1
|
Guo H, Tian R, Wu Y, Lv X, Li J, Liu L, Du G, Chen J, Liu Y. Facilitating stable gene integration expression and copy number amplification in Bacillus subtilis through a reversible homologous recombination switch. Synth Syst Biotechnol 2024; 9:577-585. [PMID: 38708056 PMCID: PMC11066994 DOI: 10.1016/j.synbio.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Strengthening the expression level of integrated genes on the genome is crucial for consistently expressing key enzymes in microbial cell factories for efficient bioproduction in synthetic biology. In comparison to plasmid-based multi-copy expression, the utilization of chromosomal multi-copy genes offers increased stability of expression level, diminishes the metabolic burden on host cells, and enhances overall genetic stability. In this study, we developed the "BacAmp", a stabilized gene integration expression and copy number amplification system for high-level expression in Bacillus subtilis, which was achieved by employing a combination of repressor and non-natural amino acids (ncAA)-dependent expression system to create a reversible switch to control the key gene recA for homologous recombination. When the reversible switch is turned on, genome editing and gene amplification can be achieved. Subsequently, the reversible switch was turned off therefore stabilizing the gene copy number. The stabilized gene amplification system marked by green fluorescent protein, achieved a 3-fold increase in gene expression by gene amplification and maintained the average gene copy number at 10 after 110 generations. When we implemented the gene amplification system for the regulation of N-acetylneuraminic acid (NeuAc) synthesis, the copy number of the critical gene increased to an average of 7.7, which yielded a 1.3-fold NeuAc titer. Our research provides a new avenue for gene expression in synthetic biology and can be applied in metabolic engineering in B. subtilis.
Collapse
Affiliation(s)
- Haoyu Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Rongzhen Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Carrasco B, Torres R, Moreno-del Álamo M, Ramos C, Ayora S, Alonso JC. Processing of stalled replication forks in Bacillus subtilis. FEMS Microbiol Rev 2024; 48:fuad065. [PMID: 38052445 PMCID: PMC10804225 DOI: 10.1093/femsre/fuad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
Accurate DNA replication and transcription elongation are crucial for preventing the accumulation of unreplicated DNA and genomic instability. Cells have evolved multiple mechanisms to deal with impaired replication fork progression, challenged by both intrinsic and extrinsic impediments. The bacterium Bacillus subtilis, which adopts multiple forms of differentiation and development, serves as an excellent model system for studying the pathways required to cope with replication stress to preserve genomic stability. This review focuses on the genetics, single molecule choreography, and biochemical properties of the proteins that act to circumvent the replicative arrest allowing the resumption of DNA synthesis. The RecA recombinase, its mediators (RecO, RecR, and RadA/Sms) and modulators (RecF, RecX, RarA, RecU, RecD2, and PcrA), repair licensing (DisA), fork remodelers (RuvAB, RecG, RecD2, RadA/Sms, and PriA), Holliday junction resolvase (RecU), nucleases (RnhC and DinG), and translesion synthesis DNA polymerases (PolY1 and PolY2) are key functions required to overcome a replication stress, provided that the fork does not collapse.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - María Moreno-del Álamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| |
Collapse
|
3
|
The Revisited Genome of Bacillus subtilis Bacteriophage SPP1. Viruses 2018; 10:v10120705. [PMID: 30544981 PMCID: PMC6316719 DOI: 10.3390/v10120705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 02/05/2023] Open
Abstract
Bacillus subtilis bacteriophage SPP1 is a lytic siphovirus first described 50 years ago [1]. Its complete DNA sequence was reported in 1997 [2]. Here we present an updated annotation of the 44,016 bp SPP1 genome and its correlation to different steps of the viral multiplication process. Five early polycistronic transcriptional units encode phage DNA replication proteins and lysis functions together with less characterized, mostly non-essential, functions. Late transcription drives synthesis of proteins necessary for SPP1 viral particles assembly and for cell lysis, together with a short set of proteins of unknown function. The extensive genetic, biochemical and structural biology studies on the molecular mechanisms of SPP1 DNA replication and phage particle assembly rendered it a model system for tailed phages research. We propose SPP1 as the reference species for a new SPP1-like viruses genus of the Siphoviridae family.
Collapse
|
4
|
Valero-Rello A, López-Sanz M, Quevedo-Olmos A, Sorokin A, Ayora S. Molecular Mechanisms That Contribute to Horizontal Transfer of Plasmids by the Bacteriophage SPP1. Front Microbiol 2017; 8:1816. [PMID: 29018417 PMCID: PMC5615212 DOI: 10.3389/fmicb.2017.01816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/06/2017] [Indexed: 01/02/2023] Open
Abstract
Natural transformation and viral-mediated transduction are the main avenues of horizontal gene transfer in Firmicutes. Bacillus subtilis SPP1 is a generalized transducing bacteriophage. Using this lytic phage as a model, we have analyzed how viral replication and recombination systems contribute to the transfer of plasmid-borne antibiotic resistances. Phage SPP1 DNA replication relies on essential phage-encoded replisome organizer (G38P), helicase loader (G39P), hexameric replicative helicase (G40P), recombinase (G35P) and in less extent on the partially dispensable 5′→3′ exonuclease (G34.1P), the single-stranded DNA binding protein (G36P) and the Holliday junction resolvase (G44P). Correspondingly, the accumulation of linear concatemeric plasmid DNA, and the formation of transducing particles were blocked in the absence of G35P, G38P, G39P, and G40P, greatly reduced in the G34.1P, G36P mutants, and slightly reduced in G44P mutants. In contrast, establishment of injected linear plasmid DNA in the recipient host was independent of viral-encoded functions. DNA homology between SPP1 and the plasmid, rather than a viral packaging signal, enhanced the accumulation of packagable plasmid DNA. The transfer efficiency was also dependent on plasmid copy number, and rolling-circle plasmids were encapsidated at higher frequencies than theta-type replicating plasmids.
Collapse
Affiliation(s)
- Ana Valero-Rello
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Micalis Institute, INRA, AgroParisTech, Universite Paris-SaclayJouy-en-Josas, France
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alvaro Quevedo-Olmos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alexei Sorokin
- Micalis Institute, INRA, AgroParisTech, Universite Paris-SaclayJouy-en-Josas, France
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
5
|
Szczepańska AK. Bacteriophage-encoded functions engaged in initiation of homologous recombination events. Crit Rev Microbiol 2010; 35:197-220. [PMID: 19563302 DOI: 10.1080/10408410902983129] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Recombination plays a significant role in bacteriophage biology. Functions promoting recombination are involved in key stages of phage multiplication and drive phage evolution. Their biological role is reflected by the great variety of phages existing in the environment. This work presents the role of recombination in the phage life cycle and highlights the discrete character of phage-encoded recombination functions (anti-RecBCD activities, 5' --> 3' DNA exonucleases, single-stranded DNA binding proteins, single-stranded DNA annealing proteins, and recombinases). The focus of this review is on phage proteins that initiate genetic exchange. Importance of recombination is reviewed based on the accepted coli-phages T4 and lambda models, the recombination system of phage P22, and the recently characterized recombination functions of Bacillus subtilis phage SPP1 and mycobacteriophage Che9c. Key steps of the molecular mechanisms involving phage recombination functions and their application in molecular engineering are discussed.
Collapse
Affiliation(s)
- Agnieszka K Szczepańska
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
6
|
Martínez-Jiménez MI, Alonso JC, Ayora S. Bacillus subtilis bacteriophage SPP1-encoded gene 34.1 product is a recombination-dependent DNA replication protein. J Mol Biol 2005; 351:1007-19. [PMID: 16055153 DOI: 10.1016/j.jmb.2005.06.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/22/2005] [Accepted: 06/29/2005] [Indexed: 11/16/2022]
Abstract
SPP1-encoded replication and recombination proteins, involved in the early steps of the initiation of concatemeric DNA synthesis, have been analyzed. Dimeric G34.1P exonuclease degrades, with a 5' to 3' polarity and in a Mg2+-dependent reaction, preferentially linear double-stranded (ds) DNA rather than single-stranded (ss) DNA. Binding of the replisome organizer, G38P, to its cognate sites (oriDNA) halts the 5' to 3' exonucleolytic activity of G34.1P on dsDNA. The G35P recombinase increases the affinity of G34.1P for dsDNA, and stimulates G34.1P activity on dsDNA, but not on ssDNA. Then, filamented G35P promotes limited strand exchange with a homologous sequence. The ssDNA binding protein, G36P, protects ssDNA from the G34.1P exonuclease activity and stimulates G35P-catalyzed strand exchange. The data presented suggest a model for the role of G34.1P during initiation of sigma replication: G38P bound to oriDNA might halt replication fork progression, and G35P, G34.1P and G36P in concert might lead to the re-establishment of a unidirectional recombination-dependent replication that accounts for the direction of DNA packaging.
Collapse
Affiliation(s)
- María I Martínez-Jiménez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
7
|
Sanchez H, Kidane D, Reed P, Curtis FA, Cozar MC, Graumann PL, Sharples GJ, Alonso JC. The RuvAB branch migration translocase and RecU Holliday junction resolvase are required for double-stranded DNA break repair in Bacillus subtilis. Genetics 2005; 171:873-83. [PMID: 16020779 PMCID: PMC1456856 DOI: 10.1534/genetics.105.045906] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In models of Escherichia coli recombination and DNA repair, the RuvABC complex directs the branch migration and resolution of Holliday junction DNA. To probe the validity of the E. coli paradigm, we examined the impact of mutations in DeltaruvAB and DeltarecU (a ruvC functional analog) on DNA repair. Under standard transformation conditions we failed to construct DeltaruvAB DeltarecG, DeltarecU DeltaruvAB, DeltarecU DeltarecG, or DeltarecU DeltarecJ strains. However, DeltaruvAB could be combined with addAB (recBCD), recF, recH, DeltarecS, DeltarecQ, and DeltarecJ mutations. The DeltaruvAB and DeltarecU mutations rendered cells extremely sensitive to DNA-damaging agents, although less sensitive than a DeltarecA strain. When damaged cells were analyzed, we found that RecU was recruited to defined double-stranded DNA breaks (DSBs) and colocalized with RecN. RecU localized to these centers at a later time point during DSB repair, and formation was dependent on RuvAB. In addition, expression of RecU in an E. coli ruvC mutant restored full resistance to UV light only when the ruvAB genes were present. The results demonstrate that, as with E. coli RuvABC, RuvAB targets RecU to recombination intermediates and that all three proteins are required for repair of DSBs arising from lesions in chromosomal DNA.
Collapse
Affiliation(s)
- Humberto Sanchez
- Centre for Infectious Diseases, Wolfson Research Institute, University of Durham, Stockton-on-Tees TS17 6BH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ayora S, Missich R, Mesa P, Lurz R, Yang S, Egelman EH, Alonso JC. Homologous-pairing activity of the Bacillus subtilis bacteriophage SPP1 replication protein G35P. J Biol Chem 2002; 277:35969-79. [PMID: 12124388 DOI: 10.1074/jbc.m204467200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genetic evidence suggests that the SPP1-encoded gene 35 product (G35P) is essential for phage DNA replication. Purified G35P binds single-strand DNA (ssDNA) and double-strand (dsDNA) and specifically interacts with SPP1-encoded replicative DNA helicase G40P and SSB protein G36P. G35P promotes joint molecule formation between a circular ssDNA and a homologous linear dsDNA with an ssDNA tail. Joint molecule formation requires a metal ion but is independent of a nucleotide cofactor. Joint molecules formed during these reactions contain a displaced linear ssDNA strand. Electron microscopic analysis shows that G35P forms a multimeric ring structure in ssDNA tails of dsDNA molecules and left-handed filaments on ssDNA. G35P promotes strand annealing at the AT-rich region of SPP1 oriL on a supercoiled template. These results altogether are consistent with the hypothesis that the homologous pairing catalyzed by G35P is an integral part of SPP1 DNA replication. The loading of G40P at a d-loop (ori DNA or at any stalled replication fork) by G35P could lead to replication fork reactivation.
Collapse
Affiliation(s)
- Silvia Ayora
- Departmento de Biotecnologia Microbiana, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Campus Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | | | | | | | | | | |
Collapse
|
9
|
Carrasco B, Fernández S, Petit MA, Alonso JC. Genetic recombination in Bacillus subtilis 168: effect of DeltahelD on DNA repair and homologous recombination. J Bacteriol 2001; 183:5772-7. [PMID: 11544244 PMCID: PMC95473 DOI: 10.1128/jb.183.19.5772-5777.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2001] [Accepted: 07/09/2001] [Indexed: 11/20/2022] Open
Abstract
The B. subtilis DeltahelD allele rendered cells proficient in transformational recombination and moderately sensitive to methyl methanesulfonate when present in an otherwise Rec(+) strain. The DeltahelD allele was introduced into rec-deficient strains representative of the alpha (recF strain), beta (addA addB), gamma (recH), epsilon (DeltarecU), and zeta (DeltarecS) epistatic groups. The DeltahelD mutation increased the sensitivity to DNA-damaging agents of addAB, DeltarecU, and DeltarecS cells, did not affect the survival of recH cells, and decreased the sensitivity of recF cells. DeltahelD also partially suppressed the DNA repair phenotype of other mutations classified within the alpha epistatic group, namely the recL, DeltarecO, and recR mutations. The DeltahelD allele marginally reduced plasmid transformation (three- to sevenfold) of mutations classified within the alpha, beta, and gamma epistatic groups. Altogether, these data indicate that the loss of helicase IV might stabilize recombination repair intermediates formed in the absence of recFLOR and render recFLOR, addAB, and recH cells impaired in plasmid transformation.
Collapse
Affiliation(s)
- B Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
10
|
Abstract
Homologous recombination plays a critical role in maintaining gene diversification and genome stability. Fourteen Bacillus subtilis recombination gene products have been genetically characterised and classified into five different epistatic groups. At least seven other recombination genes could be predicted. Recombination gene products which define activities that help RecA to process DNA repair and recombination have been studied, but those that processed recombination intermediates into products (post-synaptic stage) await elucidation.
Collapse
Affiliation(s)
- S Fernández
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | | | |
Collapse
|
11
|
Majewski J, Cohan FM. DNA sequence similarity requirements for interspecific recombination in Bacillus. Genetics 1999; 153:1525-33. [PMID: 10581263 PMCID: PMC1460850 DOI: 10.1093/genetics/153.4.1525] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gene transfer in bacteria is notoriously promiscuous. Genetic material is known to be transferred between groups as distantly related as the Gram positives and Gram negatives. However, the frequency of homologous recombination decreases sharply with the level of relatedness between the donor and recipient. Several studies show that this sexual isolation is an exponential function of DNA sequence divergence between recombining substrates. The two major factors implicated in producing the recombinational barrier are the mismatch repair system and the requirement for a short region of sequence identity to initiate strand exchange. Here we demonstrate that sexual isolation in Bacillus transformation results almost exclusively from the need for regions of identity at both the 5' and 3' ends of the donor DNA strand. We show that, by providing the essential identity, we can effectively eliminate sexual isolation between highly divergent sequences. We also present evidence that the potential of a donor sequence to act as a recombinogenic, invasive end is determined by the stability (melting point) of the donor-recipient complex. These results explain the exponential relationship between sexual isolation and sequence divergence observed in bacteria. They also suggest a model for rapid spread of novel adaptations, such as antibiotic resistance genes, among related species.
Collapse
Affiliation(s)
- J Majewski
- Department of Biology, Wesleyan University, Middletown, Connecticut 06459, USA.
| | | |
Collapse
|
12
|
Fernández S, Sorokin A, Alonso JC. Genetic recombination in Bacillus subtilis 168: effects of recU and recS mutations on DNA repair and homologous recombination. J Bacteriol 1998; 180:3405-9. [PMID: 9642195 PMCID: PMC107297 DOI: 10.1128/jb.180.13.3405-3409.1998] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1997] [Accepted: 05/01/1998] [Indexed: 02/07/2023] Open
Abstract
Bacillus subtilis recombination-deficient mutants were constructed by inserting a selectable marker (cat gene) into the yppB and ypbC coding regions. The yppB:cat and ypbC:cat null alleles rendered cells sensitive to DNA-damaging agents, impaired plasmid transformation (25- and 100-fold), and moderately affected chromosomal transformation when present in an otherwise Rec+ B. subtilis strain. The yppB gene complemented the defect of the recG40 strain. yppB and ypbC and their respective null alleles were termed "recU" and "recU1" (recU:cat) and "recS" and "recS1" (recS:cat), respectively. The recU and recS mutations were introduced into rec-deficient strains representative of the alpha (recF), beta (addA5 addB72), gamma (recH342), and epsilon (recG40) epistatic groups. The recU mutation did not modify the sensitivity of recH cells to DNA-damaging agents, but it did affect inter- and intramolecular recombination in recH cells. The recS mutation did not modify the sensitivity of addAB cells to DNA-damaging agents, and it marginally affected recF, recH, and recU cells. The recS mutation markedly reduced (about 250-fold) intermolecular recombination in recH cells, and there were reductions of 10- to 20-fold in recF, addAB, and recU cells. Intramolecular recombination was blocked in recS recF, recS addAB, and recS recU cells. RecU and RecS have no functional counterparts in Escherichia coli. Altogether, these data indicate that the recU and recS proteins are required for DNA repair and intramolecular recombination and that the recF (alpha epistatic group), addAB (beta), recH (gamma), recU (epsilon), and recS genes provide overlapping activities that compensate for the effects of single mutation. We tentatively placed recS within a new group, termed "zeta".
Collapse
Affiliation(s)
- S Fernández
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
13
|
Itaya M. Integration of repeated sequences (pBR322) in the Bacillus subtilis 168 chromosome without affecting the genome structure. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:287-97. [PMID: 8246882 DOI: 10.1007/bf00284680] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Escherichia coli plasmid pBR322 sequence (4363 bp) was integrated at the met, pro, or leuB locus of the Bacillus subtilis chromosome without duplication of the flanking chromosomal regions. The integrated pBR322 was stably maintained as part of the chromosome regardless of its orientation or location. It was found that a DNA segment as large as 17 kb cloned in pBR322 can be readily transferred to the B. subtilis chromosome by transformation. It was demonstrated that a second pBR322 sequence could be effectively introduced at different regions of the chromosome by sequential transformation using chromosomal DNA isolated from a strain that had already acquired a pBR322 sequence at a different locus. Similarly, a third pBR322 sequence could be introduced. By this method, two or three pBR322 sequences can be incorporated at unlinked loci without affecting the overall structure of the B. subtilis genome.
Collapse
Affiliation(s)
- M Itaya
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| |
Collapse
|
14
|
Chai S, Szepan U, Lüder G, Trautner TA, Alonso JC. Sequence analysis of the left end of the Bacillus subtilis bacteriophage SPP1 genome. Gene 1993; 129:41-9. [PMID: 8335259 DOI: 10.1016/0378-1119(93)90694-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The left end of the genome of Bacillus subtilis bacteriophage SPP1 is represented by EcoRI DNA fragments 12 and 1 (EcoRI-12 and EcoRI-1). A number of different deletions were identified in EcoRI-1. A detailed physical and genetic map of EcoRI-1 from wild-type (wt) phage and SPP1 deletion mutants was constructed. Genes encoding essential products involved in late and early stages of phage DNA metabolism were mapped at the left and right ends of the 8.5-kb EcoRI-1, respectively. Deletions fell within the internal 5157-bp DNA segment of EcoRI-1. The nucleotide (nt) sequence of this region and of the endpoints of two deletions, delta X and delta L, were determined. The nt sequence of the junctions in SPP1 delta X and SPP1 delta L showed that, in these deletions, a segment of DNA between short directly repeated sequences of 10 and 13 bp, located 3427 and 4562 bp apart in the wt sequence, had been eliminated. In both cases, the copy of the repeated sequence was retained in the deletion mutant, consistent with the hypothesis that the deletions originated by homologous intramolecular recombination. The corresponding region in wt phage had fifteen presumptive open reading frames (orfs) and the previously identified SPP1 early promoters (PE1). The poor growth phenotype associated with the SPP1 deletion mutants was attributed to premature transcriptional read through from promoter(s) of the early region into late operon brought into close vicinity of the late genes due to the deletion event.
Collapse
Affiliation(s)
- S Chai
- Max-Planck-Institut für molekulare Genetik, Berlin, Germany
| | | | | | | | | |
Collapse
|
15
|
Alonso JC, Stiege AC, Lüder G. Genetic recombination in Bacillus subtilis 168: effect of recN, recF, recH and addAB mutations on DNA repair and recombination. MOLECULAR & GENERAL GENETICS : MGG 1993; 239:129-36. [PMID: 8510642 DOI: 10.1007/bf00281611] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A recN- (recN1) strain of Bacillus subtilis was constructed. The effects of this and recF, recH and addAB mutations on recombination proficiency were tested. Mutations in the recN, recF, recH and addAB genes, when present in an otherwise Rec+ B. subtilis strain, did not affect genetic exchange. Strains carrying different combinations of mutations in these genes were constructed and examined for their sensitivity to 4-nitroquinoline-1-oxide (4NQO) and recombination proficiency. The recH mutation did not affect the 4NQO sensitivity of recN and recF cells and it only marginally affected that of addA addB cells. However, it reduced genetic recombination in these cells 10(2)- to 10(4)-fold. The addA addB mutations increased the 4NQO sensitivity of recF and recN cells, but completely blocked genetic recombination of recF cells and marginally affected recombination in recN cells. The recN mutation did not affect the recombinational capacity of recF cells. These data indicate that the recN gene product is required for DNA repair and recombination and that the recF, recH and addAB genes provide overlapping activities that compensate for the effects of single mutants proficiency. We proposed that the recF, recH, recB and addA gene products define four different epistatic groups.
Collapse
Affiliation(s)
- J C Alonso
- Max-Planck-Institut für molekulare Genetik, Berlin, Germany
| | | | | |
Collapse
|