1
|
Kovacs CS. Bone development and mineral homeostasis in the fetus and neonate: roles of the calciotropic and phosphotropic hormones. Physiol Rev 2014; 94:1143-218. [PMID: 25287862 DOI: 10.1152/physrev.00014.2014] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mineral and bone metabolism are regulated differently in utero compared with the adult. The fetal kidneys, intestines, and skeleton are not dominant sources of mineral supply for the fetus. Instead, the placenta meets the fetal need for mineral by actively transporting calcium, phosphorus, and magnesium from the maternal circulation. These minerals are maintained in the fetal circulation at higher concentrations than in the mother and normal adult, and such high levels appear necessary for the developing skeleton to accrete a normal amount of mineral by term. Parathyroid hormone (PTH) and calcitriol circulate at low concentrations in the fetal circulation. Fetal bone development and the regulation of serum minerals are critically dependent on PTH and PTH-related protein, but not vitamin D/calcitriol, fibroblast growth factor-23, calcitonin, or the sex steroids. After birth, the serum calcium falls and phosphorus rises before gradually reaching adult values over the subsequent 24-48 h. The intestines are the main source of mineral for the neonate, while the kidneys reabsorb mineral, and bone turnover contributes mineral to the circulation. This switch in the regulation of mineral homeostasis is triggered by loss of the placenta and a postnatal fall in serum calcium, and is followed in sequence by a rise in PTH and then an increase in calcitriol. Intestinal calcium absorption is initially a passive process facilitated by lactose, but later becomes active and calcitriol-dependent. However, calcitriol's role can be bypassed by increasing the calcium content of the diet, or by parenteral administration of calcium.
Collapse
Affiliation(s)
- Christopher S Kovacs
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
2
|
Ritter CS, Haughey BH, Miller B, Brown AJ. Differential gene expression by oxyphil and chief cells of human parathyroid glands. J Clin Endocrinol Metab 2012; 97:E1499-505. [PMID: 22585091 PMCID: PMC3591682 DOI: 10.1210/jc.2011-3366] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Parathyroid oxyphil cells, whose function is unknown, are thought to be derived from chief cells. Oxyphil cells increase in number in parathyroid glands of patients with chronic kidney disease (CKD) and are even more abundant in patients receiving treatment for hyperparathyroidism with calcitriol and/or the calcimimetic cinacalcet. OBJECTIVE We examined oxyphil and chief cells of parathyroid glands of CKD patients for differential expression of genes important to parathyroid function. DESIGN/SETTING/PARTICIPANTS Parathyroid tissue from CKD patients with refractory hyperparathyroidism was immunostained for gene expression studies. MAIN OUTCOME MEASURE Immunostaining for PTH, PTHrP, calcium-sensing receptor, glial cells missing 2, vitamin D receptor, 25-hydroxyvitamin D-1α-hydroxylase, and cytochrome c was quantified and expression reported for oxyphil and chief cells. RESULTS Expression of all proteins analyzed, except for the vitamin D receptor, was higher in oxyphil cells than in chief cells. CONCLUSION Human parathyroid oxyphil cells express parathyroid-relevant genes found in the chief cells and have the potential to produce additional autocrine/paracrine factors, such as PTHrP and calcitriol. Additional studies are warranted to define the secretory properties of these cells and clarify their role in parathyroid pathophysiology.
Collapse
Affiliation(s)
- Cynthia S Ritter
- Renal Division, Washington University School of Medicine, Barnes Jewish Hospital, St Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
3
|
Clemens TL, Cormier S, Eichinger A, Endlich K, Fiaschi-Taesch N, Fischer E, Friedman PA, Karaplis AC, Massfelder T, Rossert J, Schlüter KD, Silve C, Stewart AF, Takane K, Helwig JJ. Parathyroid hormone-related protein and its receptors: nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets. Br J Pharmacol 2001; 134:1113-36. [PMID: 11704631 PMCID: PMC1573066 DOI: 10.1038/sj.bjp.0704378] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2001] [Accepted: 09/10/2001] [Indexed: 11/09/2022] Open
Abstract
The cloning of the so-called 'parathyroid hormone-related protein' (PTHrP) in 1987 was the result of a long quest for the factor which, by mimicking the actions of PTH in bone and kidney, is responsible for the hypercalcemic paraneoplastic syndrome, humoral calcemia of malignancy. PTHrP is distinct from PTH in a number of ways. First, PTHrP is the product of a separate gene. Second, with the exception of a short N-terminal region, the structure of PTHrP is not closely related to that of PTH. Third, in contrast to PTH, PTHrP is a paracrine factor expressed throughout the body. Finally, most of the functions of PTHrP have nothing in common with those of PTH. PTHrP is a poly-hormone which comprises a family of distinct peptide hormones arising from post-translational endoproteolytic cleavage of the initial PTHrP translation products. Mature N-terminal, mid-region and C-terminal secretory forms of PTHrP are thus generated, each of them having their own physiologic functions and probably their own receptors. The type 1 PTHrP receptor, binding both PTH(1-34) and PTHrP(1-36), is the only cloned receptor so far. PTHrP is a PTH-like calciotropic hormone, a myorelaxant, a growth factor and a developmental regulatory molecule. The present review reports recent aspects of PTHrP pharmacology and physiology, including: (a) the identification of new peptides and receptors of the PTH/PTHrP system; (b) the recently discovered nuclear functions of PTHrP and the role of PTHrP as an intracrine regulator of cell growth and cell death; (c) the physiological and developmental actions of PTHrP in the cardiovascular and the renal glomerulo-vascular systems; (d) the role of PTHrP as a regulator of pancreatic beta cell growth and functions, and, (e) the interactions of PTHrP and calcium-sensing receptors for the control of the growth of placental trophoblasts. These new advances have contributed to a better understanding of the pathophysiological role of PTHrP, and will help to identify its therapeutic potential in a number of diseases.
Collapse
Affiliation(s)
- Thomas L Clemens
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, U.S.A
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Sarah Cormier
- INSERM U 426 and Institut Federatif de Recherche ‘Cellules Epitheliales', Faculte de Medecine Xavier Bichat, Paris, France
| | - Anne Eichinger
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
| | - Karlhans Endlich
- Institut für Anatomie und Zellbiologie 1, Universität Heidelberg, Heidelberg, Germany
| | - Nathalie Fiaschi-Taesch
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, U.S.A
| | - Evelyne Fischer
- Department of Nephrology, University Hospital of Strasbourg, Strasbourg, France
| | - Peter A Friedman
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, U.S.A
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, U.S.A
| | | | - Thierry Massfelder
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
| | - Jérôme Rossert
- INSERM U489 and Departments of Nephrology and Pathology, Paris VI University, France
| | | | - Caroline Silve
- INSERM U 426 and Institut Federatif de Recherche ‘Cellules Epitheliales', Faculte de Medecine Xavier Bichat, Paris, France
| | - Andrew F Stewart
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, U.S.A
| | - Karen Takane
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, U.S.A
| | - Jean-Jacques Helwig
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
| |
Collapse
|
4
|
Casez JP, Pfammatter R, Nguyen QV, Lippuner K, Jaeger P. Diagnostic approach to hypercalcemia: relevance of parathyroid hormone and parathyroid hormone-related protein measurements. Eur J Intern Med 2001; 12:344-349. [PMID: 11395297 DOI: 10.1016/s0953-6205(01)00124-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Background: Parathyroid hormone (PTH) and parathyroid hormone-related protein (PTH-rP) are two potent hypercalcemic hormones that act on the same targets. Autonomous secretion of the former is involved in primary hyperparathyroidism (PHPT), whereas the latter is responsible for humoral hypercalcemia of malignancy (HHM). Methods: From 250 consecutive, hypercalcemic serum samples sent to our laboratory for assessment of intact PTH, we were able to obtain clinical information, as well as an additional plasma sample for PTH-rP measurement, in 134 patients. At the time of sampling, patients could be classified into seven groups: cancer without known bone metastases (CaNoMeta, n=36), cancer with bone metastases (CaMeta, n=9), no evidence of cancer (noEvCa, n=71), sarcoidosis (Sarc, n=3), end-stage renal disease (ESRD, n=12), vitamin D overdose (VIT-D, n=2), and hyperthyroidism (Thyr, n=1). Results: In the CaNoMeta group, 29/36 patients had elevated PTH-rP levels, 9/36 patients had inappropriately elevated PTH levels, and 5/36 had elevated levels of both hormones. In the CaMeta group, three of the nine patients had inappropriately elevated PTH levels, two of them with concomitantly elevated PTH-rP levels. In the NoEvCa group, 63/71 patients had an inappropriate elevation of PTH levels and were diagnosed as having PHPT. Four of the 71 patients had elevated levels of both PTH and PTH-rP; three of them were in poor health and died within a short period of time. All of the ESRD patients had very high PTH and normal PTH-rP levels, except for one woman with high PTH-rP and undetectable PTH levels; she died from what later turned out to be a recurrent bladder carcinoma. In the Sarc, Vit-D, and Thyr groups, both PTH and PTH-rP levels were normal. Conclusions: (1) Elevated PTH-rP levels are a common finding in cancer patients without bone metastases. Intact PTH, however, should always be measured in hypercalcemic patients with malignancy because concurrent primary hyperparathyroidism is not rare. (2) Primary hyperparathyroidism accounts for hypercalcemia in 90% of patients without evidence of cancer whose PTH-rP levels may also be found to be elevated in a few cases, even some with surgically demonstrated parathyroid adenoma.
Collapse
Affiliation(s)
- J -P. Casez
- Policlinic of Medicine, University Hospital, 3010, Berne, Switzerland
| | | | | | | | | |
Collapse
|
5
|
Dolbeare F. Bromodeoxyuridine: a diagnostic tool in biology and medicine, Part III. Proliferation in normal, injured and diseased tissue, growth factors, differentiation, DNA replication sites and in situ hybridization. THE HISTOCHEMICAL JOURNAL 1996; 28:531-75. [PMID: 8894660 DOI: 10.1007/bf02331377] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This paper is a continuation of parts I (history, methods and cell kinetics) and II (clinical applications and carcinogenesis) published previously (Dolbeare, 1995 Histochem. J. 27, 339, 923). Incorporation of bromodeoxyuridine (BrdUrd) into DNA is used to measure proliferation in normal, diseased and injured tissue and to follow the effect of growth factors. Immunochemical detection of BrdUrd can be used to determine proliferative characteristics of differentiating tissues and to obtain birth dates for actual differentiation events. Studies are also described in which BrdUrd is used to follow the order of DNA replication in specific chromosomes, DNA replication sites in the nucleus and to monitor DNA repair. BrdUrd incorporation has been used as a tool for in situ hybridization experiments.
Collapse
Affiliation(s)
- F Dolbeare
- Biology and Biotechnology Program, Lawrence Livermore National Laboratory, University of California 94551-9900, USA
| |
Collapse
|
6
|
Müller-Höcker J, Aust D, Napiwotzky J, Münscher C, Link TA, Seibel P, Schneeweiss SG, Kadenbach B. Defects of the respiratory chain in oxyphil and chief cells of the normal parathyroid and in hyperfunction. Hum Pathol 1996; 27:532-41. [PMID: 8666361 DOI: 10.1016/s0046-8177(96)90158-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Immunohistochemical detection of complex HIII (ubiquinone- cytochrome-c-oxidoreductase) and complex IV (cytochrome-c-oxidase) of the respiratory chain was performed in parathyroids of 164 humans with normal renal function (group I) and in 55 patients with chronic renal insufficiency (group II) obtained at autopsy. In group I, 33 of the 164 cases showed defects of the respiratory chain (20%). Eighty-five percent of the defects occurred in advanced age (> 50 years). In group II, 39 of 55 cases (70%) had defects, and about 70% of the defects occurred after age 50. In both groups, more than 80% of the defects were localized in oxyphil cell nodules. However, not every oxyphil nodule was involved. In group I, selective defects of complex IV predominated and were found in 47 of 86 defects (55%). Combined defects of complexes III and IV were present in 25 of 86 defects (29%). In contrast, in group II combined defects predominated and were found in 45% (107 of 240 defects), whereas single defects of complex IV existed in 38% (93 of 240 defects). The frequency of selective defects of complex III was about 16% to 17% in both groups. In situ hybridization and PCR studies for the detection of the common deletion (4.977 base pairs) and of various point mutations of mitochondrial of (m)DNA revealed no consistent molecular genetic abnormalities. A point mutation in the tRNALeu(UUR) at nucleotide (nt) 3.260 was found in only one probe. The results show that defects of the respiratory chain occur already in normal parathyroids, most probably during cell aging, especially in oxyphil cells and at a higher rate in hyperfunction. The high predominance of respiratory chain defects in oxyphil cells and their random distribution favors mutations of mtDNA as a possible cause of oxyphilic cell transformation and of the respiratory chain defects. However, the mutations of mtDNA in the parathyroids are apparently different from those in other ageing tissues.
Collapse
Affiliation(s)
- J Müller-Höcker
- Institut für Pathologie, Ludwig-Maximilians-Universität München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ingleton PM, Danks JA. Distribution and functions of parathyroid hormone-related protein in vertebrate cells. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 166:231-80. [PMID: 8881777 DOI: 10.1016/s0074-7696(08)62510-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Parathyroid hormone-related protein (PTHrP) was isolated from tumors and identified as the agent of humoral hypercalcemia of malignancy (HHM) in 1987. Since then its gene structure in several mammalian and an avian species has been analyzed and its gene expression demonstrated in many adult and embryonic tissues derived from all three germ layers. The composition and structure of PTHrP peptide depends on both differential gene splicing and posttranslational processing, which result in a range of peptides of potentially diverse functions. This chapter describes the distribution of PTHrP in both normal and neoplastic adult and embryonic tissues. PTHrP is of fundamental importance to cell survival because the absence of the gene is fatal; this aspect of PTHrP function in cell physiology becomes overwhelmingly important in neoplasia. Intracrine or paracrine actions for PTHrP seem to be most likely in mammalian and avian physiology, but in fishes high circulating levels suggest classic endocrine functions as well. Much remains to be learned of the biology of this fascinating protein.
Collapse
Affiliation(s)
- P M Ingleton
- Institute of Endocrinology, Sheffield University Medical School, United Kingdom
| | | |
Collapse
|
8
|
Turzynski A, Baumgart S, Bauch B, Dietel M. Morphological characteristics of tumors with humoral hypercalcemia of malignancy: functional morphology of PTHrP. Recent Results Cancer Res 1994; 137:76-97. [PMID: 7878296 DOI: 10.1007/978-3-642-85073-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A Turzynski
- Institute of Pathology, University Hospital Charité, Humboldt University, Berlin, Germany
| | | | | | | |
Collapse
|