1
|
Wang L, Trawick JD, Yamamoto R, Zamudio C. Genome-wide operon prediction in Staphylococcus aureus. Nucleic Acids Res 2004; 32:3689-702. [PMID: 15252153 PMCID: PMC484181 DOI: 10.1093/nar/gkh694] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 06/07/2004] [Accepted: 06/21/2004] [Indexed: 01/10/2023] Open
Abstract
Identification of operon structure is critical to understanding gene regulation and function, and pathogenesis, and for identifying targets towards the development of new antibiotics in bacteria. Recently, the complete genome sequences of a large number of important human bacterial pathogens have become available for computational analysis, including the major human Gram-positive pathogen Staphylococcus aureus. By annotating the predicted operon structure of the S.aureus genome, we hope to facilitate the exploration of the unique biology of this organism as well as the comparative genomics across a broad range of bacteria. We have integrated several operon prediction methods and developed a consensus approach to score the likelihood of each adjacent gene pair to be co-transcribed. Gene pairs were separated into distinct operons when scores were equal to or below an empirical threshold. Using this approach, we have generated a S.aureus genome map with scores annotated at the intersections of every adjacent gene pair. This approach predicted about 864 monocistronic transcripts and 533 polycistronic operons from the protein-encoding genes in the S.aureus strain Mu50 genome. When compared with a set of experimentally determined S.aureus operons from literature sources, this method successfully predicted at least 91% of gene pairs. At the transcription unit level, this approach correctly identified at least 92% of complete operons in this dataset. This consensus approach has enabled us to predict operons with high accuracy from a genome where limited experimental evidence for operon structure is available.
Collapse
Affiliation(s)
- Liangsu Wang
- Elitra Pharmaceuticals Inc., 10410 Science Center Drive, San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
2
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
3
|
Roberts RC, Shapiro L. Transcription of genes encoding DNA replication proteins is coincident with cell cycle control of DNA replication in Caulobacter crescentus. J Bacteriol 1997; 179:2319-30. [PMID: 9079919 PMCID: PMC178970 DOI: 10.1128/jb.179.7.2319-2330.1997] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DNA replication in the dimorphic bacterium Caulobacter crescentus is tightly linked to its developmental cell cycle. The initiation of chromosomal replication occurs concomitantly with the transition of the motile swarmer cell to the sessile stalked cell. To identify the signals responsible for the cell cycle control of DNA replication initiation, we have characterized a region of the C. crescentus chromosome containing genes that are all involved in DNA replication or recombination, including dnaN, recF, and gyrB. The essential dnaN gene encodes a homolog of the Escherichia coli beta subunit of DNA polymerase III. It is transcribed from three promoters; one is heat inducible, and the other two are induced at the transition from swarmer to stalked cell, coincident with the initiation of DNA replication. The single gyrB promoter is induced at the same time point in the cell cycle. These promoters, as well as those for several other genes encoding DNA replication proteins that are induced at the same time in the cell cycle, share two sequence motifs, suggesting that they represent a family whose transcription is coordinately regulated.
Collapse
Affiliation(s)
- R C Roberts
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5427, USA
| | | |
Collapse
|
4
|
Salazar L, Fsihi H, de Rossi E, Riccardi G, Rios C, Cole ST, Takiff HE. Organization of the origins of replication of the chromosomes of Mycobacterium smegmatis, Mycobacterium leprae and Mycobacterium tuberculosis and isolation of a functional origin from M. smegmatis. Mol Microbiol 1996; 20:283-93. [PMID: 8733228 DOI: 10.1111/j.1365-2958.1996.tb02617.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The genus Mycobacterium is composed of species with widely differing growth rates ranging from approximately three hours in Mycobacterium smegmatis to two weeks in Mycobacterium leprae. As DNA replication is coupled to cell duplication, it may be regulated by common mechanisms. The chromosomal regions surrounding the origins of DNA replication from M. smegmatis, M. tuberculosis, and M. leprae have been sequenced, and show very few differences. The gene order, rnpA-rpmH-dnaA-dnaN-recF-orf-gyrB-gyrA, is the same as in other Gram-positive organisms. Although the general organization in M. smegmatis is very similar to that of Streptomyces spp., a closely related genus, M. tuberculosis and M. leprae differ as they lack an open reading frame, between dnaN and recF, which is similar to the gnd gene of Escherichia coli. Within the three mycobacterial species, there is extensive sequence conservation in the intergenic regions flanking dnaA, but more variation from the consensus DnaA box sequence was seen than in other bacteria. By means of subcloning experiments, the putative chromosomal origin of replication of M. smegmatis, containing the dnaA-dnaN region, was shown to promote autonomous replication in M. smegmatis, unlike the corresponding regions from M. tuberculosis or M. leprae.
Collapse
Affiliation(s)
- L Salazar
- Laboratorio de Genética Molecular, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | | | | | | | | | | | | |
Collapse
|
5
|
Ginés-Candelaria E, Blinkova A, Walker JR. Mutations in Escherichia coli dnaA which suppress a dnaX(Ts) polymerization mutation and are dominant when located in the chromosomal allele and recessive on plasmids. J Bacteriol 1995; 177:705-15. [PMID: 7836305 PMCID: PMC176647 DOI: 10.1128/jb.177.3.705-715.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Extragenic suppressor mutations which had the ability to suppress a dnaX2016(Ts) DNA polymerization defect and which concomitantly caused cold sensitivity have been characterized within the dnaA initiation gene. When these alleles (designated Cs, Sx) were moved into dnaX+ strains, the new mutants became cold sensitive and phenotypically were initiation defective at 20 degrees C (J.R. Walker, J.A. Ramsey, and W.G. Haldenwang, Proc. Natl. Acad. Sci. USA 79:3340-3344, 1982). Detailed localization by marker rescue and DNA sequencing are reported here. One mutation changed codon 213 from Ala to Asp, the second changed Arg-432 to Leu, and the third changed codon 435 from Thr to Lys. It is striking that two of the three spontaneous mutations occurred in codons 432 and 435; these codons are within a very highly conserved, 12-residue region (K. Skarstad and E. Boye, Biochim. Biophys. Acta 1217:111-130, 1994; W. Messer and C. Weigel, submitted for publication) which must be critical for one of the DnaA activities. The dominance of wild-type and mutant alleles in both initiation and suppression activities was studied. First, in initiation function, the wild-type allele was dominant over the Cs, Sx alleles, and this dominance was independent of location. That is, the dnaA+ allele restored growth to dnaA (Cs, Sx) strains at 20 degrees C independently of which allele was present on the plasmid. The dnaA (Cs, Sx) alleles provided initiator function at 39 degrees C and were dominant in a dnaA(Ts) host at that temperature. On the other hand, suppression was dominant when the suppressor allele was chromosomal but recessive when it was plasmid borne. Furthermore, suppression was not observed when the suppressor allele was present on a plasmid and the chromosomal dnaA was a null allele. These data suggest that the suppressor allele must be integrated into the chromosome, perhaps at the normal dnaA location. Suppression by dnaA (Cs, Sx) did not require initiation at oriC; it was observed in strains deleted of oriC and which initiated at an integrated plasmid origin.
Collapse
|
6
|
Tadmor Y, Bergstein M, Skaliter R, Shwartz H, Livneh Z. Beta subunit of DNA polymerase III holoenzyme is induced upon ultraviolet irradiation or nalidixic acid treatment of Escherichia coli. Mutat Res 1994; 308:53-64. [PMID: 7516486 DOI: 10.1016/0027-5107(94)90198-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Exposure of Escherichia coli to UV irradiation or nalidixic acid, which induce both the SOS and heat shock responses, led to a 3-4-fold increase in the amount of the beta subunit of DNA polymerase III holoenzyme, as assayed by Western blot analysis using anti-beta antibodies. Such an induction was observed also in a delta rpoH mutant lacking the heat shock-specific sigma 32 subunit of RNA polymerase, but it was not observed in recA13 or lexA3 mutants, in which the SOS response cannot be induced. Mapping of transcription initiation sites of the dnaN gene, encoding the beta subunit, using the S1 nuclease protection assay showed essentially no induction of transcription upon UV irradiation, indicating that induction is regulated primarily at the post-transcriptional level. Analysis of translational gene fusions of the dnaN gene, encoding the beta subunit, to the lacZ reporter gene showed induction of beta-galactosidase activity upon UV irradiation of cells harboring the fusion plasmids. Elimination of a 5' flanking DNA sequence in which the dnaN promoters P1 and P2 were located, did not affect the UV inducibility of the gene fusions. Thus, element(s) present from P3 downstream were sufficient for the UV induction. The induction of the dnaN-lacZ gene fusions was dependent on the recA and lexA gene products, but not on the rpoH gene product, in agreement with the immunoblot analysis. The dependence of dnaN induction on the SOS regulators was not mediated via classical repression by the LexA repressor, since the dnaN promoter does not contain a sequence homologous to the LexA binding site, and dnaN mRNA was not inducible by UV light. This suggests that SOS control may be imposed indirectly, by a post-transcriptional mechanism. The increased amount of the beta subunit is needed, most likely, for increased replication and repair activities in cells which have been exposed to UV radiation.
Collapse
Affiliation(s)
- Y Tadmor
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
7
|
Ingmer H, Atlung T. Expression and regulation of a dnaA homologue isolated from Pseudomonas putida. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:431-9. [PMID: 1588913 DOI: 10.1007/bf00266248] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A gene homologous to the Escherichia coli dnaA gene was isolated from Pseudomonas putida and its transcription was investigated in E. coli as well as in P. putida. In both species the P. putida dnaA gene is transcribed from two promoters, one of which shows strong homology to promoters recognized by the sigma 54 factor found in both bacteria. In E. coli transcription of the P. putida dnaA gene can be repressed by overproduction of E. coli DnaA protein, presumably due to the presence of several DnaA-box-like sequences found in the promoter region. Likewise the P. putida DnaA protein is able to regulate expression of the E. coli dnaA gene but we failed to demonstrate autoregulation of the P. putida dnaA gene. A point mutation was introduced into the P. putida dnaA gene, equivalent to the ATP binding site mutation present in E. coli dnaA5 and dnaA46 mutants, and this alteration abolished the ability of the protein to repress the expression of the E. coli dnaA gene. These results indicate that DnaA proteins from other species than E. coli have maintained the ability to recognize the DnaA box sequence and that the conservation between the DnaA proteins reflects functionally similar domains.
Collapse
MESH Headings
- Alleles
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Cloning, Molecular
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Escherichia coli/genetics
- Gene Expression
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Genotype
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Plasmids
- Promoter Regions, Genetic
- Pseudomonas putida/genetics
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Nucleic Acid
- Temperature
- Transcription, Genetic
- beta-Galactosidase/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- H Ingmer
- Department of Microbiology, Technical University, Lyngby, Denmark
| | | |
Collapse
|
8
|
Wende M, Quinones A, Diederich L, Jueterbock WR, Messer W. Transcription termination in the dnaA gene. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:486-90. [PMID: 1766443 DOI: 10.1007/bf00280306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The termination of transcription in the dnaA gene of E. coli was analyzed using transcriptional fusions to the galactokinase gene, S1 nuclease mapping and quantification of translation products by Western blots. The majority of transcripts originating from dnaA promoters terminated at several positions within a 200 bp region inside the dnaA reading frame.
Collapse
Affiliation(s)
- M Wende
- Max-Planck-Institut für molekulare Genetik, Berlin, FRG
| | | | | | | | | |
Collapse
|
9
|
Abstract
We have determined the transcriptional organization of the Escherichia coli dnaX gene, the structural gene for both the gamma and tau subunits of DNA polymerase III holoenzyme. By S1 nuclease protection and primer extension mapping of transcripts encoding the dnaX products, one primary promoter of dnaX has been identified that initiates transcription 37 nucleotides upstream from the first codon. dnaX resides in an operon with two recently sequenced genes, orf12, encoding an unidentified product, and recR, the structural gene for a protein involved in the recF pathway of recombination. Under conditions of balanced growth, a very small amount of transcription from the upstream apt promoter (less than 5%) contributes to the expression of tau and gamma, too low for apt to be considered to be on an operon with dnaX, orf12, and recR are transcribed from an independent promoter as well as from the dnaX promoter, providing a mechanism for orf12 and recR to be regulated independent of dnaX. Transcription of the dnaX-orf12-recR operon is terminated upstream from the previously characterized heat shock gene htpG. The dnaX and orf12-recR promoters, cloned into a promoter detection vector, efficiently direct the expression of the downstream reporter gene, lacZ. These results extend our knowledge of the genetic and transcriptional organization of this region of the E. coli chromosome. The transcriptional organization has been defined as follows: apt, dnaX-orf12-recR, htpG. All of these genes are transcribed in the clockwise direction and only dnaX, orf12 and recR are contained in the dnaX operon.
Collapse
Affiliation(s)
- A M Flower
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262
| | | |
Collapse
|
10
|
Pérez-Roger I, García-Sogo M, Navarro-Aviñó JP, López-Acedo C, Macián F, Armengod ME. Positive and negative regulatory elements in the dnaA-dnaN-recF operon of Escherichia coli. Biochimie 1991; 73:329-34. [PMID: 1883890 DOI: 10.1016/0300-9084(91)90220-u] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The recF gene of E coli lies within a cluster of genes which play essential roles in DNA replication; the gene order is dnaA dnaN recF gyrB. Each of these genes has its own promoters which, with the exception of dnaA promoters, reside entirely within the translated region of the respective preceding gene. In this report, we analyze the effect of the dnaA and dnaN promoters on recF expression by translational fusions between recF and the lacZ reporter gene. Our results indicate that recF is a distal gene of the dnaA operon, and support the previous proposal that dnaN and recF constitute a transcriptional unit under control of the dnaN promoters. They also suggest that dnaA, dnaN and recF are predominantly expressed from the same mRNA although transcriptional and/or post-transcriptional mechanisms should be specifically involved in lowering expression of the recF gene. Recently, we have localized 3 tandem transcription termination sites in the second half of the dnaN gene, downstream from the recF promoters. Neither of them shows the typical features of simple terminators and apparently they do not work in a minimal system of in vitro transcription. In this report, we present evidence that only one of them is dependent on the Rho protein. Although the operon structure allows coordinate expression of dnaA, dnaN and recF, the presence of internal promoters (the dnaN and recF promoters), which appear to be inducible by DNA damage, and intracistronic terminators, whose activity is inversely proportional to the efficiency of translation, permits expression of individual genes to be independently regulated in response to altered growth conditions.
Collapse
Affiliation(s)
- I Pérez-Roger
- Instituto de Investigaciones Citológicas, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Flower AM, McHenry CS. The gamma subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting. Proc Natl Acad Sci U S A 1990; 87:3713-7. [PMID: 2187190 PMCID: PMC53973 DOI: 10.1073/pnas.87.10.3713] [Citation(s) in RCA: 216] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The tau and gamma subunits of DNA polymerase III holoenzyme are both products of the dnaX gene. Since tau and gamma are required as stoichiometric components of the replicative complex, a mechanism must exist for the cell to coordinate their synthesis and ensure that both subunits are present in an adequate quantity and ratio for assembly. We have proposed that gamma is produced by a translational frameshift event. In this report, we describe the use of dnaX-lacZ fusions in all three reading frames to demonstrate that gamma, the shorter product of dnaX, is generated by ribosomal frameshifting to the -1 reading frame of the mRNA within an oligo(A) sequence that is followed by a sequence predicted to form a stable secondary structure. Immediately after frameshifting a stop codon is encountered, leading to translational termination. Mutagenesis of the oligo(A) sequence abolishes frameshifting, and partial disruption of the predicted distal secondary structure severely impairs the efficiency. Comparison of the expression of lacZ fused to dnaX distal to the site of frameshifting in the -1 and 0 reading frames indicates that the efficiency of frameshifting is approximately 40%.
Collapse
Affiliation(s)
- A M Flower
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262
| | | |
Collapse
|
12
|
Chiaramello AE, Zyskind JW. Coupling of DNA replication to growth rate in Escherichia coli: a possible role for guanosine tetraphosphate. J Bacteriol 1990; 172:2013-9. [PMID: 1690706 PMCID: PMC208699 DOI: 10.1128/jb.172.4.2013-2019.1990] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Two promoters for the Escherichia coli operon that contains the four genes dnaA, dnaN, recF, and gyrB were found to be growth rate regulated and under stringent control. Transcript abundance relative to total RNA increased with the growth rate. Changes in transcription from the dnaAp1 and dnaAp2 promoters that were induced by amino acid starvation and chloramphenicol and were relA dependent were correlated with the stringent response. The abundance of these transcripts per total RNA also decreased in spoT mutants as the severity of the mutation increased (guanosine 5'-diphosphate 3'-diphosphate [ppGpp] basal levels increased). Because expression of these promoters appears to be inhibited by ppGpp, it is proposed that one mechanism for coupling DNA replication to the growth rate of bacteria is through ppGpp synthesis at the ribosome.
Collapse
Affiliation(s)
- A E Chiaramello
- Department of Biology, San Diego State University, California 92182
| | | |
Collapse
|
13
|
Messer W, Seufert W, Schaefer C, Gielow A, Hartmann H, Wende M. Functions of the DnaA protein of Escherichia coli in replication and transcription. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 951:351-8. [PMID: 2850012 DOI: 10.1016/0167-4781(88)90106-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The function of DnaA protein as a replisome organizer in the initiation of DNA replication is reviewed. A model is presented showing the construction of two basic types of DnaA-dependent replication origin. New data demonstrate that the dnaA box-DnaA protein complex is a transcription terminator. Only one orientation of the dnaA box results in termination of transcription. Mutation of the dnaA box within the dnaA reading frame shows that DnaA-mediated transcription termination has a role in the autoregulation of the dnaA gene.
Collapse
Affiliation(s)
- W Messer
- Max-Planck-Institut für molekulare Genetik, Berlin, F.R.G
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Quiñones A, Messer W. Discoordinate gene expression in the dnaA-dnaN operon of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1988; 213:118-24. [PMID: 2851700 DOI: 10.1007/bf00333407] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The dnaN gene of Escherichia coli encodes the beta-subunit of the DNA polymerase III holoenzyme. Previous work has established that dnaN lies immediately downstream of dnaA and that both genes may be cotranscribed from the dnaA promoters; no promoter for dnaN has been described. We investigated the in vivo regulation of transcription of the dnaN gene by transcriptional fusions to the galK gene, translational fusion to the lacZ gene and S1 mapping analysis. We found that there are at least three dnaN promoters residing entirely in the reading frame of the preceding dnaA gene, and that transcription from these promoters can occur independently of dnaA transcription which, however, extends at least up to dnaN. Furthermore, we found evidence for the inducibility of the dnaN promoters in a dam background under conditions of simultaneously reduced dnaA transcription. These results are consistent with the hypothesis that although dnaA and dnaN are organized in an operon considerable discoordinate transcription can occur, thus uncoupling dnaN and dnaA regulation, when needed.
Collapse
Affiliation(s)
- A Quiñones
- Wissenschaftsbereich Genetik, Martin-Luther-Universität, Halle (Saale), German Democratic Republic
| | | |
Collapse
|
16
|
Quiñones A, Piechocki R, Messer W. Expression of the Escherichia coli dnaQ (mutD) gene is inducible. MOLECULAR & GENERAL GENETICS : MGG 1988; 211:106-12. [PMID: 2830459 DOI: 10.1007/bf00338400] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
By promoter fusion to the galK gene and comparative S1 analysis we investigated the in vivo regulation of transcription of the dnaQ gene which encodes the epsilon-subunit of the DNA polymerase III holoenzyme carrying the 3'----5' exonucleolytic proofreading function. Induction of a mutagenic stress situation by treatment with the base analogue 2-aminopurine (2-AP) leads to an increase in dnaQ transcription. S1 mapping analysis of the two dnaQ transcripts revealed a differential promoter activation for this 2-AP induced increase in dnaQ transcription. In addition, a similar galK promoter fusion with the dnaN gene coding for the beta-subunit of the DNA polymerase III holoenzyme revealed that dnaN transcription is also 2-AP inducible as judged by galactokinase activity. This is the first evidence for the inducibility of dnaQ gene expression (and possibly of other genes of the DNA polymerase II holoenzyme) and is discussed in relation to DNA repair mechanisms.
Collapse
Affiliation(s)
- A Quiñones
- Wissenschaftsbereich Genetik, Martin-Luther-Universität, Halle, Saale, German Democratic Republic
| | | | | |
Collapse
|
17
|
Braun RE, O'Day K, Wright A. Cloning and characterization of dnaA(Cs), a mutation which leads to overinitiation of DNA replication in Escherichia coli K-12. J Bacteriol 1987; 169:3898-903. [PMID: 3040665 PMCID: PMC213684 DOI: 10.1128/jb.169.9.3898-3903.1987] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The product of the dnaA gene is essential for the initiation of chromosomal DNA replication in Escherichia coli K-12. A cold-sensitive mutation, dnaA(Cs), was originally isolated as a putative intragenic suppressor of the temperature sensitivity of a dnaA46 mutant (G. Kellenberger-Gujer, A. J. Podhajska, and L. Caro, Mol. Gen. Genet. 162:9-16, 1978). The cold sensitivity of the dnaA(Cs) mutant was attributed to a loss of replication control resulting in overinitiation of DNA replication. We cloned and sequenced the dnaA gene from the dnaA(Cs) mutant and showed that it contains three point mutations in addition to the original dnaA46(Ts) mutation. The dnaA(Cs) mutation was dominant to the wild-type allele. Overproduction of the DnaA(Cs) protein blocked cell growth. In contrast, overproduction of wild-type DnaA protein reduced the growth rate of cells but did not stop cell growth. Thus, the effect of elevated levels of the DnaA(Cs) protein was quite different from that of the wild-type protein under the same conditions.
Collapse
|
18
|
Flower AM, McHenry CS. The adjacent dnaZ and dnaX genes of Escherichia coli are contained within one continuous open reading frame. Nucleic Acids Res 1986; 14:8091-101. [PMID: 3534795 PMCID: PMC311836 DOI: 10.1093/nar/14.20.8091] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The dnaZ and dnaX loci of Escherichia coli have been genetically defined as separate genes, both of which are essential for DNA replication (1). The 2.1 kb region of DNA that complements mutations in both genes has a maximum coding capacity of approximately 80,000 daltons. Two protein products are produced from this region with molecular weights of 77,000 and 52,000 (2,3). We have sequenced a 2.7 kb fragment containing the dnaZ and dnaX genes and determined that it contains only one open reading frame of sufficient length to encode either of these proteins. This open reading frame may encode a protein of 71,147 daltons or of 68,451 daltons depending on which potential translational initiation codon is utilized. There are two transcriptional promoters preceding the gene as well as a ribosome binding site preceding the two potential initiation codons. Both the promoters and ribosome binding sites are predicted to be weak, perhaps contributing to the low expression of these genes.
Collapse
|
19
|
Kücherer C, Lother H, Kölling R, Schauzu MA, Messer W. Regulation of transcription of the chromosomal dnaA gene of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1986; 205:115-21. [PMID: 3025553 DOI: 10.1007/bf02428040] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
By comparative S1 analysis we investigated the in vivo regulation of transcription of the chromosomal dnaA gene coding for a protein essential for the initiation of replication at the chromosomal origin. Inactivation of the protein in dnaA mutants results in derepression, whereas excess DnaA protein (presence of a DnaA overproducing plasmid) leads to repression of dnaA transcription. Both dnaA promoters are subject to autoregulation allowing modulation of transcriptional efficiency by at least 20-fold. Increasing the number of oriC sequences (number of DnaA binding sites) in the cell by introducing oriC plasmids leads to a derepression of transcription. Autoregulation and binding to oriC suggest that the DnaA protein exerts a major role in the regulation of the frequency of initiation at oriC. The efficiency of transcription of the dnaA2 promoter is reduced in the absence of dam methylation, which is involved in the regulation of oriC replication.
Collapse
|
20
|
Hansen EB, Yarmolinsky MB. Host participation in plasmid maintenance: dependence upon dnaA of replicons derived from P1 and F. Proc Natl Acad Sci U S A 1986; 83:4423-7. [PMID: 3520571 PMCID: PMC323745 DOI: 10.1073/pnas.83.12.4423] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nonparticipation of the bacterial dnaA gene in plasmid replication has been assumed to be the general rule. In conditional dnaA mutants of Escherichia coli, only plasmid pSC101 has been shown to have a dnaA requirement. Experiments with dnaA null mutants of E. coli, presented here, show that dnaA plays a critical and direct role in the replication of miniplasmids derived from P1 and F as it does in the initiation of bacterial replication. Evidence is also presented for the existence of a dnaA-independent secondary replicon of P1 that is able to drive bacterial chromosome replication but is inadequate to support the maintenance of P1 as a plasmid in E. coli.
Collapse
|
21
|
Braun RE, Wright A. DNA methylation differentially enhances the expression of one of the two E. coli dnaA promoters in vivo and in vitro. MOLECULAR & GENERAL GENETICS : MGG 1986; 202:246-50. [PMID: 3010047 DOI: 10.1007/bf00331644] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The promoter/regulatory region of the dnaA gene, whose gene product is required for the initiation of DNA replication in Escherichia coli K-12, contains an unusually large number of Dam methylation sites. In this paper we report that the expression of the dnaA gene is decreased in Dam- strains of E. coli. The decrease in the expression of dnaA was measured in vivo using a dnaA-lacZ gene fusion. In vivo S1 nuclease mapping demonstrated that the decrease was due to a differential decrease in expression from the more proximal of the two dnaA promoters, dnaA2P. Comparison of the strengths of the two dnaA promoters in an in vitro transcription system using methylated and unmethylated DNA templates suggests that the effect of methylation on dnaA2P is probably at the level of RNA polymerase/DNA interaction. We suggest that this effect of methylation may be important in controlling the expression of dnaA during the E. coli cell cycle.
Collapse
|
22
|
Armengod ME, Lambíes E. Overlapping arrangement of the recF and dnaN operons of Escherichia coli; positive and negative control sequences. Gene 1986; 43:183-96. [PMID: 3527871 DOI: 10.1016/0378-1119(86)90206-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The recF gene of Escherichia coli controls one of the recombination pathways and UV sensitivity, but its precise function and expression pattern are still largely unknown. We have characterized the promoter region of the recF gene by mapping for E. coli RNA polymerase binding sites, in vitro transcription experiments, cloning, and S1 mapping of in vivo mRNAs. It contains three overlapping promoters, two initiating transcription towards recF and one in the opposite direction. The recF promoter region is located about 600 bp upstream from the start codon of the recF structural gene and resides entirely within the translated region of the preceding gene, dnaN, which encodes for the beta subunit of DNA polymerase III. This unusual arrangement might provide discoordinate regulation of the recF and dnaN genes, thus controlling the level of DNA polymerase III holoenzyme. Expression of recF is also negatively controlled by sequences located upstream as well as inside the recF coding frame. Such negative regulation may serve to prevent toxic effects due to accumulation of an excessive number of copies of the recF gene product.
Collapse
|
23
|
Abstract
The dnaA gene in E. coli K-12 is required for the initiation of DNA replication. Although the specific function of the dnaA protein is unknown, it has been suggested that it is a regulator of the frequency of initiation. In this paper we report that the expression of both a dnaA-lacZ translational fusion and a dnaA-trpA-lacZ transcriptional fusion in vivo are sensitive to changes in the level of functional dnaA protein. Overproduction of the dnaA gene product leads to a reduction in expression from both fusions while introduction of dnaA- alleles results in an increased expression. Results from a deletion analysis of the dnaA promoter/regulatory region suggest that both dnaA promoters are regulated by the dnaA gene product and that a site between the two promoters is responsible for the regulation. DNAase protection experiments showed that the dnaA protein binds to DNA in the region of the two dnaA promoters. Our results indicate that the dnaA gene product regulates its own synthesis by inhibiting transcription from both of its promoters.
Collapse
|
24
|
Ohmori H, Kimura M, Nagata T, Sakakibara Y. Structural analysis of the dnaA and dnaN genes of Escherichia coli. Gene 1984; 28:159-70. [PMID: 6234204 DOI: 10.1016/0378-1119(84)90253-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nucleotide sequence of the entire region containing the Escherichia coli dnaA and dnaN genes was determined. Base substitutions by such mutations as dnaA46, dnaA167, dnaN59, and dnaN806 were also identified. Analyses of coding frames, the mutational base substitutions, and other data indicate that dnaN follows dnaA, both have the same orientation, and are separated by only 4 bp. The deduced amino acid sequence specifies Mrs and isoelectric points consistent with those of the previously identified gene products. The transcriptional initiation site of the dnaA gene was assigned by analysis of in vitro RNA products. Examination of the intercistronic sequence and analysis of in vitro transcription supported the notion that the dnaA and dnaN genes constitute a single operon.
Collapse
|
25
|
Shepard D, Oberfelder RW, Welch MM, McHenry CS. Determination of the precise location and orientation of the Escherichia coli dnaE gene. J Bacteriol 1984; 158:455-9. [PMID: 6327605 PMCID: PMC215449 DOI: 10.1128/jb.158.2.455-459.1984] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The minimal region required for expression of the dnaE gene of Escherichia coli has been determined relative to a detailed restriction endonuclease map. This has been accomplished by analysis of Bal 31 exonuclease-generated deletions from the termini of the E. coli DNA contained in plasmid pMWE303 , a plasmid that we have previously demonstrated to contain the dnaE gene (M. M. Welch and C. S. McHenry , J. Bacteriol . 152:351-356, 1982). The competence of these deletion-containing plasmids in expressing the alpha subunit of DNA polymerase III holoenzyme has been determined by their ability both to complement a dnaE mutant and to direct the synthesis of a complete alpha subunit. The carboxyl-terminal coding region of dnaE has been identified through the detection of partial alpha polypeptides encoded by plasmids containing deletions from one end of the gene. This approach has permitted the precise determination of both termini of the dnaE gene and the determination of the orientation of the gene within the E. coli chromosome.
Collapse
|
26
|
Sako T, Sawaki S, Sakurai T, Ito S, Yoshizawa Y, Kondo I. Cloning and expression of the staphylokinase gene of Staphylococcus aureus in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1983; 190:271-7. [PMID: 6224069 DOI: 10.1007/bf00330650] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Restriction fragments of DNA from bacteriophage S phi-C of Staphylococcus aureus which carries the gene for staphylokinase, one of the plasminogen activators, were cloned onto plasmid pBR322. Recombinant plasmids carrying the 2.5 kilobase pair segment of S phi-C DNA confer on Escherichia coli cells the capacity to synthesize staphylokinase. The enzyme is synthesized in amounts comparable to that found in S. aureus, and irrespective of the orientation of cloned fragments and their insertion site on pBR322. The active enzyme produced by E. coli cells is preferentially recovered from the periplasmic space and in part excreted into the culture medium. It is indistinguishable from the enzyme produced by S. aureus in molecular weight, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and in antigenicity, as determined by the micro-Ouchterlony precipitation test.
Collapse
|
27
|
Hansen EB, Hansen FG, von Meyenburg K. The nucleotide sequence of the dnaA gene and the first part of the dnaN gene of Escherichia coli K-12. Nucleic Acids Res 1982; 10:7373-85. [PMID: 6296774 PMCID: PMC327010 DOI: 10.1093/nar/10.22.7373] [Citation(s) in RCA: 115] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The nucleotide sequence of the dnaA gene and the first 10% of the dnaN gene was determined. From the nucleotide sequence the amino acid sequence of the dnaA gene product was derived. It is a basic protein of 467 amino acid residues with a molecular weight of 52.5 kD. The expression of the dnaA gene is in the counterclockwise direction like the one of the dnaN gene, for which potential startsites were found.
Collapse
|
28
|
Sakakibara Y, Yuasa S. Continuous synthesis of the dnaA gene product of Escherichia coli in the cell cycle. MOLECULAR & GENERAL GENETICS : MGG 1982; 186:87-94. [PMID: 6287172 DOI: 10.1007/bf00422917] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The dnaA gene product of Escherichia coli, identified as a weakly basic protein of about 48,000 daltons (Yuasa and Sakakibara 1980), can be separated from other cellular proteins by means of two-dimensional gel electrophoresis. Synthesis of the dnaA protein took place continuously during a cell growth cycle. The newly synthesized dnaA protein persisted stably for one generation. Thermosensitive dnaA protein produced by the dnaA167 mutant was stable at 30 degrees C, but was disintegrated at 42 degrees C. The amount of intact dnaA protein present in the mutant exposed to the high temperature for 60 min was less than a quarter of the amount at the time of the shift. The cells having the reduced amount of intact dnaA protein were capable of initiating a new round of chromosome replication at the low temperature without de novo synthesis of the dnaA protein. The potential of the mutant for initiation of DNA replication decreased with reduction in the amount of the thermoreversible dnaA protein. The mutations dnaA167 and dnaA46 had no significant effect on the syntheses of the dnaA mRNA and the protein product at the low and high temperatures.
Collapse
|
29
|
Walker JR, Ramsey JA, Haldenwang WG. Interaction of the Escherichia coli dnaA initiation protein with the dnaZ polymerization protein in vivo. Proc Natl Acad Sci U S A 1982; 79:3340-4. [PMID: 6285347 PMCID: PMC346411 DOI: 10.1073/pnas.79.10.3340] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To define in vivo interactions of Escherichia coli DNA replication components, extragenic suppressors of a dnaZ(TS) mutant were isolated. A temperature-sensitive dnaZ mutant, which is defective in polymerization, was placed at 39 degrees C to select temperature-insensitive revertants. Some of these revertants also were cold sensitive, a phenotypic property that facilitated study of the suppressor. Mapping of the cold sensitivity indicated that some of the suppressor mutations are intragenic but others are located within the initiation gene, dnaA. The dnaA mutations that suppress the dnaZ(TS) defect are designated dnaA(SUZ, CS). The dnaA(SUZ, CS) strains have a defect in DNA synthesis at low temperature that is typical of an initiation defect. These data suggest that the dnaA product, an initiation factor, interacts in vivo with the dnaZ protein, a polymerization factor.
Collapse
|
30
|
Burgers PM, Kornberg A, Sakakibara Y. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme of escherichia coli. Proc Natl Acad Sci U S A 1981; 78:5391-5. [PMID: 6458041 PMCID: PMC348751 DOI: 10.1073/pnas.78.9.5391] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
An Escherichia coli mutant, dnaN59, stops DNA synthesis promptly upon a shift to a high temperature; the wild-type dnaN gene carried in a transducing phage encodes a polypeptide of about 41,000 daltons [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553; Yuasa, S. & Sakakibara, Y. (1980) Mol. Gen. Genet. 180, 267-273]. We now find that the product of dnaN gene is the beta subunit of DNA polymerase III holoenzyme, the principal DNA synthetic multipolypeptide complex in E. coli. The conclusion is based on the following observations: (i) Extracts from dnaN59 cells were defective in phage phi X174 and G4 DNA synthesis after the mutant cells had been exposed to the increased temperature. (ii) The enzymatic defect was overcome by addition of purified beta subunit but not by other subunits of DNA polymerase III holoenzyme or by other replication proteins required for phi X174 DNA synthesis. (iii) Partially purified beta subunit from the dnaN mutant, unlike that from the wild type, was inactive in reconstituting the holoenzyme when mixed with the other purified subunits. (iv) Increased dosage of the dnaN gene provided by a plasmid carrying the gene raised cellular levels of the beta subunit 5- to 6-fold.
Collapse
|
31
|
Sakakibara Y, Tsukano H, Sako T. Organization and transcription of the dnaA and dnaN genes of Escherichia coli. Gene 1981; 13:47-55. [PMID: 6453739 DOI: 10.1016/0378-1119(81)90042-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The locations of the linked dnaA and dnaN genes of Escherichia coli in a specialized transducing lambda phage genome have been determined by electron microscopic heteroduplex analysis, using phages with deletions or insertions in the dnaA or dnaN gene. The transcription initiation sites for the dna genes were also localized by electron microscopic analysis of DNA-RBA heteroduplex molecules formed between the E. coli DNA fragment of the phage genome and the in vitro transcription products of the fragment. The dnaN gene was found to be transcribed in the same direction as the dnaA gene, and predominantly from the promoter of the dnaA gene.
Collapse
|
32
|
Yuasa S, Sakakibara Y. Identification of the dnaA and dnaN gene products of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1980; 180:267-73. [PMID: 6258023 DOI: 10.1007/bf00425838] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A specialized transducing lambda phage carrying the dnaN genes of Escherichia coli specifies two proteins of about 41 and 48 kilodaltons (kd). The temperature-sensitive mutations, dnaN59 and dnaA167, were found to result in altered isoelectric points of the 41 and 48 kd proteins, respectively. Thus the dnaN gene product was identified as a weakly acidic 41 and 48 kd protein. The synthesis of the dnaN gene product is greatly reduced by insertion of a transposon Tn3 in the dnaA gene and by deletion in the gene at the distal end to the dnaN gene. Temperature-sensitive dnaA mutations, on the dnaN gene product. These results indicate that the synthesis of the dnaN gene product is dependent on the structural integrity of the dnaA gene.
Collapse
|