1
|
Wang J, Zhang Y, Du J, Pan X, Ma L, Shao M, Guo X. Combined analysis of genome-wide expression profiling of maize (Zea mays L.) leaves infected with Ustilago maydis. Genome 2018; 61:505-513. [PMID: 29800531 DOI: 10.1139/gen-2017-0226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although many gene expression profiling studies of maize leaves infected with Ustilago maydis have been published, heterogeneity of the results, caused by various data processing methods and pathogenic strains in different data sets, remains strong. Hence, we conducted a combined analysis of six genome-wide expression data sets of maize leaves infected with five different U. maydis strains by using the same pre-processing and quality control procedures. Six data sets were regrouped into five groups according to pathogenic strain used. Subsequently, each group of data set was processed by Multi-array Average for pre-processing and by pair-wise Pearson correlation for quality control. The differentially expressed genes were calculated by a standard linear mixed-effect model and then validated by various sensitivity analysis and multiple evidences. Finally, 44 unique differentially expressed genes were identified. Pathway enrichment analysis indicated that these genes related to response to fungus, oxidation-reduction, transferase activity, and several carbohydrate metabolic and catabolic processes. In addition, the hub genes within protein-protein interaction networks showed high relevance with the basic pathogenesis. We report a highly credible differentially expressed list, and the genes with multiple validations may denote a common signature of U. maydis in maize, which provides a new window for disease-resistant protection of maize plants.
Collapse
Affiliation(s)
- Jinglu Wang
- Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097.,Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097
| | - Ying Zhang
- Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097.,Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097
| | - Jianjun Du
- Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097.,Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097
| | - Xiaodi Pan
- Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097.,Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097
| | - Liming Ma
- Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097.,Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097
| | - Meng Shao
- Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097.,Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097
| | - Xinyu Guo
- Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097.,Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097
| |
Collapse
|
2
|
Cho K, Agrawal GK, Shibato J, Jung YH, Kim YK, Nahm BH, Jwa NS, Tamogami S, Han O, Kohda K, Iwahashi H, Rakwal R. Survey of differentially expressed proteins and genes in jasmonic acid treated rice seedling shoot and root at the proteomics and transcriptomics levels. J Proteome Res 2007; 6:3581-603. [PMID: 17711327 DOI: 10.1021/pr070358v] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UNLABELLED Two global approaches were applied to develop an inventory of differentially expressed proteins and genes in rice (cv. Nipponbare) seedling grown on Murashige and Skoog medium with and without jasmonic acid (JA). JA significantly reduced the growth of shoot, root, leaf, and leaf sheath depending on JA concentration (1, 2, 5, 10, 25, and 50 microM) as compared with control. Almost 50% growth inhibition of seedling was observed with 5 microM JA. Shoots and roots of seedlings grown on 5 microM JA for 7 days were then used for proteomics and transcriptomics analyses. Two-dimensional gel electrophoresis revealed 66 and 68 differentially expressed protein spots in shoot and root, respectively, compared to their respective controls. Tandem mass spectrometry analysis of these proteins identified 52 (shoot) and 56 (root) nonredundant proteins, belonging to 10 functional categories. Proteins involved in photosynthesis (44%), cellular respiratory (11%), and protein modification and chaperone (11%) were highly represented in shoot, whereas antioxidant system (18%), cellular respiratory (17%), and defense-related proteins (15%) were highly represented in root. Transcriptomics analysis of shoot and root identified 107 and 325 induced genes and 34 and 213 suppressed genes in shoot and root, respectively. Except of unknown genes with over 57% of the total, most genes encode for proteins involved in secondary metabolism, energy production, protein modification and chaperone, transporters, and cytochrome P450. These identified proteins and genes have been discussed with respect to the JA-induced phenotype providing a new insight into the role of JA in rice seedling growth and development. KEYWORDS phytohormone * inhibitory concentration * growth * gel-based approach * mass spectrometry * DNA microarray.
Collapse
Affiliation(s)
- Kyoungwon Cho
- Department of Applied Biotechnology, Agricultural Plant Stress Research Center and Biotechnology Research Institute, Chonnam National University, Gwangju 500-757, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Rhoads DM, Subbaiah CC. Mitochondrial retrograde regulation in plants. Mitochondrion 2007; 7:177-94. [PMID: 17320492 DOI: 10.1016/j.mito.2007.01.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 01/03/2007] [Accepted: 01/08/2007] [Indexed: 01/17/2023]
Abstract
Plant cells must react to a variety of adverse environmental conditions that they may experience on a regular basis. Part of this response centers around (1) ROS as damaging molecules and signaling molecules; (2) redox status, which can be influenced by ROS production; and (3) availability of metabolites. All of these are also likely to interface with changes in hormone levels [Desikan, R., Hancock, J., Neill, S., 2005. Reactive oxygen species as signalling molecules. In: Smirnoff, N. (ed.), Antioxidants and reactive oxygen species in plants. Blackwell Pub. Ltd., Oxford, pp. 169-196; Kwak, J.M., Nguyen, V., Schroeder, J.I., 2006. The role of reactive oxygen species in hormonal responses. Plant Physiol. 141, 323-329]. Each of these areas can be strongly influenced by changes in mitochondrial function. Such changes trigger altered nuclear gene expression by a poorly understood process of mitochondrial retrograde regulation (MRR), which is likely composed of several distinct signaling pathways. Much of what is known about plant MRR centers around the response to a dysfunctional mtETC and subsequent induction of genes encoding proteins involved in recovery of mitochondrial functions, such as AOX and alternative NAD(P)H dehydrogenases, and genes encoding enzymes aimed at regaining ROS level/redox homeostasis, such as glutathione transferases, catalases, ascorbate peroxidases and superoxide dismutases. However, as evidence of new and interesting targets of MRR emerge, this picture is likely to change and the complexity and importance of MRR in plant responses to stresses and the decision for cells to either recover or switch into programmed cell death mode is likely to become more apparent.
Collapse
Affiliation(s)
- David M Rhoads
- Department of Applied Biological Sciences, Arizona State University, Mesa, AZ 85212, USA.
| | | |
Collapse
|
4
|
Whittall JB, Medina-Marino A, Zimmer EA, Hodges SA. Generating single-copy nuclear gene data for a recent adaptive radiation. Mol Phylogenet Evol 2006; 39:124-34. [PMID: 16314114 DOI: 10.1016/j.ympev.2005.10.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 10/03/2005] [Accepted: 10/06/2005] [Indexed: 11/21/2022]
Abstract
Recent adaptive radiations provide an exceptional opportunity to understand the processes of speciation and adaptation. However, reconstructing the phylogenetic history of recent and rapidly evolving clades often requires the use of multiple, independent gene genealogies. Nuclear introns are an obvious source of the necessary data but their use is often limited because degenerate primers can amplify paralogous loci. To identify PCR primers for a large number of loci in an especially rapid adaptive radiation, that of the flowering plant genus Aquilegia (Ranunculaceae), we developed an efficient method for amplifying multiple single-copy nuclear loci by sequencing a modest number of clones from a cDNA library and designing PCR primers; with one primer anchored in the 3' untranslated region (3'-UTR) and one primer in the coding region of each gene. Variation between paralogous loci evolves more quickly in 3'-UTR regions compared to adjacent exons, and therefore we achieved high specificity for isolating orthologous loci. Furthermore, we were able to identify genes containing large introns by amplifying genes from genomic DNA and comparing the PCR product size to that predicted from their cDNA sequence. In Aquilegia eight out of eleven loci were isolated with this method and six of these loci had introns. Among four genes sequenced for samples spanning the phylogenetic breadth of the genus, we found sequence variation at levels similar to that observed in ITS, further supporting the recent and rapid radiation in Aquilegia. We assessed the orthology of amplification products by phylogenetic congruence among loci, the presence of two well established phylogenetic relationships, and similarity among loci for levels of sequence variation. Higher levels of variation among samples for one locus suggest possible paralogy. Overall, this method provides an efficient means of isolating predominantly single-copy loci from both low and high-copy gene families, providing ample nuclear variation for reconstructing species-level phylogenies in non-model taxa.
Collapse
Affiliation(s)
- Justen B Whittall
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
5
|
Rascón-Cruz Q, Sinagawa-García S, Osuna-Castro JA, Bohorova N, Paredes-López O. Accumulation, assembly, and digestibility of amarantin expressed in transgenic tropical maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 108:335-42. [PMID: 14523523 DOI: 10.1007/s00122-003-1430-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Accepted: 08/12/2003] [Indexed: 05/03/2023]
Abstract
An amaranth ( Amaranthus hypochondriacus) 11S globulin cDNA, encoding one of the most important storage proteins (amarantin) of the seed, with a high content of essential amino acids, was used in the transformation of CIMMYT tropical maize genotype. Constructs contained the amarantin cDNA under the control of a tissue-specific promoter from rice glutelin-1 ( osGT1) or a constitutive ( CaMV 35S) promoter with and without the first maize alcohol dehydrogenase intron ( AdH). Southern-blot analysis confirmed the integration of the amarantin cDNA, and copy number ranged from one to more than ten copies per maize genome. Western-blot and ultracentrifugation analyses of transgenic maize indicate that the expressed recombinant amarantin precursors were processed into the mature form, and accumulated stably in maize endosperm. Total protein and some essential amino acids of the best expressing maize augmented 32% and 8-44%, respectively, compared to non-transformed samples. The soluble expressed proteins were susceptible to digestion by simulated gastric and intestinal fluids, and it is suggested that they show no allergenic activity. These findings demonstrate the feasibility of using genetic engineering to improve the amino acid composition of grain crops.
Collapse
Affiliation(s)
- Q Rascón-Cruz
- Depto. de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 629, 36500, Irapuato, Gto., México
| | | | | | | | | |
Collapse
|
6
|
Lund G, Lauria M, Guldberg P, Zaina S. Duplication-Dependent CG Suppression of the Seed Storage Protein Genes of Maize. Genetics 2003; 165:835-48. [PMID: 14573492 PMCID: PMC1462805 DOI: 10.1093/genetics/165.2.835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
This study investigates the prevalence of CG and CNG suppression in single- vs. multicopy DNA regions of the maize genome. The analysis includes the single- and multicopy seed storage proteins (zeins), the miniature inverted-repeat transposable elements (MITEs), and long terminal repeat (LTR) retrotransposons. Zein genes are clustered on specific chromosomal regions, whereas MITEs and LTRs are dispersed in the genome. The multicopy zein genes are CG suppressed and exhibit large variations in CG suppression. The variation observed correlates with the extent of duplication each zein gene has undergone, indicating that gene duplication results in an increased turnover of cytosine residues. Alignment of individual zein genes confirms this observation and demonstrates that CG depletion results primarily from polarized C:T and G:A transition mutations from a less to a more extensively duplicated gene. In addition, transition mutations occur primarily in a CG or CNG context suggesting that CG suppression may result from deamination of methylated cytosine residues. Duplication-dependent CG depletion is likely to occur at other loci as duplicated MITEs and LTR elements, or elements inserted into duplicated gene regions, also exhibit CG depletion.
Collapse
Affiliation(s)
- Gertrud Lund
- Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, DK-1871 Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
7
|
Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES. Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. THE PLANT CELL 2002; 14:2481-94. [PMID: 12368499 PMCID: PMC151230 DOI: 10.1105/tpc.004747] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2002] [Accepted: 07/11/2002] [Indexed: 05/17/2023]
Abstract
We used DNA microarray technology to identify genes involved in the low-oxygen response of Arabidopsis root cultures. A microarray containing 3500 cDNA clones was screened with cDNA samples taken at various times (0.5, 2, 4, and 20 h) after transfer to low-oxygen conditions. A package of statistical tools identified 210 differentially expressed genes over the four time points. Principal component analysis showed the 0.5-h response to contain a substantially different set of genes from those regulated differentially at the other three time points. The differentially expressed genes included the known anaerobic proteins as well as transcription factors, signal transduction components, and genes that encode enzymes of pathways not known previously to be involved in low-oxygen metabolism. We found that the regulatory regions of genes with a similar expression profile contained similar sequence motifs, suggesting the coordinated transcriptional control of groups of genes by common sets of regulatory factors.
Collapse
Affiliation(s)
- Erik Jan Klok
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chang WW, Huang L, Shen M, Webster C, Burlingame AL, Roberts JK. Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. PLANT PHYSIOLOGY 2000; 122:295-318. [PMID: 10677424 PMCID: PMC58868 DOI: 10.1104/pp.122.2.295] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/1999] [Accepted: 10/25/1999] [Indexed: 04/14/2023]
Abstract
Tolerance of anoxia in maize root tips is greatly improved when seedlings are pretreated with 2 to 4 h of hypoxia. We describe the patterns of protein synthesis during hypoxic acclimation and anoxia. We quantified the incorporation of [(35)S]methionine into total protein and 262 individual proteins under different oxygen tensions. Proteins synthesized most rapidly under normoxic conditions continued to account for most of the proteins synthesized during hypoxic acclimation, while the production of a very few proteins was selectively enhanced. When acclimated root tips were placed under anoxia, protein synthesis was depressed and no "new" proteins were detected. We present evidence that protein synthesis during acclimation, but not during subsequent anoxia, is crucial for acclimation. The complex and quantitative changes in protein synthesis during acclimation necessitate identification of large numbers of individual proteins. We show that mass spectrometry can be effectively used to identify plant proteins arrayed by two-dimensional gel electrophoresis. Of the 48 protein spots analyzed, 46 were identified by matching to the protein database. We describe the expression of proteins involved in a wide range of cellular functions, including previously reported anaerobic proteins, and discuss their possible roles in adaptation of plants to low-oxygen stress.
Collapse
Affiliation(s)
- W W Chang
- Department of Biochemistry, University of California, Riverside, California 92521, USA
| | | | | | | | | | | |
Collapse
|
9
|
Lal SK, Lee C, Sachs MM. Differential regulation of enolase during anaerobiosis in maize. PLANT PHYSIOLOGY 1998; 118:1285-93. [PMID: 9847102 PMCID: PMC34744 DOI: 10.1104/pp.118.4.1285] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/1998] [Accepted: 08/25/1998] [Indexed: 05/18/2023]
Abstract
It was reported previously that enolase enzyme activity and ENO1 transcript levels are induced by anaerobic stress in maize (Zea mays). Here we show that not all isoforms of maize enolase are anaerobically induced. We cloned and sequenced a second enolase cDNA clone (pENO2) from maize. Sequence analysis showed that pENO2 shares 75.6% nucleotide and 89.5% deduced amino acid sequence identity with pENO1 and is encoded by a distinct gene. Expression of ENO2 is constitutive under aerobic conditions, whereas ENO1 levels are induced 10-fold in maize roots after 24 h of anaerobic treatment. Western-blot analysis and N-terminal sequencing of in vivo-labeled maize roots identified two major proteins selectively synthesized upon anaerobic stress as isozymes of enolase. We describe the expression of enolase in maize roots under anaerobic stress.
Collapse
Affiliation(s)
- S K Lal
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
10
|
Russell DA, Fromm ME. Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice. Transgenic Res 1997; 6:157-68. [PMID: 9090063 DOI: 10.1023/a:1018429821858] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The tissue-specific, developmental, and genetic control of four endosperm-active genes was studied via expression of GUS reporter genes in transgenic maize plants. The transgenes included promoters from the maize granule-bound starch synthase (Waxy) gene (zmGBS), a maize 27 kDa zein gene (zmZ27), a rice small subunit ADP-glucose pyrophosphorylase gene (osAGP) and the rice glutelin 1 gene (osGT1). Most plants had a transgene expression profile similar to that of the endogenous gene: expression in the pollen and endosperm for the zmGBS transgene, and endosperm only for the others. Histological analysis indicated expression initiated at the periphery of the endosperm for zmGBS, zmZ27 and osGT1, while osAGP transgene activity tended to start in the lower portion of the seed. Transgene expression at the RNA level was proportional to GUS activity, and did not influence endogenous gene expression. Genetic analysis showed that there was a positive dosage response with most lines. Activity of the zmGBS transgene was threefold higher in a low starch (shrunken 2) genetic background. This effect was not seen with zmZ27 or osGTI transgenes. The expression of the transgenes is discussed relative to the known behaviour of the endogenous genes, and the developmental programme of the maize endosperm.
Collapse
|
11
|
Wilkinson JQ, Lanahan MB, Yen HC, Giovannoni JJ, Klee HJ. An ethylene-inducible component of signal transduction encoded by never-ripe. Science 1995; 270:1807-9. [PMID: 8525371 DOI: 10.1126/science.270.5243.1807] [Citation(s) in RCA: 305] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ripening-impaired tomato mutant Never-ripe (Nr) is insensitive to the plant hormone ethylene. The gene that cosegregates with the Nr locus encodes a protein with homology to the Arabidopsis ethylene receptor ETR1 but is lacking the response regulator domain found in ETR1 and related prokaryotic two-component signal transducers. A single amino acid change in the sensor domain confers ethylene insensitivity when expressed in transgenic tomato plants. Modulation of NR gene expression during fruit ripening controls response to the hormone ethylene.
Collapse
|
12
|
Meyer-Gauen G, Schnarrenberger C, Cerff R, Martin W. Molecular characterization of a novel, nuclear-encoded, NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase in plastids of the gymnosperm Pinus sylvestris L. PLANT MOLECULAR BIOLOGY 1994; 26:1155-66. [PMID: 7811973 DOI: 10.1007/bf00040696] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Angiosperms and algae possess two distinct glyceraldehyde-3-phosphate dehydrogenase (GAPDH) enzymes, an NAD(+)-dependent tetramer involved in cytosolic glycolysis and an NADP(+)-dependent enzyme of the Calvin cycle in chloroplasts. We have found that the gymnosperm Pinus sylvestris possesses, in addition to these, a nuclear-encoded, plastid-specific, NAD(+)-dependent GAPDH, designated GapCp, which has not previously been described from any plant. Several independent full-size cDNAs for this enzyme were isolated which encode a functional transit peptide and mature subunit very similar to that of cytosolic GAPDH of angiosperms and algae. A molecular phylogeny reveals that chloroplast GapCp and cytosolic GapC arose through gene duplication early in chlorophyte evolution. The GapCp gene is expressed as highly as that for GapC in light-grown pine seedlings. These findings suggest that aspects of compartmentalized sugar phosphate metabolism may differ in angiosperms and gymnosperms and furthermore underscore the contributions of endosymbiotic gene transfer and gene duplication to the nuclear complement of genes for enzymes of plant primary metabolism.
Collapse
Affiliation(s)
- G Meyer-Gauen
- Institut für Genetik, Technische Universität Braunschweig, FRG
| | | | | | | |
Collapse
|
13
|
Liaud MF, Valentin C, Brandt U, Bouget FY, Kloareg B, Cerff R. The GAPDH gene system of the red alga Chondrus crispus: promoter structures, intron/exon organization, genomic complexity and differential expression of genes. PLANT MOLECULAR BIOLOGY 1993; 23:981-994. [PMID: 8260635 DOI: 10.1007/bf00021813] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Our previous phylogenetic analysis based on cDNA sequences of chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPDH; genes GapA and GapC, respectively) of the red alga Chondrus crispus suggested that rhodophytes and green plants are sister groups with respect to plastids and mitochondria and diverged at about the same time or somewhat later than animals and fungi. Here we characterize the genomic sequences of genes GapC and GapA of C. crispus with respect to promotor structures, intron/exon organization, genomic complexity, G + C content, CpG suppression and their transcript levels in gametophytes and protoplasts, respectively. To our knowledge this is the first report on nuclear protein genes of red algae. The GapC gene is G + C-rich, contains no introns and displays a number of classic sequence motifs within its promotor region, such as TATA, CAAT, GC boxes and several elements resembling the plant-specific G-box palindrome. The GapA gene has a moderate G+C content, a single CAAT box motif in its promotor region and a single intron of 115 bp near its 5' end. This intron occupies a conserved position corresponding to that of intron 1 in the transit peptide region of chloroplast GAPDH genes (GapA and GapB) of higher plants. It has consensus sequences similar to those of yeast introns and folds into a conspicuous secondary structure of -61.3 kJ. CpG profiles of genes GapC and GapA and their flanking sequences show no significant CpG depletion suggesting that these genomic sequences are not methylated. Genomic Southern blots hybridized with generic and gene specific probes indicate that both genes are encoded by single loci composed of multiple polymorphic alleles. Northern hybridizations demonstrate that both genes are expressed in gametophytes but not in protoplasts where appreciable amounts of transcripts can only be detected for GapC.
Collapse
Affiliation(s)
- M F Liaud
- Institut für Genetik, Universität Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Peschke VM, Sachs MM. Multiple pyruvate decarboxylase genes in maize are induced by hypoxia. MOLECULAR & GENERAL GENETICS : MGG 1993; 240:206-12. [PMID: 8102778 DOI: 10.1007/bf00277058] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two cDNA clones corresponding to anaerobically induced maize mRNAs were found to have homology to a previously identified maize pyruvate decarboxylase gene. DNA sequencing and RFLP mapping indicate that these cDNAs represent two additional maize pdc genes. Each of the clones is approximately 85% identical in predicted amino acid sequence to the other two. All three clones are induced by hypoxic stress, but with different levels and kinetics of induction.
Collapse
Affiliation(s)
- V M Peschke
- Department of Biology, Washington University, St. Louis, MO 63130
| | | |
Collapse
|
15
|
Ridder R, Osiewacz HD. Sequence analysis of the gene coding for glyceraldehyde-3-phosphate dehydrogenase (gpd) of Podospora anserina: use of homologous regulatory sequences to improve transformation efficiency. Curr Genet 1992; 21:207-13. [PMID: 1563046 DOI: 10.1007/bf00336843] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The glyceraldehyde-3-phosphate dehydrogenase (gpd) gene of Podospora anserina has been isolated from a genomic library by heterologous hybridization with the corresponding gene of Curvularia lunata. The coding region consists of 1014 nucleotides and is interrupted by a single intron. The amino-acid sequence encoded by the gpd gene shows a high degree of sequence identity with the corresponding gene products of various fungi. Multiple alignments of all fungal GPD sequences so far available resulted in the construction of a phylogenetic tree. The evolutionary relationships of the various fungi belonging to different taxa will be discussed on the basis of these data. Sequence analysis of 1.9 kbp of the 5' non-coding region revealed the presence of typical fungal promoter elements. Utilizing different parts of the 5' regulatory sequence of the Podospora gpd gene, expression vectors containing a dominant selectable marker gene (hygromycin B phosphotransferase) have been constructed for the transformation of P. anserina protoplasts. The use of these homologous gpd regulatory sequences resulted in a significant increase in transformation efficiencies compared to those obtained with vectors in which the selectable marker gene is under the control of the corresponding heterologous promoter of Aspergillus nidulans.
Collapse
Affiliation(s)
- R Ridder
- Abteilung: Molekularbiologie der Alterungsprozesse, Deutsches Krebsforschungszentrum, Heidelberg, Federal Republic of Germany
| | | |
Collapse
|