1
|
Ghimire P, Motamedi M, Joh R. Mathematical model for the role of multiple pericentromeric repeats on heterochromatin assembly. PLoS Comput Biol 2024; 20:e1012027. [PMID: 38598558 PMCID: PMC11034663 DOI: 10.1371/journal.pcbi.1012027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/22/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Although the length and constituting sequences for pericentromeric repeats are highly variable across eukaryotes, the presence of multiple pericentromeric repeats is one of the conserved features of the eukaryotic chromosomes. Pericentromeric heterochromatin is often misregulated in human diseases, with the expansion of pericentromeric repeats in human solid cancers. In this article, we have developed a mathematical model of the RNAi-dependent methylation of H3K9 in the pericentromeric region of fission yeast. Our model, which takes copy number as an explicit parameter, predicts that the pericentromere is silenced only if there are many copies of repeats. It becomes bistable or desilenced if the copy number of repeats is reduced. This suggests that the copy number of pericentromeric repeats alone can determine the fate of heterochromatin silencing in fission yeast. Through sensitivity analysis, we identified parameters that favor bistability and desilencing. Stochastic simulation shows that faster cell division and noise favor the desilenced state. These results show the unexpected role of pericentromeric repeat copy number in gene silencing and provide a quantitative basis for how the copy number allows or protects repetitive and unique parts of the genome from heterochromatin silencing, respectively.
Collapse
Affiliation(s)
- Puranjan Ghimire
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Mo Motamedi
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, Boston, Massachusetts, United States of America
| | - Richard Joh
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond Virginia, United States of America
| |
Collapse
|
2
|
Santana-Sosa S, Matos-Perdomo E, Ayra-Plasencia J, Machín F. A Yeast Mitotic Tale for the Nucleus and the Vacuoles to Embrace. Int J Mol Sci 2023; 24:9829. [PMID: 37372977 DOI: 10.3390/ijms24129829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The morphology of the nucleus is roughly spherical in most eukaryotic cells. However, this organelle shape needs to change as the cell travels through narrow intercellular spaces during cell migration and during cell division in organisms that undergo closed mitosis, i.e., without dismantling the nuclear envelope, such as yeast. In addition, the nuclear morphology is often modified under stress and in pathological conditions, being a hallmark of cancer and senescent cells. Thus, understanding nuclear morphological dynamics is of uttermost importance, as pathways and proteins involved in nuclear shaping can be targeted in anticancer, antiaging, and antifungal therapies. Here, we review how and why the nuclear shape changes during mitotic blocks in yeast, introducing novel data that associate these changes with both the nucleolus and the vacuole. Altogether, these findings suggest a close relationship between the nucleolar domain of the nucleus and the autophagic organelle, which we also discuss here. Encouragingly, recent evidence in tumor cell lines has linked aberrant nuclear morphology to defects in lysosomal function.
Collapse
Affiliation(s)
- Silvia Santana-Sosa
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Emiliano Matos-Perdomo
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Jessel Ayra-Plasencia
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Félix Machín
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
- Faculty of Health Sciences, Fernando Pessoa Canarias University, 35450 Santa María de Guía, Spain
| |
Collapse
|
3
|
Assembly of Schizosaccharomyces cryophilus chromosomes and their comparative genomic analyses revealed principles of genome evolution of the haploid fission yeasts. Sci Rep 2018; 8:14629. [PMID: 30279451 PMCID: PMC6168568 DOI: 10.1038/s41598-018-32525-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/10/2018] [Indexed: 11/23/2022] Open
Abstract
The fission yeast clade, which has a distinct life history from other yeasts, can provide important clues about evolutionary changes. To reveal these changes the large S. cryophilus supercontigs were assembled into chromosomes using synteny relationships and the conserved pericentromeric, subtelomeric genes. Togetherness of the supercontigs was confirmed by PCR. Investigation of the gene order revealed localisation of the rDNA arrays, more than 300 new conserved orthologues and proved that S. cryophilus supercontigs were mosaics of collinear blocks. PFGE analysis showed that size of the S. cryophilus chromosomes differ from the S. pombe chromosomes. Comparative genomic analyses of the newly assembled chromosomes confirmed that the closest relative of S. cryophilus was S. octosporus not just in sequence similarity but also in a structural way, and revealed that preservation of the conserved regions did not arise from the lower number of chromosomal rearrangements. Translocations were more typical in the closely related species, while the number of inversions increased with the phylogenetic distances. Our data suggested that sites of the chromosomal rearrangements were not random and often associated with repetitive sequences, structural- and nucleotide evolution might correlate. Chromosomal rearrangements of the fission yeasts compared to other lineages were also discussed.
Collapse
|
4
|
Affiliation(s)
- Frank N. Martin
- Plant Pathology Department, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
5
|
Lu KL, Nelson JO, Watase GJ, Warsinger-Pepe N, Yamashita YM. Transgenerational dynamics of rDNA copy number in Drosophila male germline stem cells. eLife 2018; 7:32421. [PMID: 29436367 PMCID: PMC5811208 DOI: 10.7554/elife.32421] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/19/2018] [Indexed: 02/02/2023] Open
Abstract
rDNA loci, composed of hundreds of tandemly duplicated arrays of rRNA genes, are known to be among the most unstable genetic elements due to their repetitive nature. rDNA instability underlies aging (replicative senescence) in yeast cells, however, its contribution to the aging of multicellular organisms is poorly understood. In this study, we investigate the dynamics of rDNA loci during aging in the Drosophila male germline stem cell (GSC) lineage, and show that rDNA copy number decreases during aging. Our study further reveals that this age-dependent decrease in rDNA copy number is heritable from generation to generation, yet GSCs in young animals that inherited reduced rDNA copy number are capable of recovering normal rDNA copy number. Based on these findings, we propose that rDNA loci are dynamic genetic elements, where rDNA copy number changes dynamically yet is maintained through a recovery mechanism in the germline.
Collapse
Affiliation(s)
- Kevin L Lu
- Life Sciences Institute, University of Michigan, Ann Arbor, United States.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, United States.,Medical Scientist Training Program, University of Michigan, Ann Arbor, United States
| | - Jonathan O Nelson
- Life Sciences Institute, University of Michigan, Ann Arbor, United States.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| | - George J Watase
- Life Sciences Institute, University of Michigan, Ann Arbor, United States.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| | - Natalie Warsinger-Pepe
- Life Sciences Institute, University of Michigan, Ann Arbor, United States.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Yukiko M Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, United States.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, United States.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
6
|
Peng XP, Lim S, Li S, Marjavaara L, Chabes A, Zhao X. Acute Smc5/6 depletion reveals its primary role in rDNA replication by restraining recombination at fork pausing sites. PLoS Genet 2018; 14:e1007129. [PMID: 29360860 PMCID: PMC5779651 DOI: 10.1371/journal.pgen.1007129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/27/2017] [Indexed: 11/18/2022] Open
Abstract
Smc5/6, a member of the conserved SMC family of complexes, is essential for growth in most organisms. Its exact functions in a mitotic cell cycle are controversial, as chronic Smc5/6 loss-of-function alleles produce varying phenotypes. To circumvent this issue, we acutely depleted Smc5/6 in budding yeast and determined the first cell cycle consequences of Smc5/6 removal. We found a striking primary defect in replication of the ribosomal DNA (rDNA) array. Each rDNA repeat contains a programmed replication fork barrier (RFB) established by the Fob1 protein. Fob1 removal improves rDNA replication in Smc5/6 depleted cells, implicating Smc5/6 in the management of programmed fork pausing. A similar improvement is achieved by removing the DNA helicase Mph1 whose recombinogenic activity can be inhibited by Smc5/6 under DNA damage conditions. DNA 2D gel analyses further show that Smc5/6 loss increases recombination structures at RFB regions; moreover, mph1∆ and fob1∆ similarly reduce this accumulation. These findings point to an important mitotic role for Smc5/6 in restraining recombination events when protein barriers in rDNA stall replication forks. As rDNA maintenance influences multiple essential cellular processes, Smc5/6 likely links rDNA stability to overall mitotic growth. Smc5/6 belongs to the SMC (Structural Maintenance of Chromosomes) family of protein complexes, all of which are highly conserved and critical for genome maintenance. To address the roles of Smc5/6 during growth, we rapidly depleted its subunits in yeast and found the main acute effect to be defective ribosomal DNA (rDNA) duplication. The rDNA contains hundreds of sites that can pause replication forks; these must be carefully managed for cells to finish replication. We found that reducing fork pausing improved rDNA replication in cells without Smc5/6. Further analysis suggested that Smc5/6 prevents the DNA helicase Mph1 from turning paused forks into recombination structures, which cannot be processed without Smc5/6. Our findings thus revealed a key role for Smc5/6 in managing endogenous replication fork pausing. As rDNA and its associated nucleolar structure are critical for overall genome maintenance and other cellular processes, rDNA regulation by Smc5/6 would be expected to have multilayered effects on cell physiology and growth.
Collapse
Affiliation(s)
- Xiao P. Peng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- Tri-Institutional MD-PhD Program of Weill Cornell Medical School, Rockefeller University, and Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - Shelly Lim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Shibai Li
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Lisette Marjavaara
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
7
|
rDNA Copy Number Variants Are Frequent Passenger Mutations in Saccharomyces cerevisiae Deletion Collections and de Novo Transformants. G3-GENES GENOMES GENETICS 2016; 6:2829-38. [PMID: 27449518 PMCID: PMC5015940 DOI: 10.1534/g3.116.030296] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Saccharomyces cerevisiae ribosomal DNA (rDNA) locus is known to exhibit greater instability relative to the rest of the genome. However, wild-type cells preferentially maintain a stable number of rDNA copies, suggesting underlying genetic control of the size of this locus. We performed a screen of a subset of the Yeast Knock-Out (YKO) single gene deletion collection to identify genetic regulators of this locus and to determine if rDNA copy number correlates with yeast replicative lifespan. While we found no correlation between replicative lifespan and rDNA size, we identified 64 candidate strains with significant rDNA copy number differences. However, in the process of validating candidate rDNA variants, we observed that independent isolates of our de novo gene deletion strains had unsolicited but significant changes in rDNA copy number. Moreover, we were not able to recapitulate rDNA phenotypes from the YKO yeast deletion collection. Instead, we found that the standard lithium acetate transformation protocol is a significant source of rDNA copy number variation, with lithium acetate exposure being the treatment causing variable rDNA copy number events after transformation. As the effects of variable rDNA copy number are being increasingly reported, our finding that rDNA is affected by lithium acetate exposure suggested that rDNA copy number variants may be influential passenger mutations in standard strain construction in S. cerevisiae.
Collapse
|
8
|
Yang J, Li F. Are all repeats created equal? Understanding DNA repeats at an individual level. Curr Genet 2016; 63:57-63. [PMID: 27260214 DOI: 10.1007/s00294-016-0619-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/24/2023]
Abstract
Repetitive DNA sequences, comprising up to 50 % of the genome in all eukaryotes, play important roles in a wide range of cellular functions, such as transcriptional regulation, genome stability, and cellular differentiation. However, due to technical difficulties in differentiating their sequences, DNA repeats remain one of the most mysterious parts of eukaryotic genomes. Key questions, such as how repetitive entities behave at individual level and how the internal architecture of these repeats is organized, are still poorly understood. Recent advances from our group reveal unexpected position-dependent variation within tandem DNA repeats in fission yeast. Despite sharing identical DNA sequences, the peri-centromeric repeats are organized into diverse epigenetic states and chromatin structures. We demonstrate that this position-dependent variation requires key heterochromatin factors and condensin. Our works further suggest that the peri-centromeric repeats are organized into distinct higher order structures that ensure a proper positioning of CENP-A, the centromere-specific histone H3 variant, to centromeres. These most recent developments offer insights into the mechanisms underlying the position effect within tandem DNA arrays, and have broad implications in the field of epigenetics and chromatin biology.
Collapse
Affiliation(s)
- Jinpu Yang
- Department of Biology, New York University, New York, NY, 10003, USA
| | - Fei Li
- Department of Biology, New York University, New York, NY, 10003, USA. .,1009 Silver Center, 100 Washington Square East, New York, NY, 10003-6688, USA.
| |
Collapse
|
9
|
Bilodeau GJ, Martin FN, Coffey MD, Blomquist CL. Development of a multiplex assay for genus- and species-specific detection of Phytophthora based on differences in mitochondrial gene order. PHYTOPATHOLOGY 2014; 104:733-748. [PMID: 24915428 DOI: 10.1094/phyto-09-13-0263-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A molecular diagnostic assay for Phytophthora spp. that is specific, sensitive, has both genus- and species-specific detection capabilities multiplexed, and can be used to systematically develop markers for detection of a wide range of species would facilitate research and regulatory efforts. To address this need, a marker system was developed based on the high copy sequences of the mitochondrial DNA utilizing gene orders that were highly conserved in the genus Phytophthora but different in the related genus Pythium and plants to reduce the importance of highly controlled annealing temperatures for specificity. An amplification primer pair designed from conserved regions of the atp9 and nad9 genes produced an amplicon of ≈340 bp specific for the Phytophthora spp. tested. The TaqMan probe for the genus-specific Phytophthora test was designed from a conserved portion of the atp9 gene whereas variable intergenic spacer sequences were used for designing the species-specific TaqMan probes. Specific probes were developed for 13 species and the P. citricola species complex. In silico analysis suggests that species-specific probes could be developed for at least 70 additional described and provisional species; the use of locked nucleic acids in TaqMan probes should expand this list. A second locus spanning three tRNAs (trnM-trnP-trnM) was also evaluated for genus-specific detection capabilities. At 206 bp, it was not as useful for systematic development of a broad range of species-specific probes as the larger 340-bp amplicon. All markers were validated against a test panel that included 87 Phytophthora spp., 14 provisional Phytophthora spp., 29 Pythium spp., 1 Phytopythium sp., and 39 plant species. Species-specific probes were validated further against a range of geographically diverse isolates to ensure uniformity of detection at an intraspecific level, as well as with other species having high levels of sequence similarity to ensure specificity. Both diagnostic assays were also validated against 130 environmental samples from a range of hosts. The only limitation observed was that primers for the 340 bp atp9-nad9 locus did not amplify Phytophthora bisheria or P. frigida. The identification of species present in a sample can be determined without the need for culturing by sequencing the genus-specific amplicon and comparing that with a reference sequence database of known Phytophthora spp.
Collapse
|
10
|
Albert B, Mathon J, Shukla A, Saad H, Normand C, Léger-Silvestre I, Villa D, Kamgoue A, Mozziconacci J, Wong H, Zimmer C, Bhargava P, Bancaud A, Gadal O. Systematic characterization of the conformation and dynamics of budding yeast chromosome XII. ACTA ACUST UNITED AC 2013; 202:201-10. [PMID: 23878273 PMCID: PMC3718979 DOI: 10.1083/jcb.201208186] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromosomes architecture is viewed as a key component of gene regulation, but principles of chromosomal folding remain elusive. Here we used high-throughput live cell microscopy to characterize the conformation and dynamics of the longest chromosome of Saccharomyces cerevisiae (XII). Chromosome XII carries the ribosomal DNA (rDNA) that defines the nucleolus, a major hallmark of nuclear organization. We determined intranuclear positions of 15 loci distributed every ~100 kb along the chromosome, and investigated their motion over broad time scales (0.2-400 s). Loci positions and motions, except for the rDNA, were consistent with a computational model of chromosomes based on tethered polymers and with the Rouse model from polymer physics, respectively. Furthermore, rapamycin-dependent transcriptional reprogramming of the genome only marginally affected the chromosome XII internal large-scale organization. Our comprehensive investigation of chromosome XII is thus in agreement with recent studies and models in which long-range architecture is largely determined by the physical principles of tethered polymers and volume exclusion.
Collapse
Affiliation(s)
- Benjamin Albert
- Laboratoire de Biologie Moléculaire des Eucaryotes du Centre National de la Recherche Scientifique, Université de Toulouse, F-31000 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Budding yeast, like other eukaryotes, carries its genetic information on chromosomes that are sequestered from other cellular constituents by a double membrane, which forms the nucleus. An elaborate molecular machinery forms large pores that span the double membrane and regulate the traffic of macromolecules into and out of the nucleus. In multicellular eukaryotes, an intermediate filament meshwork formed of lamin proteins bridges from pore to pore and helps the nucleus reform after mitosis. Yeast, however, lacks lamins, and the nuclear envelope is not disrupted during yeast mitosis. The mitotic spindle nucleates from the nucleoplasmic face of the spindle pole body, which is embedded in the nuclear envelope. Surprisingly, the kinetochores remain attached to short microtubules throughout interphase, influencing the position of centromeres in the interphase nucleus, and telomeres are found clustered in foci at the nuclear periphery. In addition to this chromosomal organization, the yeast nucleus is functionally compartmentalized to allow efficient gene expression, repression, RNA processing, genomic replication, and repair. The formation of functional subcompartments is achieved in the nucleus without intranuclear membranes and depends instead on sequence elements, protein-protein interactions, specific anchorage sites at the nuclear envelope or at pores, and long-range contacts between specific chromosomal loci, such as telomeres. Here we review the spatial organization of the budding yeast nucleus, the proteins involved in forming nuclear subcompartments, and evidence suggesting that the spatial organization of the nucleus is important for nuclear function.
Collapse
|
12
|
Martin FN, Abad ZG, Balci Y, Ivors K. Identification and Detection of Phytophthora: Reviewing Our Progress, Identifying Our Needs. PLANT DISEASE 2012; 96:1080-1103. [PMID: 30727075 DOI: 10.1094/pdis-12-11-1036-fe] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With the increased attention given to the genus Phytophthora in the last decade in response to the ecological and economic impact of several invasive species (such as P. ramorum, P. kernoviae, and P. alni), there has been a significant increase in the number of described species. In part, this is due to the extensive surveys in historically underexplored ecosystems (e.g., forest and stream ecosystems) undertaken to determine the spread of invasive species and the involvement of Phytophthora species in forest decline worldwide (e.g., oak decline). The past decade has seen an approximate doubling in the number of described species within the genus Phytophthora, and the number will likely continue to increase as more surveys are completed and greater attention is devoted to clarifying phylogenetic relationships and delineating boundaries in species complexes. The development of molecular resources, the availability of credible sequence databases to simplify identification of new species, and the sequencing of several genomes have provided a solid framework to gain a better understanding of the biology, diversity, and taxonomic relationships within the genus. This information is much needed considering the impact invasive or exotic Phytophthora species have had on natural ecosystems and the regulatory issues associated with their management. While this work is improving our ability to identify species based on phylogenetic grouping, it has also revealed that the genus has a much greater diversity than previously appreciated.
Collapse
Affiliation(s)
- Frank N Martin
- USDA, ARS, Crop Improvement and Protection Research Unit, Salinas, CA
| | - Z Gloria Abad
- USDA, APHIS, PPQ, Center for Plant Health Science and Technology (CPHST), Beltsville Laboratory, MD
| | - Yilmaz Balci
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD
| | - Kelly Ivors
- Department of Plant Pathology, NC State University, Mountain Hort. Crops Research & Extension Center, Mills River, NC
| |
Collapse
|
13
|
Bilodeau GJ, Koike ST, Uribe P, Martin FN. Development of an assay for rapid detection and quantification of Verticillium dahliae in soil. PHYTOPATHOLOGY 2012; 102:331-43. [PMID: 22066673 DOI: 10.1094/phyto-05-11-0130] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
ABSTRACT Verticillium dahliae is responsible for Verticillium wilt on a wide range of hosts, including strawberry, on which low soil inoculum densities can cause significant crop loss. Determination of inoculum density is currently done by soil plating but this can take 6 to 8 weeks to complete and delay the grower's ability to make planting decisions. To provide a faster means for estimating pathogen populations in the soil, a multiplexed TaqMan real-time polymerase chain reaction (PCR) assay based on the ribosomal DNA (rDNA) intergenic spacer (IGS) was developed for V. dahliae. The assay was specific for V. dahliae and included an internal control for evaluation of inhibition due to the presence of PCR inhibitors in DNA extracted from soil samples. An excellent correlation was observed in regression analysis (R(2) = 0.96) between real-time PCR results and inoculum densities determined by soil plating in a range of field soils with pathogen densities as low as 1 to 2 microsclerotia/g of soil. Variation in copy number of the rDNA was also evaluated among isolates by SYBR Green real-time PCR amplification of the V. dahliae-specific amplicon compared with amplification of several single-copy genes and was estimated to range from ≈24 to 73 copies per haploid genome, which translated into possible differences in results among isolates of ≈1.8 cycle thresholds. Analysis of the variation in results of V. dahliae quantification among extractions of the same soil sample indicated that assaying four replicate DNA extractions for each field sample would provide accurate results. A TaqMan assay also was developed to help identify colonies of V. tricorpus on soil plates.
Collapse
Affiliation(s)
- Guillaume J Bilodeau
- United States Department of Agriculture-Agricultural Research Service, Salinas, CA 93905, USA
| | | | | | | |
Collapse
|
14
|
Wang Y, Hao B, Zhang Q, Tuo E, Sun G, Zhang R, Jin S, Zhu M, Wang Y, Hsiang T. Discovery of multiple IGS haplotypes within genotypes of Puccinia striiformis. Fungal Biol 2012; 116:522-8. [PMID: 22483050 DOI: 10.1016/j.funbio.2012.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 02/02/2012] [Accepted: 02/05/2012] [Indexed: 10/28/2022]
Abstract
In a search for specific molecular markers for population analysis of Puccinia striiformis f. sp. tritici, the ribosomal DNA (rDNA) intergenic spacer (IGS) 1 region (rDNA-IGS1, between the 28S and the 5S rDNA genes) was amplified, cloned, and sequenced. It was found to exhibit multiple bands and length polymorphism. Surprisingly, single isolates were found to possess between three to five different IGS1 haplotypes. Bands were cloned and sequenced, and two highly variable regions (α and β) were found between conserved regions, with repeat units interspersed in both types of regions. There were 14 different repeat units, and these were sometimes grouped further into four combinations of repeat units, with a few individual nucleotides (A or C) inserted between the repeats. Among three geographically dispersed isolates, the variable region α was divided into eight types, and the variable region β was divided into two types based on repeat units. Most of the 14 repeat units were shared by the variable and the conserved regions. Among the three isolates, there were a total of 12 IGS1 haplotypes, but some of these were shared between isolates such that there were only eight unique haplotypes. The occurrence of multiple haplotypes within single isolates may be useful for analyzing the population structure, tracking the origin of annual epidemics and providing insights into evolutionary biology of this pathogen.
Collapse
Affiliation(s)
- Yanchun Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lindner DL, Banik MT. Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and inflates estimates of operational taxonomic units in genus Laetiporus. Mycologia 2011; 103:731-40. [PMID: 21289107 DOI: 10.3852/10-331] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Regions of rDNA are commonly used to infer phylogenetic relationships among fungal species and as DNA barcodes for identification. These regions occur in large tandem arrays, and concerted evolution is believed to reduce intragenomic variation among copies within these arrays, although some variation still might exist. Phylogenetic studies typically use consensus sequencing, which effectively conceals most intragenomic variation, but cloned sequences containing intragenomic variation are becoming prevalent in DNA databases. To understand effects of using cloned rDNA sequences in phylogenetic analyses we amplified and cloned the ITS region from pure cultures of six Laetiporus species and one Wolfiporia species (Basidiomycota, Polyporales). An average of 66 clones were selected randomly and sequenced from 21 cultures, producing a total of 1399 interpretable sequences. Significant variation (≥ 5% variation in sequence similarity) was observed among ITS copies within six cultures from three species clades (L. cincinnatus, L. sp. clade J, and Wolfiporia dilatohypha) and phylogenetic analyses with the cloned sequences produced different trees relative to analyses with consensus sequences. Cloned sequences from L. cincinnatus fell into more than one species clade and numerous cloned L. cincinnatus sequences fell into entirely new clades, which if analyzed on their own most likely would be recognized as "undescribed" or "novel" taxa. The use of a 95% cut off for defining operational taxonomic units (OTUs) produced seven Laetiporus OTUs with consensus ITS sequences and 20 OTUs with cloned ITS sequences. The use of cloned rDNA sequences might be problematic in fungal phylogenetic analyses, as well as in fungal bar-coding initiatives and efforts to detect fungal pathogens in environmental samples.
Collapse
Affiliation(s)
- Daniel L Lindner
- US Forest Service, Northern Research Station, Center for Forest Mycology Research, One Gifford Pinchot Drive, Madison, Wisconsin 53726, USA.
| | | |
Collapse
|
16
|
Anders A, Watt S, Bähler J, Sawin KE. Improved tools for efficient mapping of fission yeast genes: identification of microtubule nucleation modifier mod22-1 as an allele of chromatin- remodelling factor gene swr1. Yeast 2009; 25:913-25. [PMID: 19160458 PMCID: PMC2964509 DOI: 10.1002/yea.1639] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Fission yeast genes identified in genetic screens are usually cloned by transformation of mutants with plasmid libraries. However, for some genes this can be difficult, and positional cloning approaches are required. The mutation swi5-39 reduces recombination frequency in homozygous crosses and has been used as a tool in mapping gene position (Schmidt, 1993). However, strain construction in swi5-39-based mapping is significantly more laborious than is desirable. Here we describe a set of strains designed to make swi5-based mapping more efficient and more powerful. The first improvement is the use of a swi5Δ strain marked with kanamycin (G418) resistance, which greatly facilitates identification of swi5 mutants. The second improvement, which follows directly from the first, is the introduction of a large number of auxotrophic markers into mapping strains, increasing the likelihood of finding close linkage between a marker and the mutation of interest. We combine these new mapping strains with a rec12Δ-based approach for initial mapping of a mutation to an individual chromosome. Together, the two methods allow an approximate determination of map position in only a small number of crosses. We used these to determine that mod22-1, a modifier of microtubule nucleation phenotypes, encodes a truncation allele of Swr1, a chromatin-remodelling factor involved in nucleosomal deposition of H2A.Z histone variant Pht1. Expression microarray analysis of mod22-1, swr1Δ and pht1Δ cells suggests that the modifier phenotype of mod22-1 mutants may be due to small changes in expression of one or more genes involved in tubulin function. Copyright © 2009 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andreas Anders
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
17
|
Redundant roles of Srs2 helicase and replication checkpoint in survival and rDNA maintenance in Schizosaccharomyces pombe. Mol Genet Genomics 2009; 281:497-509. [PMID: 19205745 DOI: 10.1007/s00438-009-0426-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 01/10/2009] [Indexed: 10/21/2022]
Abstract
Srs2 helicase is believed to function as an anti-recombinase by resolving inappropriate Rad51-DNA filament. We found synthetic lethality or poor growth of srs2 with rad3 or mrc1 in Schizosaccharomyces pombe. Lethality may result from a defect in non-checkpoint function of Rad3 or Mrc1 in the absence of Srs2, because srs2 rad9, srs2 chk1 cds1 or srs2 mrc1-14A (non-phosphorylatable mrc1 allele) did not show significant growth impairment. Notably, the inactivation of rhp51/RAD51 or rad22/RAD52 failed to rescue the growth, suggesting that events that impose lethality are independent of homologous recombination. Incubation of the conditional srs2 rad3 ( ts ) cells at restrictive temperature led not only to a viability decrease but also to a remarkable shortening of rDNA clusters (approximately 100 copies). As opposed to the growth defect, shortening of rDNA clusters was also observed in srs2 rad9, srs2 chk1 cds1 or srs2 mrc1-14A, indicating that proper replication checkpoint signaling is critical for rDNA maintenance. Activation of Chk1 in the unchallenged mrc1-14A srs2 cells implies a certain level of spontaneous fork damage that might be the cause for rDNA instability. The data suggest that redundant functions of Srs2 and checkpoint proteins are essential for two independent aspects of genome maintenance.
Collapse
|
18
|
Simon UK, Weiss M. Intragenomic variation of fungal ribosomal genes is higher than previously thought. Mol Biol Evol 2008; 25:2251-4. [PMID: 18728073 DOI: 10.1093/molbev/msn188] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nuclear ribosomal genes in most eukaryotes are present in multiple copies and often used for taxonomic and phylogenetic analyses. We comprehensively examined intragenomic polymorphism levels of three nuclear ribosomal loci for four important plant pathogenic fungi by polymerase chain reaction amplification and cloning. Here, we show that single nucleotide polymorphisms are present in an unexpectedly high amount. This might have implications for studies of fungal evolution, phylogenetics, and population genetics. Furthermore, our work demonstrates that the majority of all ribosomal sequences obtained from one individual and gene is identical to the majority rule consensus sequence of all detected sequence variants. Due to the large number of polymorphisms found and the fact that the polymorphism level differed markedly even between ribosomal genes of one and the same individual, we assume that nuclear ribosomal genes might not always evolve in a strictly concerted manner.
Collapse
Affiliation(s)
- Uwe K Simon
- Lehrstuhl für Pharmazeutische Biologie, Universität Würzburg, Würzburg, Germany.
| | | |
Collapse
|
19
|
Genetic and physiological alterations occurring in a yeast population continuously propagated at increasing temperatures with cell recycling. World J Microbiol Biotechnol 2007; 23:1667. [DOI: 10.1007/s11274-007-9414-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
|
20
|
Motovali-Bashi M, Hojati Z, Walmsley RM. Unequal sister chromatid exchange in the rDNA array of Saccharomyces cerevisiae. Mutat Res 2005; 564:129-37. [PMID: 15507377 DOI: 10.1016/j.mrgentox.2004.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 07/05/2004] [Accepted: 08/06/2004] [Indexed: 11/20/2022]
Abstract
In the yeast Saccharomyces cerevisiae the nucleolar organiser region (NOR) is located on chromosome XII. It contains 100-200 copies of rDNA--a minimum of 20 rDNA genes in tandem--and is termed the RDN locus. Yeast cells may exist in either haploid or diploid form. There are two forms of life cycle: haploid and diploid cells double by mitosis, and diploid cells are reduced to the haploid state by meiosis. Diploid cells have two homologous chromosomes for each of the 16 chromosomes. They are usually of the same size. However, in this study it is shown that homologous chromosomes XII can become different in size due to unequal sister chromatid exchange during mitosis in 'old' cells.
Collapse
Affiliation(s)
- M Motovali-Bashi
- Genetics group, Biology Department, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | | | | |
Collapse
|
21
|
Sánchez-Gorostiaga A, López-Estraño C, Krimer DB, Schvartzman JB, Hernández P. Transcription termination factor reb1p causes two replication fork barriers at its cognate sites in fission yeast ribosomal DNA in vivo. Mol Cell Biol 2004; 24:398-406. [PMID: 14673172 PMCID: PMC303360 DOI: 10.1128/mcb.24.1.398-406.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polar replication fork barriers (RFBs) near the 3' end of the rRNA transcriptional unit are a conserved feature of ribosomal DNA (rDNA) replication in eukaryotes. In the mouse, in vivo studies indicate that the cis-acting Sal boxes required for rRNA transcription termination are also involved in replication fork blockage. On the contrary, in the budding yeast Saccharomyces cerevisiae, the rRNA transcription termination factors are not required for RFBs. Here we characterized the rDNA RFBs in the fission yeast Schizosaccharomyces pombe. S. pombe rDNA contains three closely spaced polar replication barriers named RFB1, RFB2, and RFB3 in the 3' to 5' order. The transcription termination protein reb1 and its two binding sites, present at the 3' end of the coding region, were required for fork arrest at RFB2 and RFB3 in vivo. On the other hand, fork arrest at the strongest RFB1 barrier was independent of the above transcription termination factors. Therefore, RFB2 and RFB3 resemble the barriers present in the mouse rDNA, whereas RFB1 is similar to the budding yeast RFBs. These results suggest that during evolution, cis- and trans-acting factors required for rRNA transcription termination became involved in replication fork blockage also. S. pombe is suggested to be a transitional species in which both mechanisms coexist.
Collapse
Affiliation(s)
- Alicia Sánchez-Gorostiaga
- Departamento de Biología Celular y del Desarrollo, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
22
|
Carro D, Piña B. Genetic analysis of the karyotype instability in natural wine yeast strains. Yeast 2001; 18:1457-70. [PMID: 11748723 DOI: 10.1002/yea.789] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Yeast strains isolated from the wild may show high rates of changes in their karyotypes during vegetative growth. We analysed over 500 karyotypes from mitotic and meiotic derivatives of strain DC5, which has a chromosome rearrangement rate of 8.2 x 10(-3) changes/generation. About 70% of the meiotic derivatives of DC5 had low rearrangement rates, with an average of 5.8 x 10(-4) changes/generation, suggesting that karyotype instability behaved as a dominant phenotype. Diploid derivatives with low karyotype variability in mitosis also had low rates of chromosomal rearrangement during meiosis, suggesting that the two phenotypes may be linked. DC5 and some of its meiotic derivatives (both with high and low karyotype variability) had chromosome XII hypervariable bands. Their distribution among the meiotic products indicates that they are not indicators for genetic instability. To our knowledge, data in this paper are the first to indicate that karyotypically unstable yeast strains may give stable progeny at high rates. Understanding of the relevant mechanism(s) may allow the design of genetic strategies to stabilize karyotypes from natural and/or industrial wine yeasts with unacceptable karyotype rearrangement rates.
Collapse
Affiliation(s)
- D Carro
- Institut de Biologia Molecular de Barcelona, Centre d'Investigació i Desenvolupament, Consejo Superior de Investigaciones Científicas, Jordi Girona 18, 08034 Barcelona, Spain
| | | |
Collapse
|
23
|
Abstract
The NSR1 gene product is involved in ribosomal RNA production and ribosome assembly in Saccharomyces cerevisiae. Yeast strains carrying a deletion of the NSR1 gene have a defect in rRNA processing, an aberrant ribosome profile and are sensitive to the drug paromomycin. This paper reports the isolation and characterization of spontaneous suppressors of the paromomycin sensitivity. Such suppressors could be isolated at very high frequency and do not exhibit straightforward single-gene inheritance patterns. The suppressors are not influenced by non-Mendelian factors such as psi or rho. Through a replacement of chromosomal rDNA with a plasmid rDNA system, I show that suppression of paromomycin sensitivity is mediated by rDNA. Swapping wild-type plasmid rDNA for chromosomal rDNA can reverse the suppression, but the effect does not appear to be due to amplification of rDNA or amplification of a pre-existing mutant rDNA copy.
Collapse
Affiliation(s)
- D Zabetakis
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
24
|
Puig S, Querol A, Barrio E, Pérez-Ortín JE. Mitotic recombination and genetic changes in Saccharomyces cerevisiae during wine fermentation. Appl Environ Microbiol 2000; 66:2057-61. [PMID: 10788381 PMCID: PMC101454 DOI: 10.1128/aem.66.5.2057-2061.2000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural strains of Saccharomyces cerevisiae are prototrophic homothallic yeasts that sporulate poorly, are often heterozygous, and may be aneuploid. This genomic constitution may confer selective advantages in some environments. Different mechanisms of recombination, such as meiosis or mitotic rearrangement of chromosomes, have been proposed for wine strains. We studied the stability of the URA3 locus of a URA3/ura3 wine yeast in consecutive grape must fermentations. ura3/ura3 homozygotes were detected at a rate of 1 x 10(-5) to 3 x 10(-5) per generation, and mitotic rearrangements for chromosomes VIII and XII appeared after 30 mitotic divisions. We used the karyotype as a meiotic marker and determined that sporulation was not involved in this process. Thus, we propose a hypothesis for the genome changes in wine yeasts during vinification. This putative mechanism involves mitotic recombination between homologous sequences and does not necessarily imply meiosis.
Collapse
Affiliation(s)
- S Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain.
| | | | | | | |
Collapse
|
25
|
Poggeler, Masloff, Jacobsen, Kuck. Karyotype polymorphism correlates with intraspecific infertility in the homothallic ascomycete Sordaria macrospora. J Evol Biol 2000. [DOI: 10.1046/j.1420-9101.2000.00174.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Nadal D, Carro D, Fernández-Larrea J, Piña B. Analysis and dynamics of the chromosomal complements of wild sparkling-wine yeast strains. Appl Environ Microbiol 1999; 65:1688-95. [PMID: 10103269 PMCID: PMC91239 DOI: 10.1128/aem.65.4.1688-1695.1999] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated Saccharomyces cerevisiae yeast strains that are able to carry out the second fermentation of sparkling wine from spontaneously fermenting musts in El Penedès (Spain) by specifically designed selection protocols. All of them (26 strains) showed one of two very similar mitochondrial DNA (mtDNA) restriction patterns, whereas their karyotypes differed. These strains showed high rates of karyotype instability, which were dependent on both the medium and the strain, during vegetative growth. In all cases, the mtDNA restriction pattern was conserved in strains kept under the same conditions. Analysis of different repetitive sequences in their genomes suggested that ribosomal DNA repeats play an important role in the changes in size observed in chromosome XII, whereas SUC genes or Ty elements did not show amplification or transposition processes that could be related to rearrangements of the chromosomes showing these sequences. Karyotype changes also occurred in monosporidic diploid derivatives. We propose that these changes originated mainly from ectopic recombination between repeated sequences interspersed in the genome. None of the rearranged karyotypes provided a selective advantage strong enough to allow the strains to displace the parental strains. The nature and frequency of these changes suggest that they may play an important role in the establishment and maintenance of the genetic diversity observed in S. cerevisiae wild populations.
Collapse
Affiliation(s)
- D Nadal
- Centre d'Investigació i Desenvolupament, Consejo Superior de Investigaciones Científicas and Unitat de Biologia Molecular del Centre de Referència en Biotecnologia de la Generalitat de Catalunya, 08034 Barcelona, Spain
| | | | | | | |
Collapse
|
27
|
Abstract
The examination of fungal chromosomes by pulsed-field gel electrophoresis has revealed that length polymorphism is widespread in both sexual and asexual species. This review summarizes characteristics of fungal chromosome-length polymorphism and possible mitotic and meiotic mechanisms of chromosome length change. Most fungal chromosome-length polymorphisms are currently uncharacterized with respect to content and origin. However, it is clear that long tandem repeats, such as tracts of rRNA genes, are frequently variable in length and that other chromosomal rearrangements are suppressed during normal mitotic growth. Dispensable chromosomes and dispensable chromosome regions, which have been well documented for some fungi, also contribute to the variability of the fungal karyotype. For sexual species, meiotic recombination increases the overall karyotypic variability in a population while suppressing genetic translocations. The range of karyotypes observed in fungi indicates that many karyotypic changes may be genetically neutral, at least under some conditions. In addition, new linkage combinations of genes may also be advantageous in allowing adaptation of fungi to new environments.
Collapse
Affiliation(s)
- M E Zolan
- Department of Biology, Indiana University, Bloomington 47405, USA
| |
Collapse
|
28
|
Dewar K, Bernier L. Inheritance of chromosome-length polymorphisms in Ophiostoma ulmi (sensu lato). Curr Genet 1995; 27:541-9. [PMID: 7553939 DOI: 10.1007/bf00314445] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have investigated the mitotic and meiotic transmission of chromosome-length polymorphisms in Ophiostoma ulmi s.l., the causal agent of Dutch elm disease. The North-American aggressive (NAN) strain CESS16K has an atypical electrophoretic karyotype, carrying two chromosome-sized DNAs (chDNAs) that have not been observed in other members of the NAN biotype. Independent CESS16K chDNA preparations, even after repeated inoculation and recovery from the elm host, and analysis of 16 progeny strains after a cross between the NAN strains FG245Br-O and CESS16K, demonstrated that these unique chDNAs are integral components of the CESS16K genome. Analysis of the progeny, by electrophoretic karyotyping and hybridizations with probes specific to individual chDNAs, presented evidence that genome rearrangements can occur as a consequence of meiosis. Even though novel electrophoretic karyotypes and a novel-sized chromosome were observed in the karyotypes of the progeny strains, the low level of reassortment between the chromosomes carrying length polymorphisms presented evidence that there are constraints to genome plasticity for this fungus.
Collapse
Affiliation(s)
- K Dewar
- Centre de recherche en biologie forestière, Faculté de foresterie et de géomatique, Université Laval, Ste-Foy, Québec, Canada
| | | |
Collapse
|
29
|
Moss T, Stefanovsky VY. Promotion and regulation of ribosomal transcription in eukaryotes by RNA polymerase I. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995; 50:25-66. [PMID: 7754036 DOI: 10.1016/s0079-6603(08)60810-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T Moss
- Cancer Research Centre, Laval University, Hôtel-Dieu de Québec, Canada
| | | |
Collapse
|
30
|
Rustchenko EP, Sherman F. Physical constitution of ribosomal genes in common strains of Saccharomyces cerevisiae. Yeast 1994; 10:1157-71. [PMID: 7754705 DOI: 10.1002/yea.320100904] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Several recent investigations, employing restriction endonucleases that do not cleave within rDNA units, revealed that a number of laboratory strains of Saccharomyces cerevisiae apparently contains a single tandem array of approximately 50 to 200 rDNA units on each chromosome XII homolog. The number of these rDNA units varies from strain to strain, among subclones of the same strain, and after different conditions of growth. In contrast, the commonly-used strain S288C and its derivatives contain two clusters on each chromosome XII homolog. Although the two clusters are stably maintained, the number of rDNA units within each cluster can vary as in strains with single clusters.
Collapse
Affiliation(s)
- E P Rustchenko
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, New York 14642
| | | |
Collapse
|
31
|
Rustchenko EP, Curran TM, Sherman F. Variations in the number of ribosomal DNA units in morphological mutants and normal strains of Candida albicans and in normal strains of Saccharomyces cerevisiae. J Bacteriol 1993; 175:7189-99. [PMID: 8226665 PMCID: PMC206860 DOI: 10.1128/jb.175.22.7189-7199.1993] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Naturally occurring strains of Candida albicans are opportunistic pathogens that lack a sexual cycle and that are usually diploids with eight pairs of chromosomes. C. albicans spontaneously gives rise to a high frequency of colonial morphology mutants with altered electrophoretic karyotypes, involving one or more of their chromosomes. However, the most frequent changes involve chromosome VIII, which contains the genes coding for ribosomal DNA (rDNA) units. We have used restriction fragment lengths to analyze the number and physical array of the rDNA units on chromosome VIII in four normal clinical strains and seven morphological mutants derived spontaneously from one of the clinical isolates. HindIII does not cleave the rDNA repeats and liberates the tandem rDNA cluster from each homolog of chromosome VIII as a single fragment, whereas the cleavage at a single site by NotI reveals the size of the single rDNA unit. All clinical strains and morphological mutants differed greatly in the number of rDNA units per cluster and per cell. The four clinical isolates differed additionally among themselves by the size of the single rDNA unit. For a total of 25 chromosome VIII homologs in a total of 11 strains considered, the variability of chromosome VIII was exclusively due to the length of rDNA clusters (or the number of rDNA units) in approximately 92% of the cases, whereas the others involved other rearrangements of chromosome VIII. Only slight variations in the number of rDNA units were observed among 10 random C. albicans subclones and 10 random Saccharomyces cerevisiae subclones grown for a prolonged time at 22 degrees C. However, when grown faster at optimal temperatures of 37 and 30 degrees C, respectively, both fungi accumulated higher numbers of rDNA units, suggesting that this condition is selected for in rapidly growing cells. The morphological mutants, in comparison with the C. albicans subclones, contained a markedly wider distribution of the number of rDNA units, suggesting that a distinct process may be involved in altering the number of rDNA units in these mutants.
Collapse
Affiliation(s)
- E P Rustchenko
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, New York 14642
| | | | | |
Collapse
|
32
|
Pasero P, Sjakste N, Blettry C, Got C, Marilley M. Long-range organization and sequence-directed curvature of Xenopus laevis satellite 1 DNA. Nucleic Acids Res 1993; 21:4703-10. [PMID: 7901836 PMCID: PMC331494 DOI: 10.1093/nar/21.20.4703] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have investigated the long-range organization and the intrinsic curvature of satellite 1 DNA, an unusual tandemly-repeated DNA family of Xenopus laevis presenting sequence homologies to SINEs. PFGE was used in combination with frequent-cutter restriction enzymes not likely to cut within satellite 1 DNA and revealed that almost all the repeating units are tandemly organized to form large arrays (200 kb to 2 Mb) that are marked by restriction length polymorphism and contain intra-array domains of sequence variation. Besides that, we have analysed the secondary structure of satellite 1 DNA by computer modelling. Theoretical maps of curvature obtained from three independent models of DNA bending (the dinucleotide wedge model of Trifonov, the junction model of Crothers and the model of de Santis) showed that satellite 1 DNA is intrinsically curved and these results were confirmed experimentally by polyacrylamide gel electrophoresis. Moreover, we observed that this bending element is highly conserved among all the members of the satellite 1 DNA family that are accessible to analysis. A potential genetic role for satellite 1 DNA based on this unusual structural feature is discussed.
Collapse
Affiliation(s)
- P Pasero
- Laboratoire de Génétique, URA CNRS 1189, Faculté de Médecine, Marseille, France
| | | | | | | | | |
Collapse
|