively selfed somaclonal line (TC-reg-2008) and its wild type (WT) donor (cv. Hitomebore). We computed the overall mutation rate, single nucleotide polymorphisms (SNPs), small scale insertions/deletions (Indels) and mobilization of transposable elements (TEs). We assessed chromosomal distribution of the various types of genomic variations, tested correlations between SNPs and Indels, and examined concomitancy between TE activity and its cytosine methylation states. We also performed gene ontology (GO) analysis of genes containing nonsynonymous mutations and large-effect mutations, and assayed effects of the genomic variations on phenotypes under both normal growing condition and several abiotic stresses. We found that heritable somaclonal genomic variation occurred extensively in rice. The genomic variations distributed non-randomly across each of the 12 rice chromosomes, and affected a large number of functional genes. The phenotypic penetrance of the genomic variations was condition-dependent. CONCLUSIONS/SIGNIFICANCE Tissue culture is a potent means to generate heritable genetic variations in rice, which bear distinct difference at least in space (chromosomal distribution) from those occurred under natural settings. Our findings have provided new information regarding the mutation rate and spectrum as well as chromosomal distribution pattern of somaclonal variation in rice. Our data also suggest that rice possesses a strong capacity to canalize genetic variations under normal growing conditions to maintain phenotypic robustness, which however can be released by certain abiotic stresses to generate variable phenotypes.
Collapse
Affiliation(s)
- Di Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Ningning Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yang Gao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ying Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Yan Bai
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiuyun Lin
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yuzhu Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiufang Ou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
8
|
Matsuda S, Sato M, Ohno S, Yang SJ, Doi M, Hosokawa M. Cutting Leaves and Plant Growth Regulator Application Enhance Somaclonal Variation Induced by Transposition of VGs1 of Saintpaulia. ACTA ACUST UNITED AC 2014. [DOI: 10.2503/jjshs1.mi-009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Mobilization of a plant transposon by expression of the transposon-encoded anti-silencing factor. EMBO J 2013; 32:2407-17. [PMID: 23900287 DOI: 10.1038/emboj.2013.169] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/04/2013] [Indexed: 12/27/2022] Open
Abstract
Transposable elements (TEs) have a major impact on genome evolution, but they are potentially deleterious, and most of them are silenced by epigenetic mechanisms, such as DNA methylation. Here, we report the characterization of a TE encoding an activity to counteract epigenetic silencing by the host. In Arabidopsis thaliana, we identified a mobile copy of the Mutator-like element (MULE) with degenerated terminal inverted repeats (TIRs). This TE, named Hiun (Hi), is silent in wild-type plants, but it transposes when DNA methylation is abolished. When a Hi transgene was introduced into the wild-type background, it induced excision of the endogenous Hi copy, suggesting that Hi is the autonomously mobile copy. In addition, the transgene induced loss of DNA methylation and transcriptional activation of the endogenous Hi. Most importantly, the trans-activation of Hi depends on a Hi-encoded protein different from the conserved transposase. Proteins related to this anti-silencing factor, which we named VANC, are widespread in the non-TIR MULEs and may have contributed to the recent success of these TEs in natural Arabidopsis populations.
Collapse
|
10
|
Temel A, Gozukirmizi N. Analysis of retrotransposition and DNA methylation in barley callus culture. ACTA BIOLOGICA HUNGARICA 2013; 64:86-95. [PMID: 23567833 DOI: 10.1556/abiol.64.2013.1.8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mature barley (Hordeum vulgare cv. Zafer-160) embryos were cultured on callus induction medium (MS+ 4 mg l-1 Dicamba) for 30 days and embryogenic calli were transferred onto regeneration medium (MS+ 0.5 mg l-1 trans-zeatin riboside). Callus induction percentage was 67.2%; embryogenic callus induction percentage was 42.3% and their regeneration percentage was 63.8%. Retrotransposon movements and methylation alterations in 15-day-old, 30-day-old calli and 4-day-old barley seedling (control) were investigated with Inter-Retrotransposon Amplified Polymorphism (IRAP) and Methylation-Sensitive Restriction Fingerprinting (MSRF), respectively. IRAP patterns were quite monomorphic however MSRF indicated increase in cytosine methylation during callus formation. Changes in retroelement movements and methylation alterations were evaluated and discussed in the light of literature.
Collapse
Affiliation(s)
- Aslihan Temel
- Department of Molecular Biology and Genetics, Istanbul University, Vezneciler, Istanbul, Turkey.
| | | |
Collapse
|
11
|
Abstract
Maize Activator (Ac) is one of the prototype transposable elements of the hAT transposon superfamily, members of which were identified in plants, fungi, and animals. The autonomous Ac and nonautonomous Dissociation (Ds) elements are mobilized by the single transposase protein encoded by Ac. To date Ac/Ds transposons were shown to be functional in approximately 20 plant species and have become the most widely used transposable elements for gene tagging and functional genomics approaches in plants. In this chapter we review the biology, regulation, and transposition mechanism of Ac/Ds elements in maize and heterologous plants. We discuss the parameters that are known to influence the functionality and transposition efficiency of Ac/Ds transposons and need to be considered when designing Ac transposase expression constructs and Ds elements for application in heterologous plant species.
Collapse
Affiliation(s)
- Katina Lazarow
- Leibniz-Institute for Molecular Pharmacology (FMP), Berlin, Germany
| | | | | |
Collapse
|
12
|
Neelakandan AK, Wang K. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. PLANT CELL REPORTS 2012; 31:597-620. [PMID: 22179259 DOI: 10.1007/s00299-011-1202-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 05/23/2023]
Abstract
In vitro cell and tissue-based systems have tremendous potential in fundamental research and for commercial applications such as clonal propagation, genetic engineering and production of valuable metabolites. Since the invention of plant cell and tissue culture techniques more than half a century ago, scientists have been trying to understand the morphological, physiological, biochemical and molecular changes associated with tissue culture responses. Establishment of de novo developmental cell fate in vitro is governed by factors such as genetic make-up, stress and plant growth regulators. In vitro culture is believed to destabilize the genetic and epigenetic program of intact plant tissue and can lead to chromosomal and DNA sequence variations, methylation changes, transposon activation, and generation of somaclonal variants. In this review, we discuss the current status of understanding the genomic and epigenomic changes that take place under in vitro conditions. It is hoped that a precise and comprehensive knowledge of the molecular basis of these variations and acquisition of developmental cell fate would help to devise strategies to improve the totipotency and embryogenic capability in recalcitrant species and genotypes, and to address bottlenecks associated with clonal propagation.
Collapse
|
13
|
Singh S, Tan HQ, Singh J. Mutagenesis of barley malting quality QTLs with Ds transposons. Funct Integr Genomics 2011; 12:131-41. [DOI: 10.1007/s10142-011-0258-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/25/2011] [Accepted: 11/02/2011] [Indexed: 11/28/2022]
|
14
|
Sato M, Kawabe T, Hosokawa M, Tatsuzawa F, Doi M. Tissue culture-induced flower-color changes in Saintpaulia caused by excision of the transposon inserted in the flavonoid 3', 5' hydroxylase (F3'5'H) promoter. PLANT CELL REPORTS 2011; 30:929-939. [PMID: 21293860 DOI: 10.1007/s00299-011-1016-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/12/2011] [Accepted: 01/16/2011] [Indexed: 05/30/2023]
Abstract
The variegated Saintpaulia cultivar Thamires (Saintpaulia sp.), which has pink petals with blue splotches, is generally maintained by leaf cuttings. In contrast, tissue culture-derived progeny of the cultivar showed not only a high percentage of mutants with solid-blue petals but also other solid-color variants, which have not been observed from leaf cuttings. Solid-color phenotypes were inherited stably by their progeny from tissue culture. Petals from each solid-color variant were analyzed by high-performance liquid chromatography and shown to contain different proportions of three main anthocyanin derivatives: malvidin, peonidin, and pelargonidin. Analysis of flavonoid 3', 5'-hydroxylase (F3'5'H) sequences showed no differences in the coding region among the variants and variegated individuals. However, a transposon belonging to the hAT superfamily was found in the promoter region of variegated individuals, and the presence of transposon-related insertions or deletions correlated with the observed flower-color phenotypes. Solid-blue flower mutants contained 8-base pair (bp) insertions (transposon excision footprints), while solid-pink mutants had 58- to 70-bp insertions, and purple- and deep-purple mutants had 21- and 24-bp deletions, respectively. Real-time reverse transcription polymerase chain reaction (RT-PCR) analysis showed that F3'5'H expression levels correlated with insertions and deletions (indels) caused by hAT excision, resulting in flower-color differences. Our results showed that tissue culture of Saintpaulia 'Thamires' elicits transposon excision, which in turn alters F3'5'H expression levels and flower colors.
Collapse
MESH Headings
- Anthocyanins/biosynthesis
- Base Sequence
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- DNA Transposable Elements
- DNA, Complementary/genetics
- Flowers/chemistry
- Flowers/enzymology
- Flowers/genetics
- Flowers/growth & development
- Gene Expression Regulation, Plant
- INDEL Mutation
- Magnoliopsida/chemistry
- Magnoliopsida/enzymology
- Magnoliopsida/genetics
- Magnoliopsida/growth & development
- Molecular Sequence Data
- Phenotype
- Phylogeny
- Pigments, Biological/biosynthesis
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/chemistry
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Promoter Regions, Genetic
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Mitsuru Sato
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | | | |
Collapse
|
15
|
Grafi G. The complexity of cellular dedifferentiation: implications for regenerative medicine. Trends Biotechnol 2009; 27:329-32. [DOI: 10.1016/j.tibtech.2009.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/17/2009] [Accepted: 02/20/2009] [Indexed: 12/15/2022]
|
16
|
Liu H, Liu S, Xia G. Generation of high frequency of novel alleles of the high molecular weight glutenin in somatic hybridization between bread wheat and tall wheatgrass. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:1193-1198. [PMID: 19199095 DOI: 10.1007/s00122-009-0973-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 01/15/2009] [Indexed: 05/27/2023]
Abstract
Somatic hybridization between bread wheat and tall wheatgrass (Agropyron elongatum) has generated fertile introgression progenies with novel combinations of high molecular weight glutenin subunits (HMW-GS). Most of these novel HMW-GS alleles were stably inherited. Sixteen HMW-GS sequences were PCR amplified from three introgression progeny lines and sequenced. The alignment of these sequences indicated that five, probably derived from point mutations of the parental genes, whereas eight likely represent the product of replication slippage. Three Glu-1Ay sequences appear to have lost the transposon presented in the parental gene. Two subunits carry an additional cysteine residue, which may be favorable to the quality of end-use product. We demonstrate that novel HMW-GS alleles can be rapidly generated via asymmetric somatic hybridization.
Collapse
Affiliation(s)
- Heng Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of the Ministry of Education, School of Life Science, Shandong University, 250100, Jinan, People's Republic of China
| | | | | |
Collapse
|
17
|
Tanurdzic M, Vaughn MW, Jiang H, Lee TJ, Slotkin RK, Sosinski B, Thompson WF, Doerge RW, Martienssen RA. Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 2009; 6:2880-95. [PMID: 19071958 PMCID: PMC2596858 DOI: 10.1371/journal.pbio.0060302] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/23/2008] [Indexed: 11/19/2022] Open
Abstract
Plant cells grown in culture exhibit genetic and epigenetic instability. Using a combination of chromatin immunoprecipitation and DNA methylation profiling on tiling microarrays, we have mapped the location and abundance of histone and DNA modifications in a continuously proliferating, dedifferentiated cell suspension culture of Arabidopsis. We have found that euchromatin becomes hypermethylated in culture and that a small percentage of the hypermethylated genes become associated with heterochromatic marks. In contrast, the heterochromatin undergoes dramatic and very precise DNA hypomethylation with transcriptional activation of specific transposable elements (TEs) in culture. High throughput sequencing of small interfering RNA (siRNA) revealed that TEs activated in culture have increased levels of 21-nucleotide (nt) siRNA, sometimes at the expense of the 24-nt siRNA class. In contrast, TEs that remain silent, which match the predominant 24-nt siRNA class, do not change significantly in their siRNA profiles. These results implicate RNA interference and chromatin modification in epigenetic restructuring of the genome following the activation of TEs in immortalized cell culture.
Collapse
Affiliation(s)
- Milos Tanurdzic
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Greco R, Ouwerkerk PBF, De Kam RJ, Sallaud C, Favalli C, Colombo L, Guiderdoni E, Meijer AH, Hoge Dagger JHC, Pereira A. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 108:10-24. [PMID: 14513217 DOI: 10.1007/s00122-003-1416-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Accepted: 05/31/2003] [Indexed: 05/21/2023]
Abstract
A collection of transposon Ac/ Ds enhancer trap lines is being developed in rice that will contribute to the development of a rice mutation machine for the functional analysis of rice genes. Molecular analyses revealed high transpositional activity in early generations, with 62% of the T0 primary transformants and more than 90% of their T1 progeny lines showing ongoing active transposition. About 10% of the lines displayed amplification of the Ds copy number. However, inactivation of Ds seemed to occur in about 70% of the T2 families and in the T3 generation. Southern blot analyses revealed a high frequency of germinal insertions inherited in the T1 progeny plants, and transmitted preferentially over the many other somatic inserts to later generations. The sequencing of Ds flanking sites in subsets of T1 plants indicated the independence of insertions in different T1 families originating from the same T0 line. Almost 80% of the insertion sites isolated showing homology to the sequenced genome, resided in genes or within a range at which neighbouring genes could be revealed by enhancer trapping. A strategy involving the propagation of a large number of T0 and T1 independent lines is being pursued to ensure the recovery of a maximum number of independent insertions in later generations. The inactive T2 and T3 lines produced will then provide a collection of stable insertions to be used in reverse genetics experiments. The preferential insertion of Ds in gene-rich regions and the use of lines containing multiple Ds transposons will enable the production of a large population of inserts in a smaller number of plants. Additional features provided by the presence of lox sites for site-specific recombination, or the use of different transposase sources and selectable markers, are discussed.
Collapse
Affiliation(s)
- R Greco
- Plant Research International, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Finnegan EJ. Epialleles - a source of random variation in times of stress. CURRENT OPINION IN PLANT BIOLOGY 2002; 5:101-6. [PMID: 11856603 DOI: 10.1016/s1369-5266(02)00233-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
With the advent of biotechnology, epigenetics has gained in respectability. Recently, focus has moved away from the problems caused by the epigenetic silencing of transgenes to the adaptive advantages offered by stochastic epigenetic variation. Epialleles can form in response to environmental and genomic stresses, including polyploidization. They may be important in acclimation to a range of environmental conditions and in stabilizing polyploid genomes.
Collapse
|
20
|
Peraza-Echeverria S, Herrera-Valencia VA, Kay AJ. Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2001; 161:359-367. [PMID: 11448766 DOI: 10.1016/s0168-9452(01)00421-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The extent of DNA methylation polymorphisms was evaluated in micropropagated banana (Musa AAA cv. 'Grand Naine') derived from either the vegetative apex of the sucker or the floral apex of the male inflorescence using the methylation-sensitive amplification polymorphism (MSAP) technique. In all, 465 fragments, each representing a recognition site cleaved by either or both of the isoschizomers were amplified using eight combinations of primers. A total of 107 sites (23%) were found to be methylated at cytosine in the genome of micropropagated banana plants. In plants micropropagated from the male inflorescence explant 14 (3%) DNA methylation events were polymorphic, while plants micropropagated from the sucker explant produced 8 (1.7%) polymorphisms. No DNA methylation polymorphisms were detected in conventionally propagated banana plants. These results demonstrated the usefulness of MSAP to detect DNA methylation events in micropropagated banana plants and indicate that DNA methylation polymorphisms are associated with micropropagation.
Collapse
Affiliation(s)
- S Peraza-Echeverria
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97200, Yucatán, Mérida, Mexico
| | | | | |
Collapse
|
21
|
Fourré JL. Somaclonal Variation and Genetic Molecular Markers in Woody Plants. MOLECULAR BIOLOGY OF WOODY PLANTS 2000. [DOI: 10.1007/978-94-017-2311-4_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Henry Y, Nato A, de Buyser J. Genetic Fidelity of Plants Regenerated from Somatic Embryos of Cereals. ACTA ACUST UNITED AC 1998. [DOI: 10.1007/978-94-015-9125-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
|
23
|
Molecular Basis of Heritable Tissue Culture-induced Variation in Plants. SOMACLONAL VARIATION AND INDUCED MUTATIONS IN CROP IMPROVEMENT 1998. [DOI: 10.1007/978-94-015-9125-6_23] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
24
|
Grappin P, Audeon C, Chupeau MC, Grandbastien MA. Molecular and functional characterization of Slide, an Ac-like autonomous transposable element from tobacco. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:386-97. [PMID: 8879239 DOI: 10.1007/bf02173003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new transposable element of tobacco, Slide, was isolated from the tl mutant line, which shows somatic instability, after its transposition into a locus encoding nitrate reductase (NR). The Slide-124 element is 3733 bp long and its coding sequences show similarities with conserved domains of the transposases of Ac, Tam3 and hobo. Excision from the NR locus is detectable in somatic leaf tissues and Slide mobility is triggered by in vitro tissue culture. Slide excision events create footprints similar to those left by Ac and Tam3. Tobacco lines derived from the tl mutant line seem characterized by unmethylated copies of a few members of the highly repetitive Slide family. Slide mobility was monitored in transient expression assays. In wild-type tobacco protoplasts, the complete Slide element, as well as a defective copy, is able to excise. The complete Slide element, but not the defective version, is able to excise in protoplasts of the heterologous species lettuce (Lactuca sativa). These results show that Slide carries the functions required for its own mobility, and represents the first autonomous Ac-like element characterized in Solanaceae species.
Collapse
Affiliation(s)
- P Grappin
- Laboratoire de Biologie Cellulaire, INRA-Centre de Versailles, France
| | | | | | | |
Collapse
|
25
|
Becker HA, Kunze R. Binding sites for maize nuclear proteins in the subterminal regions of the transposable element Activator. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:428-35. [PMID: 8709946 DOI: 10.1007/bf02172371] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetic data suggest that transposition of the maize element Activator (Ac) is modulated by host factors. Using gel retardation and DNase I protection assays we identified maize proteins which bind to seven subterminal sites in both ends of Ac. Four DNase I-protected sites contain a GGTAAA sequence, the other three include either GATAAA or GTTAAA. The specificity of the maize protein binding to Ac was verified by using a synthetic fragment containing four GGTAAA motifs as probe and competitor in gel retardation assays. All seven binding sites are located within regions required in cis for transposition. A maize protein binding site with the same sequence has previously been identified in the terminal inverted repeats of the maize Mutator element. Thus, the protein, that recognizes this sequence is a good candidate for a regulatory host factor for Ac transposition.
Collapse
Affiliation(s)
- H A Becker
- Institut für Genetik, Universität zu Köln, Germany
| | | |
Collapse
|
26
|
Affiliation(s)
- R Kunze
- Institut für Genetik, Universitat zu Köln, Germany
| |
Collapse
|
27
|
Golubovsky M. Mobile genetics and forms of heritable changes in eukaryotes. ACTA ACUST UNITED AC 1995. [DOI: 10.7124/bc.0003dd] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- M. Golubovsky
- St. Petersburg Branch of the Institute for the History of Science and Technology named after S. I. Vavilov, Russian Academy of Sciences
| |
Collapse
|
28
|
Robbins TP, Jenkin M, Courtney-Gutterson N. Enhanced frequency of transposition of the maize transposable element Activator following excision from T-DNA in Petunia hybrida. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:491-500. [PMID: 8078476 DOI: 10.1007/bf00583900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Many of the systems currently employed for heterologous transposon tagging in plants rely on an excision assay to monitor transposon activity. We have used the streptomycin phosphotransferase (SPT) reporter system to assay Ac activity in Petunia hybrida. In other species, such as tobacco or Arabidopsis, excision of Ac from the SPT gene in sporogenous tissue gives rise to streptomycin-resistant seedlings in the following generation. The frequency of fully streptomycin-resistant seedlings in petunia was low (0.4%) but molecular analysis of these indicated that the actual excision frequency may be as low as 0.05%. This indicates that the SPT assay is not a reliable selection criterion for germinal excision in petunia. Extensive molecular screening for reinsertion of Ac was consistent with a low primary transposition frequency (0%-0.6%). In contrast to these findings, the progeny of confirmed germinal transpositions for three independent transformants showed frequent transposition to new sites (9.5%-17.0%). This suggests a high frequency of secondary transposition compared with primary transposition from the T-DNA. Segregation analysis indicates that the high transposition activity is closely associated with transposed copies of Ac. No evidence was found for an altered methylation state for Ac following transposition. The implications of these results for heterologous transposon tagging in petunia are discussed in the context of the reliability of excision reporter systems in general.
Collapse
Affiliation(s)
- T P Robbins
- DNA Plant Technology Corporation, Oakland, CA 94608
| | | | | |
Collapse
|
29
|
|
30
|
|
31
|
Devaux P, Kilian A, Kleinhofs A. Anther culture and Hordeum bulbosum-derived barley doubled haploids: mutations and methylation. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:674-9. [PMID: 7903412 DOI: 10.1007/bf00279910] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Anther culture and Hordeum bulbosum-derived doubled haploid (DH) lines of barley (Hordeum vulgare L.) were analyzed for RFLP and RAPD polymorphisms. Polymorphisms were not detected in the anther culture- or H. bulbosum-derived DH lines among 273 RFLP and 89 polymerase chain reaction (PCR)-amplified DNA fragments assayed. It was calculated that base substitution or small deletion/insertion mutations had not been induced among 401,640 bp screened. Large deletion/insertion mutations were not observed among 33 Mb screened. Polymorphisms were observed when DNA was digested with the methylation-sensitive restriction enzymes HpaII and MspI: these RFLPs originated primarily from the anther culture-derived doubled haploids. The data indicate that heritable DNA methylation changes had occurred during DH production, particularly with the anther culture method.
Collapse
Affiliation(s)
- P Devaux
- Department of Crop and Soil Sciences, and Genetics and Cell Biology, Washington State University, Pullman 99164-6420
| | | | | |
Collapse
|
32
|
Morris PC, Jessop A, Altmann T, Schmidt R, Willmitzer L. Selection for enhanced germinal excision of Ac in transgenic Arabidopsis thaliana. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1993; 86:919-926. [PMID: 24193998 DOI: 10.1007/bf00211042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/1993] [Accepted: 01/28/1993] [Indexed: 06/02/2023]
Abstract
Gene tagging in Arabidopsis thaliana using the autonomous Ac (Activator) transposable element has so far been hampered by low frequencies of germinal transposition events. Here we describe a procedure by which the frequency of independent germinal reinsertions has been much improved by a process of long-term selection on kanamycin for the continued growth of tissues in which somatic excisions have occurred. Growth on artificial media increased the somatic excision frequency, and the long-term selection procedure channelled somatic transposition events into the germline. This resulted in an overall germinal excision frequency in the progeny of longterm selected plants of 15%, as confirmed by Southern blotting, with 63% of the plants bearing excision events having detectable reinsertions of the Ac element. This compares with a germinal excision frequency of approximately 1% when no long-term selection is employed. However, offspring from individual plants tended to have identical germinal Ac reinsertion patterns, thus the critical parameter for evaluating the system for tagging purposes is the frequency of individual plants yielding offspring with reinsertions, which was 64%. This high frequency, when coupled to the enhanced germinal transposition rate overall, easily allows the generation of a large population of plants with independent reinsertions.
Collapse
Affiliation(s)
- P C Morris
- Institut für Genbiologische Forschung Berlin GmbH, Ihnestrasse 63, W-1000, Berlin 33, Germany
| | | | | | | | | |
Collapse
|
33
|
Palmgren G, Mattson O, Okkels FT. Treatment of Agrobacterium or leaf disks with 5-azacytidine increases transgene expression in tobacco. PLANT MOLECULAR BIOLOGY 1993; 21:429-35. [PMID: 7680239 DOI: 10.1007/bf00028801] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We have studied the effect of the demethylating agent azacytidine (azaC) on expression of a beta-glucuronidase (GUS) gene transferred to tobacco leaf disks by Agrobacterium-mediated transformation. In a system where no selection was performed, where shoot formation was partially repressed, and where Agrobacterium does not express the GUS gene, we were able to follow the early events of transient and stable expression. Two days after inoculation, 8% of the cells expressed GUS but this proportion rapidly decreased to near zero in the following week. Treatment of leaf disks with azaC just after transformation retarded this inactivation to some extent, while treatment of Agrobacterium prior to transformation increased the frequency of transient expression. Three weeks after inoculation the number of GUS-expressing cells increased 4- to 6-fold in the leaf disks treated with azaC and in the leaf disks transformed with azaC-treated bacteria, while the control remained low. These data suggest that DNA methylation is involved in transgene inactivation and that a large number of silent but potentially active transgenes become integrated.
Collapse
Affiliation(s)
- G Palmgren
- Institute of Plant Physiology, University of Copenhagen, Denmark
| | | | | |
Collapse
|
34
|
Finnegan EJ, Brettell RI, Dennis ES. The role of DNA methylation in the regulation of plant gene expression. EXS 1993; 64:218-61. [PMID: 8380350 DOI: 10.1007/978-3-0348-9118-9_11] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- E J Finnegan
- CSIRO, Division of Plant Industry, Canberra, ACT, Australia
| | | | | |
Collapse
|
35
|
Amberger LA, Shoemaker RC, Palmer RG. Inheritance of two independent isozyme variants in soybean plants derived from tissue culture. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1992; 84:600-607. [PMID: 24201347 DOI: 10.1007/bf00224158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/1991] [Accepted: 02/26/1992] [Indexed: 06/02/2023]
Abstract
Soybean [Glycine max (L.) Merr.] plants were regenerated via somatic embryogenesis from nine soybean cultivars. Our objective was to identify and characterize genetically novel mutations that would further our understanding of the soybean genome. Variant isozyme patterns were observed in two independent tissue culturederived lines. Genetic analyses were conducted on these two isozyme variants, and they were heritable. No variant isozyme patterns were evident in control (parental) soybean lines. In the cultivar BSR 101, a mutation of Aco2-b (aconitase) to a null allele was detected. The Aco2-bn mutant, Genetic Type T318, had not been previously observed in soybean. In the Chinese cultivar Jilin 3 (PI 427.099), a chlorophyll-deficient plant was identified that also lacked two mitochondrial malate-dehydrogenase (Mdh null) isozyme bands. These two mutant phenotypes, chlorophyll-deficient and Mdh null, were found to cosegregate. The Jilin 3 mutant, Mdh1-n (Ames 1) y20 (Ames 1) Genetic Type T317, was allelic to three chlorophyll-deficient, Mdh1 null mutants [Mdh1-n (Ames 2) y20 (Ames 2) (T323), Mdh1-n (Ames 3) y20 (Ames 3) (T324), and Mdh1-n (Ames 4) y20 (Ames 4) (T325)] previously identified from a transposon-containing soybean population, and to a chlorophyll-deficient, Mdh1 null mutant [Mdh1-n (Urbana) y20 (Urbana) k2, Genetic Type T253] which occurred spontaneously in soybean. The recovery of two isozyme variants from progeny of 185 soybean plants regenerated from somatic embryogenesis indicates the feasibility of selection for molecular variants.
Collapse
Affiliation(s)
- L A Amberger
- United States Department of Agriculture-Agricultural Research Service, Field Crops Research Unit, and Departments of Agronomy and Zoology/Genetics, Iowa State University, 50011, Ames, Iowa, USA
| | | | | |
Collapse
|