1
|
Morgan CJ, Atkins H, Wolfe AJ, Brubaker L, Aslam S, Putonti C, Doud MB, Burnett LA. Phage Therapy for Urinary Tract Infections: Progress and Challenges Ahead. Int Urogynecol J 2025:10.1007/s00192-025-06136-8. [PMID: 40358692 DOI: 10.1007/s00192-025-06136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/08/2025] [Indexed: 05/15/2025]
Abstract
INTRODUCTION AND HYPOTHESIS Urinary tract infection (UTI) treatment is a growing public health concern owing to increasing antimicrobial resistance. Phage therapy, an alternative or adjunctive treatment to antibiotics, has the potential to address this challenge. However, clinical use of phage therapy is hindered by knowledge gaps and inconsistent reporting. The objective was to review the current state of phage therapy for UTIs and highlight research priorities that can optimize phage clinical efficacy. METHODS Current literature on UTI phage therapy was examined, focusing on the lack of standardized phage susceptibility testing, phage characterization, and microbiological assessments during and after treatment. RESULTS Critical areas requiring further investigation include appropriate phage dosing, optimal routes of administration, and the dynamics of phage-host and phage-patient interactions. The influence of the urinary microbiome, including endogenous phages, on treatment outcomes also needs to be better understood. Suggested data collection and reporting standards should be developed and implemented to improve clinical impact of studies examining phage therapy for UTI. Randomized clinical trials are needed to establish efficacy and determine the best practices for clinical use. CONCLUSION Phage therapy is a promising alternative to antibiotics for managing UTIs, especially in the face of rising antimicrobial resistance. To fully realize its potential, however, future research must focus on standardized protocols, dosing strategies, and the role of the urinary microbiome, with an emphasis on rigorously conducted clinical trials. These steps are essential for integrating phage therapy into mainstream UTI treatment regimens.
Collapse
Affiliation(s)
- Chase J Morgan
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Haley Atkins
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Linda Brubaker
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences, UC San Diego, 9300 Campus Point Dr, Mail Code 7433, La Jolla, CA, 92037, USA
| | - Saima Aslam
- Center for Innovative Phage Applications and Therapeutics, La Jolla, CA, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, 9500 Gilman Dr, Mail Code 0116, La Jolla, CA, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Michael B Doud
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, 9500 Gilman Dr, Mail Code 0116, La Jolla, CA, USA.
| | - Lindsey A Burnett
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences, UC San Diego, 9300 Campus Point Dr, Mail Code 7433, La Jolla, CA, 92037, USA.
| |
Collapse
|
2
|
Degradation of Exogenous Fatty Acids in Escherichia coli. Biomolecules 2022; 12:biom12081019. [PMID: 35892328 PMCID: PMC9329746 DOI: 10.3390/biom12081019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Many bacteria possess all the machineries required to grow on fatty acids (FA) as a unique source of carbon and energy. FA degradation proceeds through the β-oxidation cycle that produces acetyl-CoA and reduced NADH and FADH cofactors. In addition to all the enzymes required for β-oxidation, FA degradation also depends on sophisticated systems for its genetic regulation and for FA transport. The fact that these machineries are conserved in bacteria suggests a crucial role in environmental conditions, especially for enterobacteria. Bacteria also possess specific enzymes required for the degradation of FAs from their environment, again showing the importance of this metabolism for bacterial adaptation. In this review, we mainly describe FA degradation in the Escherichia coli model, and along the way, we highlight and discuss important aspects of this metabolism that are still unclear. We do not detail exhaustively the diversity of the machineries found in other bacteria, but we mention them if they bring additional information or enlightenment on specific aspects.
Collapse
|
3
|
Sawant N, Singh H, Appukuttan D. Overview of the Cellular Stress Responses Involved in Fatty Acid Overproduction in E. coli. Mol Biotechnol 2021; 64:373-387. [PMID: 34796451 DOI: 10.1007/s12033-021-00426-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022]
Abstract
Research on microbial fatty acid metabolism started in the late 1960s, and till date, various developments have aided in elucidating the fatty acid metabolism in great depth. Over the years, synthesis of microbial fatty acid has drawn industrial attention due to its diverse applications. However, fatty acid overproduction imparts various stresses on its metabolic pathways causing a bottleneck to further increase the fatty acid yields. Numerous strategies to increase fatty acid titres in Escherichia coli by pathway modulation have already been published, but the stress generated during fatty acid overproduction is relatively less studied. Stresses like pH, osmolarity and oxidative stress, not only lower fatty acid titres, but also alter the cell membrane composition, protein expression and membrane fluidity. This review discusses an overview of fatty acid synthesis pathway and presents a panoramic view of various stresses caused due to fatty acid overproduction in E. coli. It also addresses how certain stresses like high temperature and nitrogen limitation can boost fatty acid production. This review paper also highlights the interconnections that exist between these stresses.
Collapse
Affiliation(s)
- Neha Sawant
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Vile Parle (West), Mumbai, 400056, India
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Vile Parle (West), Mumbai, 400056, India.
| | - Deepti Appukuttan
- Biosystems Engineering Lab, Department of Chemical Engineering, IIT Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
4
|
Jaworska K, Ludwiczak M, Murawska E, Raczkowska A, Brzostek K. The Regulator OmpR in Yersinia enterocolitica Participates in Iron Homeostasis by Modulating Fur Level and Affecting the Expression of Genes Involved in Iron Uptake. Int J Mol Sci 2021; 22:ijms22031475. [PMID: 33540627 PMCID: PMC7867234 DOI: 10.3390/ijms22031475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we found that the loss of OmpR, the response regulator of the two-component EnvZ/OmpR system, increases the cellular level of Fur, the master regulator of iron homeostasis in Y. enterocolitica. Furthermore, we demonstrated that transcription of the fur gene from the YePfur promoter is subject to negative OmpR-dependent regulation. Four putative OmpR-binding sites (OBSs) were indicated by in silico analysis of the fur promoter region, and their removal affected OmpR-dependent fur expression. Moreover, OmpR binds specifically to the predicted OBSs which exhibit a distinct hierarchy of binding affinity. Finally, the data demonstrate that OmpR, by direct binding to the promoters of the fecA, fepA and feoA genes, involved in the iron transport and being under Fur repressor activity, modulates their expression. It seems that the negative effect of OmpR on fecA and fepA transcription is sufficient to counteract the indirect, positive effect of OmpR resulting from decreasing the Fur repressor level. The expression of feoA was positively regulated by OmpR and this mode of action seems to be direct and indirect. Together, the expression of fecA, fepA and feoA in Y. enterocolitica has been proposed to be under a complex mode of regulation involving OmpR and Fur regulators.
Collapse
|
5
|
Anzai T, Imamura S, Ishihama A, Shimada T. Expanded roles of pyruvate-sensing PdhR in transcription regulation of the Escherichia coli K-12 genome: fatty acid catabolism and cell motility. Microb Genom 2020; 6. [PMID: 32975502 PMCID: PMC7660256 DOI: 10.1099/mgen.0.000442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The transcription factor PdhR has been recognized as the master regulator of the pyruvate catabolism pathway in Escherichia coli, including both NAD-linked oxidative decarboxylation of pyruvate to acetyl-CoA by PDHc (pyruvate dehydrogenase complex) and respiratory electron transport of NADH to oxygen by Ndh-CyoABCD enzymes. To identify the whole set of regulatory targets under the control of pyruvate-sensing PdhR, we performed genomic SELEX (gSELEX) screening in vitro. A total of 35 PdhR-binding sites were identified along the E. coli K-12 genome, including previously identified targets. Possible involvement of PdhR in regulation of the newly identified target genes was analysed in detail by gel shift assay, RT-qPCR and Northern blot analysis. The results indicated the participation of PdhR in positive regulation of fatty acid degradation genes and negative regulation of cell mobility genes. In fact, GC analysis indicated an increase in free fatty acids in the mutant lacking PdhR. We propose that PdhR is a bifunctional global regulator for control of a total of 16–23 targets, including not only the genes involved in central carbon metabolism but also some genes for the surrounding pyruvate-sensing cellular pathways such as fatty acid degradation and flagella formation. The activity of PdhR is controlled by pyruvate, the key node between a wide variety of metabolic pathways, including generation of metabolic energy and cell building blocks.
Collapse
Affiliation(s)
- Takumi Anzai
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Akira Ishihama
- Micro-Nanotechnology Research Center, Hosei University, Koganei, Tokyo, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| |
Collapse
|
6
|
Sah-Teli SK, Hynönen MJ, Sulu R, Dalwani S, Schmitz W, Wierenga RK, Venkatesan R. Insights into the stability and substrate specificity of the E. coli aerobic β-oxidation trifunctional enzyme complex. J Struct Biol 2020; 210:107494. [DOI: 10.1016/j.jsb.2020.107494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 11/17/2022]
|
7
|
Jaworska K, Nieckarz M, Ludwiczak M, Raczkowska A, Brzostek K. OmpR-Mediated Transcriptional Regulation and Function of Two Heme Receptor Proteins of Yersinia enterocolitica Bio-Serotype 2/O:9. Front Cell Infect Microbiol 2018; 8:333. [PMID: 30294593 PMCID: PMC6158557 DOI: 10.3389/fcimb.2018.00333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/29/2018] [Indexed: 12/26/2022] Open
Abstract
We show that Yersinia enterocolitica strain Ye9 (bio-serotype 2/O:9) utilizes heme-containing molecules as an iron source. The Ye9 genome contains two multigenic clusters, hemPRSTUV-1 and hemPRST-2, encoding putative heme receptors HemR1 and HemR2, that share 62% amino acid identity. Expression of these proteins in an Escherichia coli mutant defective in heme biosynthesis allowed this strain to use hemin and hemoglobin as a source of porphyrin. The hemPRSTUV-1 and hemPRST-2 clusters are organized as operons, expressed from the phem−1 and weaker phem−2 promoters, respectively. Expression of both operons is negatively regulated by iron and the iron-responsive transcriptional repressor Fur. In addition, OmpR, the response regulator of two component system (TCSs) EnvZ/OmpR, represses transcription of both operons through interaction with binding sequences overlapping the −35 region of their promoters. Western blot analysis of the level of HemR1 in ompR, fur, and ompRfur mutants, showed an additive effect of these mutations, indicating that OmpR may regulate HemR expression independently of Fur. However, the effect of OmpR on the activity of the phem−1 promoter and on HemR1 production was observed in both iron-depleted and iron-replete conditions, i.e., when Fur represses the iron-regulated promoter. In addition, a hairpin RNA thermometer, composed of four uracil residues (FourU) that pair with the ribosome-binding site in the 5′-untranslated region (5′-UTR) of hemR1 was predicted by in silico analysis. However, thermoregulated expression of HemR1 could not be demonstrated. Taken together, these data suggest that Fur and OmpR control iron/heme acquisition via a complex mechanism based on negative regulation of hemR1 and hemR2 at the transcriptional level. This interplay could fine-tune the level of heme receptor proteins to allow Y. enterocolitica to fulfill its iron/heme requirements without over-accumulation, which might be important for pathogenic growth within human hosts.
Collapse
Affiliation(s)
- Karolina Jaworska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Nieckarz
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Ludwiczak
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Nieckarz M, Raczkowska A, Jaworska K, Stefańska E, Skorek K, Stosio D, Brzostek K. The Role of OmpR in the Expression of Genes of the KdgR Regulon Involved in the Uptake and Depolymerization of Oligogalacturonides in Yersinia enterocolitica. Front Cell Infect Microbiol 2017; 7:366. [PMID: 28861396 PMCID: PMC5559549 DOI: 10.3389/fcimb.2017.00366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/28/2017] [Indexed: 01/25/2023] Open
Abstract
Oligogalacturonide (OGA)-specific porins of the KdgM family have previously been identified and characterized in enterobacterial plant pathogens. We found that deletion of the gene encoding response regulator OmpR causes the porin KdgM2 to become one of the most abundant proteins in the outer membrane of the human enteropathogen Yersinia enterocolitica. Reporter gene fusion and real-time PCR analysis confirmed that the expression of kdgM2 is repressed by OmpR. We also found that kdgM2 expression is subject to negative regulation by KdgR, a specific repressor of genes involved in the uptake and metabolism of pectin derivatives in plant pathogens. The additive effect of kdgR and ompR mutations suggested that KdgR and OmpR regulate kdgM2 expression independently. We confirmed that kdgM2 occurs in an operon with the pelP gene, encoding the periplasmic pectate lyase PelP. A pectinolytic assay showed strong upregulation of PelP production/activity in a Y. enterocolitica strain lacking OmpR and KdgR, which corroborates the repression exerted by these regulators on kdgM2. In addition, our data showed that OmpR is responsible for up regulation of the kdgM1 gene encoding the second specific oligogalacturonide porin KdgM1. This indicates the involvement of OmpR in the reciprocal regulation of both KdgM1 and KdgM2. Moreover, we demonstrated the negative impact of OmpR on kdgR transcription, which might positively affect the expression of genes of the KdgR regulon. Binding of OmpR to the promoter regions of the kdgM2-pelP-sghX operon, and kdgM1 and kdgR genes was confirmed using the electrophoretic mobility shift assay, suggesting that OmpR can directly regulate their transcription. We also found that the overexpression of porin KdgM2 increases outer membrane permeability. Thus, OmpR-mediated regulation of the KdgM porins may contribute to the fitness of Y. enterocolitica in particular local environments.
Collapse
Affiliation(s)
- Marta Nieckarz
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Karolina Jaworska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Ewa Stefańska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Karolina Skorek
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Dorota Stosio
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| |
Collapse
|
9
|
Scheel RA, Ji L, Lundgren BR, Nomura CT. Enhancing poly(3-hydroxyalkanoate) production in Escherichia coli by the removal of the regulatory gene arcA. AMB Express 2016; 6:120. [PMID: 27878786 PMCID: PMC5120623 DOI: 10.1186/s13568-016-0291-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/18/2022] Open
Abstract
Recombinant Escherichia coli is a desirable platform for the production of many biological compounds including poly(3-hydroxyalkanoates), a class of naturally occurring biodegradable polyesters with promising biomedical and material applications. Although the controlled production of desirable polymers is possible with the utilization of fatty acid feedstocks, a central challenge to this biosynthetic route is the improvement of the relatively low polymer yield, a necessary factor of decreasing the production costs. In this study we sought to address this challenge by deleting arcA and ompR, two global regulators with the capacity to inhibit the uptake and activation of exogenous fatty acids. We found that polymer yields in a ΔarcA mutant increased significantly with respect to the parental strain. In the parental strain, PHV yields were very low but improved 64-fold in the ΔarcA mutant (1.92-124 mg L-1) The ΔarcA mutant also allowed for modest increases in some medium chain length polymer yields, while weight average molecular weights improved by approximately 1.5-fold to 12-fold depending on the fatty acid substrate utilized. These results were supported by an analysis of differential gene expression, which showed that the key genes (fadD, fadL, and fadE) encoding fatty acid degradation enzymes were all upregulated by 2-, 10-, and 31-fold in an ΔarcA mutant, respectively. Additionally, the short chain length fatty acid uptake genes atoA, atoE and atoD were upregulated by 103-, 119-, and 303-fold respectively, though these values are somewhat inflated due to low expression in the parental strain. Overall, this study demonstrates that arcA is an important target to improve PHA production from fatty acids.
Collapse
Affiliation(s)
- Ryan A. Scheel
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Liyuan Ji
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Benjamin R. Lundgren
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Christopher T. Nomura
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
- Center for Applied Microbiology, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
- Hubei Collaborative Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
10
|
Nieckarz M, Raczkowska A, Dębski J, Kistowski M, Dadlez M, Heesemann J, Rossier O, Brzostek K. Impact of OmpR on the membrane proteome of Yersinia enterocolitica in different environments: repression of major adhesin YadA and heme receptor HemR. Environ Microbiol 2016; 18:997-1021. [PMID: 26627632 DOI: 10.1111/1462-2920.13165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/26/2015] [Accepted: 11/29/2015] [Indexed: 01/22/2023]
Abstract
Enteropathogenic Yersinia enterocolitica is able to grow within or outside the mammalian host. Previous transcriptomic studies have indicated that the regulator OmpR plays a role in the expression of hundreds of genes in enterobacteria. Here, we have examined the impact of OmpR on the production of Y. enterocolitica membrane proteins upon changes in temperature, osmolarity and pH. Proteomic analysis indicated that the loss of OmpR affects the production of 120 proteins, a third of which are involved in uptake/transport, including several that participate in iron or heme acquisition. A set of proteins associated with virulence was also affected. The influence of OmpR on the abundance of adhesin YadA and heme receptor HemR was examined in more detail. OmpR was found to repress YadA production and bind to the yadA promoter, suggesting a direct regulatory effect. In contrast, the repression of hemR expression by OmpR appears to be indirect. These findings provide new insights into the role of OmpR in remodelling the cell surface and the adaptation of Y. enterocolitica to different environmental niches, including the host.
Collapse
Affiliation(s)
- Marta Nieckarz
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Janusz Dębski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Kistowski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Dadlez
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, Warsaw, 02-106, Poland.,Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Jürgen Heesemann
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Ombeline Rossier
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| |
Collapse
|
11
|
Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 2013; 52:249-76. [PMID: 23500459 PMCID: PMC3665635 DOI: 10.1016/j.plipres.2013.02.002] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
Abstract
Membrane lipid homeostasis is a vital facet of bacterial cell physiology. For decades, research in bacterial lipid synthesis was largely confined to the Escherichia coli model system. This basic research provided a blueprint for the biochemistry of lipid metabolism that has largely defined the individual steps in bacterial fatty acid and phospholipids synthesis. The advent of genomic sequencing has revealed a surprising amount of diversity in the genes, enzymes and genetic organization of the components responsible for bacterial lipid synthesis. Although the chemical steps in fatty acid synthesis are largely conserved in bacteria, there are surprising differences in the structure and cofactor requirements for the enzymes that perform these reactions in Gram-positive and Gram-negative bacteria. This review summarizes how the explosion of new information on the diversity of biochemical and genetic regulatory mechanisms has impacted our understanding of bacterial lipid homeostasis. The potential and problems of developing therapeutics that block pathogen phospholipid synthesis are explored and evaluated. The study of bacterial lipid metabolism continues to be a rich source for new biochemistry that underlies the variety and adaptability of bacterial life styles.
Collapse
Affiliation(s)
- Joshua B Parsons
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | |
Collapse
|
12
|
Zarzycki-Siek J, Norris MH, Kang Y, Sun Z, Bluhm AP, McMillan IA, Hoang TT. Elucidating the Pseudomonas aeruginosa fatty acid degradation pathway: identification of additional fatty acyl-CoA synthetase homologues. PLoS One 2013; 8:e64554. [PMID: 23737986 PMCID: PMC3667196 DOI: 10.1371/journal.pone.0064554] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/16/2013] [Indexed: 01/22/2023] Open
Abstract
The fatty acid (FA) degradation pathway of Pseudomonas aeruginosa, an opportunistic pathogen, was recently shown to be involved in nutrient acquisition during BALB/c mouse lung infection model. The source of FA in the lung is believed to be phosphatidylcholine, the major component of lung surfactant. Previous research indicated that P. aeruginosa has more than two fatty acyl-CoA synthetase genes (fadD; PA3299 and PA3300), which are responsible for activation of FAs using ATP and coenzyme A. Through a bioinformatics approach, 11 candidate genes were identified by their homology to the Escherichia coli FadD in the present study. Four new homologues of fadD (PA1617, PA2893, PA3860, and PA3924) were functionally confirmed by their ability to complement the E. coli fadD mutant on FA-containing media. Growth phenotypes of 17 combinatorial fadD mutants on different FAs, as sole carbon sources, indicated that the four new fadD homologues are involved in FA degradation, bringing the total number of P. aeruginosa fadD genes to six. Of the four new homologues, fadD4 (PA1617) contributed the most to the degradation of different chain length FAs. Growth patterns of various fadD mutants on plant-based perfumery substances, citronellic and geranic acids, as sole carbon and energy sources indicated that fadD4 is also involved in the degradation of these plant-derived compounds. A decrease in fitness of the sextuple fadD mutant, relative to the ΔfadD1D2 mutant, was only observed during BALB/c mouse lung infection at 24 h.
Collapse
Affiliation(s)
- Jan Zarzycki-Siek
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Michael H. Norris
- Department of Molecular Bioscience and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Yun Kang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Zhenxin Sun
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Andrew P. Bluhm
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Ian A. McMillan
- Department of Molecular Bioscience and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Tung T. Hoang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Department of Molecular Bioscience and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
13
|
Brzóstkowska M, Raczkowska A, Brzostek K. OmpR, a response regulator of the two-component signal transduction pathway, influences inv gene expression in Yersinia enterocolitica O9. Front Cell Infect Microbiol 2012; 2:153. [PMID: 23264953 PMCID: PMC3524506 DOI: 10.3389/fcimb.2012.00153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/19/2012] [Indexed: 11/13/2022] Open
Abstract
The environmental control of invasin (inv) expression in Yersinia enterocolitica is mediated by a regulatory network composed of negative and positive regulators of inv gene transcription. Previously, we demonstrated that OmpR, a response regulator of the two-component signal transduction pathway EnvZ/OmpR, negatively regulates inv gene expression in Y. enterocolitica O9 by direct interaction with the inv promoter region. This study was undertaken to clarify the role of OmpR in the inv regulatory circuit in which RovA protein has been shown to positively regulate inv transcription. Using ompR, rovA, and ompR rovA Y. enterocolitica mutant backgrounds we showed that the inhibitory effect of OmpR on inv transcription may be observed only when RovA is present/active in Y. enterocolitica cells. To extend our research on inv regulation we examined the effect of OmpR on rovA gene expression. Analysis of rovA-lacZ transcriptional fusion in Y. enterocolitica wild-type and ompR background indicated that OmpR does not influence rovA expression. Thus, our results indicate that OmpR influences inv expression directly via binding to the inv promoter, but not through modulation of rovA expression.
Collapse
Affiliation(s)
- Marta Brzóstkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | | | | |
Collapse
|
14
|
Feng Y, Cronan JE. Crosstalk of Escherichia coli FadR with global regulators in expression of fatty acid transport genes. PLoS One 2012; 7:e46275. [PMID: 23029459 PMCID: PMC3460868 DOI: 10.1371/journal.pone.0046275] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/29/2012] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli FadR plays two regulatory roles in fatty acid metabolism. FadR represses the fatty acid degradation (fad) system and activates the unsaturated fatty acid synthetic pathway. Cross-talk between E. coli FadR and the ArcA-ArcB oxygen-responsive two-component system was observed that resulted in diverse regulation of certain fad regulon β-oxidation genes. We have extended such analyses to the fadL and fadD genes, the protein products of which are required for long chain fatty acid transport and have also studied the role of a third global regulator, the CRP-cAMP complex. The promoters of both the fadL and fadD genes contain two experimentally validated FadR-binding sites plus binding sites for ArcA and CRP-cAMP. Despite the presence of dual binding sites FadR only modestly regulates expression of these genes, indicating that the number of binding sites does not determine regulatory strength. We report complementary in vitro and in vivo studies indicating that the CRP-cAMP complex directly activates expression of fadL and fadD as well as the β-oxidation gene, fadH. The physiological relevance of the fadL and fadD transcription data was validated by direct assays of long chain fatty acid transport.
Collapse
Affiliation(s)
- Youjun Feng
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| | - John E. Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
15
|
OmpR, a Central Integrator of Several Cellular Responses in Yersinia enterocolitica. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:325-34. [DOI: 10.1007/978-1-4614-3561-7_40] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Raczkowska A, Brzóstkowska M, Kwiatek A, Bielecki J, Brzostek K. Modulation of inv gene expression by the OmpR two-component response regulator protein of Yersinia enterocolitica. Folia Microbiol (Praha) 2011; 56:313-9. [PMID: 21818612 DOI: 10.1007/s12223-011-0054-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/12/2011] [Indexed: 12/22/2022]
Abstract
To elucidate the physiological meaning of OmpR-dependent expression of invasin gene (inv) inhibition in Yersinia enterocolitica, the function of the EnvZ/OmpR regulatory pathway in osmoregulation of inv expression was analyzed in detail. The osmoregulation of inv expression was found to be a multifaceted process involving both OmpR-dependent and -independent mechanisms. Analysis of inv transcription in strains lacking OmpR or EnvZ proteins indicated that kinase EnvZ is not the only regulator of OmpR phosphorylation. Using the transcriptional inv::lacZ fusion in a heterologous system (Escherichia coli) we tried to clarify the role of OmpR in the inv regulatory circuit composed of negative (H-NS) and positive (RovA) regulators of inv gene transcription. We were able to show a significant increase in inv expression in E. coli ompR background under H-NS( Ecoli )-repressed condition. Moreover, H-NS-mediated inv repression was relieved when RovA of Y. enterocolitica was expressed from a plasmid. Furthermore, we showed that RovA may activate inv expression irrespective on the presence of H-NS protein. Using this strategy we showed that OmpR of Y. enterocolitica decrease RovA-mediated inv activation.
Collapse
Affiliation(s)
- A Raczkowska
- Department of Applied Microbiology, University of Warsaw, Faculty of Biology, Institute of Microbiology, Miecznikowa 1, Warsaw, Poland
| | | | | | | | | |
Collapse
|
17
|
Agari Y, Agari K, Sakamoto K, Kuramitsu S, Shinkai A. TetR-family transcriptional repressor Thermus thermophilus FadR controls fatty acid degradation. MICROBIOLOGY-SGM 2011; 157:1589-1601. [PMID: 21349973 DOI: 10.1099/mic.0.048017-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the extremely thermophilic bacterium Thermus thermophilus HB8, one of the four TetR-family transcriptional regulators, which we named T. thermophilus FadR, negatively regulated the expression of several genes, including those involved in fatty acid degradation, both in vivo and in vitro. T. thermophilus FadR repressed the expression of the target genes by binding pseudopalindromic sequences covering the predicted -10 hexamers of their promoters, and medium-to-long straight-chain (C10-18) fatty acyl-CoA molecules were effective for transcriptional derepression. An X-ray crystal structure analysis revealed that T. thermophilus FadR bound one lauroyl (C12)-CoA molecule per FadR monomer, with its acyl chain moiety in the centre of the FadR molecule, enclosed within a tunnel-like substrate-binding pocket surrounded by hydrophobic residues, and the CoA moiety interacting with basic residues on the protein surface. The growth of T. thermophilus HB8, with palmitic acid as the sole carbon source, increased the expression of FadR-regulated genes. These results indicate that in T. thermophilus HB8, medium-to-long straight-chain fatty acids can be used for metabolic energy under the control of FadR, although the major fatty acids found in this strain are iso- and anteiso-branched-chain (C15 and 17) fatty acids.
Collapse
Affiliation(s)
- Yoshihiro Agari
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Kazuko Agari
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Keiko Sakamoto
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Seiki Kuramitsu
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.,RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Akeo Shinkai
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
18
|
Bekhit A, Fukamachi T, Saito H, Kobayashi H. The Role of OmpC and OmpF in Acidic Resistance in Escherichia coli. Biol Pharm Bull 2011; 34:330-4. [DOI: 10.1248/bpb.34.330] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Amany Bekhit
- Graduate School of Pharmaceutical Sciences, Chiba University
| | | | - Hiromi Saito
- Graduate School of Pharmaceutical Sciences, Chiba University
| | | |
Collapse
|
19
|
Role of two-component sensory systems of Salmonella enterica serovar Dublin in the pathogenesis of systemic salmonellosis in cattle. Microbiology (Reading) 2010; 156:3108-3122. [DOI: 10.1099/mic.0.041830-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Dublin (S. Dublin) is associated with enteritis, typhoid and abortion in cattle. Infections are acquired by the oral route, and the bacteria transit through varied anatomical and cellular niches to elicit systemic disease. S. Dublin must therefore sense and respond to diverse extrinsic stimuli to control gene expression in a spatial and temporal manner. Two-component systems (TCSs) play key roles in such processes, and typically contain a membrane-associated sensor kinase (SK) that modifies a cognate response regulator. Analysis of the genome sequence of S. Dublin identified 31 conserved SK genes. Each SK gene was separately disrupted by lambda Red recombinase-mediated insertion of transposons harbouring unique sequence tags. Calves were challenged with a pool of the mutants together with control strains of defined virulence by the oral and intravenous routes. Quantification of tagged mutants in output pools derived from various tissues and cannulated lymphatic vessels allowed the assignment of spatial roles for each SK following oral inoculation or when the intestinal barrier was bypassed by intravenous delivery. Mutant phenotypes were also assigned in cultured intestinal epithelial cells. Mutants with insertions in barA, envZ, phoQ, ssrA or qseC were significantly negatively selected at all enteric and systemic sites sampled after oral dosing. Mutants lacking baeS, dpiB or citA were negatively selected at some but not all sites. After intravenous inoculation, only barA and phoQ mutants were significantly under-represented at systemic sites. The novel role of baeS in intestinal colonization was confirmed by oral co-infection studies, with a mutant exhibiting modest but significant attenuation at a number of enteric sites. This is the first systematic analysis of the role of all Salmonella TCSs in a highly relevant model of enteric fever. Spatial roles were assigned to eight S. Dublin SKs, but most were not essential for intestinal or systemic infection of the target host.
Collapse
|
20
|
Raczkowska A, Skorek K, Bielecki J, Brzostek K. OmpR controls Yersinia enterocolitica motility by positive regulation of flhDC expression. Antonie van Leeuwenhoek 2010; 99:381-94. [PMID: 20830609 PMCID: PMC3032193 DOI: 10.1007/s10482-010-9503-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 08/25/2010] [Indexed: 11/26/2022]
Abstract
Flagella and invasin play important roles during the early stages of infection by the enteric pathogen Yersinia enterocolitica. Our previous study demonstrated that OmpR negatively regulates invasin gene expression at the transcriptional level. The present study focused on the role of OmpR in the regulation of flagella expression. Motility assays and microscopic observations revealed that an ompR mutant strain exhibits a non-motile phenotype due to the lack of flagella. An analysis of flhDC::lacZYA chromosomal fusions demonstrated a decrease in flhDC expression in ompR mutant cells, suggesting a role for OmpR in the positive control of flagellar master operon flhDC, which is in contrast to the negative role it plays in Escherichia coli. Moreover, high temperature or osmolarity and low pH decreased flhDC expression and OmpR was not required for the response to these factors. Evidence from an examination of the DNA binding properties of OmpR in vitro indicated that the mechanism by which OmpR regulates flhDC is direct. Electrophoretic mobility shift assays confirmed that OmpR binds specifically to the flhDC promoter region and suggested the presence of more than one OmpR-binding site. In addition, phosphorylation of OmpR by acetyl-P appeared to stimulate the binding abilities of OmpR. Together with the results of our previous studies revealing the negative role of OmpR in the regulation of invasin expression, these findings support a model in which invasion and motility might be reciprocally regulated by OmpR.
Collapse
Affiliation(s)
- Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Karolina Skorek
- Department of Applied Microbiology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Jacek Bielecki
- Department of Applied Microbiology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
21
|
Overlapping repressor binding sites result in additive regulation of Escherichia coli FadH by FadR and ArcA. J Bacteriol 2010; 192:4289-99. [PMID: 20622065 DOI: 10.1128/jb.00516-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli fadH encodes a 2,4-dienoyl reductase that plays an auxiliary role in beta-oxidation of certain unsaturated fatty acids. In the 2 decades since its discovery, FadH biochemistry has been studied extensively. However, the genetic regulation of FadH has been explored only partially. Here we report mapping of the fadH promoter and document its complex regulation by three independent regulators, the fatty acid degradation FadR repressor, the oxygen-responsive ArcA-ArcB two-component system, and the cyclic AMP receptor protein-cyclic AMP (CRP-cAMP) complex. Electrophoretic mobility shift assays demonstrated that FadR binds to the fadH promoter region and that this binding can be specifically reversed by long-chain acyl-coenzyme A (CoA) thioesters. In vivo data combining transcriptional lacZ fusion and real-time quantitative PCR (qPCR) analyses indicated that fadH is strongly repressed by FadR, in agreement with induction of fadH by long-chain fatty acids. Inactivation of arcA increased fadH transcription by >3-fold under anaerobic conditions. Moreover, fadH expression was increased 8- to 10-fold under anaerobic conditions upon deletion of both the fadR and the arcA gene, indicating that anaerobic expression is additively repressed by FadR and ArcA-ArcB. Unlike fadM, a newly reported member of the E. coli fad regulon that encodes another auxiliary beta-oxidation enzyme, fadH was activated by the CRP-cAMP complex in a manner similar to those of the prototypical fad genes. In the absence of the CRP-cAMP complex, repression of fadH expression by both FadR and ArcA-ArcB was very weak, suggesting a possible interplay with other DNA binding proteins.
Collapse
|
22
|
Feng Y, Cronan JE. A new member of the Escherichia coli fad regulon: transcriptional regulation of fadM (ybaW). J Bacteriol 2009; 191:6320-8. [PMID: 19684132 PMCID: PMC2753046 DOI: 10.1128/jb.00835-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 08/09/2009] [Indexed: 11/20/2022] Open
Abstract
Recently, Nie and coworkers (L. Nie, Y. Ren, A. Janakiraman, S. Smith, and H. Schulz, Biochemistry 47:9618-9626, 2008) reported a new Escherichia coli thioesterase encoded by the ybaW gene that cleaves the thioester bonds of inhibitory acyl-coenzyme A (CoA) by-products generated during beta-oxidation of certain unsaturated fatty acids. These authors suggested that ybaW expression might be regulated by FadR, the repressor of the fad (fatty acid degradation) regulon. We report mapping of the ybaW promoter and show that ybaW transcription responded to FadR in vivo. Moreover, purified FadR bound to a DNA sequence similar to the canonical FadR binding site located upstream of the ybaW coding sequence and was released from the promoter upon the addition of long-chain acyl-CoA thioesters. We therefore propose the designation fadM in place of ybaW. Although FadR regulation of fadM expression had the pattern typical of fad regulon genes, its modulation by the cyclic AMP (cAMP) receptor protein-cAMP complex (CRP-cAMP) global regulator was the opposite of that normally observed. CRP-cAMP generally acts as an activator of fad gene expression, consistent with the low status of fatty acids as carbon sources. However, glucose growth stimulated fadM expression relative to acetate growth, as did inactivation of CRP-cAMP, indicating that the complex acts as a negative regulator of this gene. The stimulation of fadM expression seen upon deletion of the gene encoding adenylate cyclase (Deltacya) was reversed by supplementation of the growth medium with cAMP. Nie and coworkers also reported that growth on a conjugated linoleic acid isomer yields much higher levels of FadM thioesterase activity than does growth on oleic acid. In contrast, we found that the conjugated linoleic acid isomer was only a weak inducer of fadM expression. Although the gene is not essential for growth, the high basal level of fadM expression under diverse growth conditions suggests that the encoded thioesterase has functions in addition to beta-oxidation.
Collapse
Affiliation(s)
- Youjun Feng
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | | |
Collapse
|
23
|
Temporal release of fatty acids and sugars in the spermosphere: impacts on Enterobacter cloacae-induced biological control. Appl Environ Microbiol 2008; 74:4292-9. [PMID: 18515478 DOI: 10.1128/aem.00264-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to determine the temporal release of fatty acids and sugars from corn and cucumber seeds during the early stages of seed germination in order to establish whether sugars found in exudate can prevent exudate fatty acid degradation by Enterobacter cloacae. Both saturated (long-chain saturated fatty acids [LCSFA]) and unsaturated (long-chain unsaturated fatty acids [LCUFA]) fatty acids were detected in corn and cucumber seed exudates within 15 min after seed sowing. LCSFA and LCUFA were released at a rate of 26.1 and 6.44 ng/min/seed by corn and cucumber seeds, respectively. The unsaturated portion of the total fatty acid pool from both plant species contained primarily oleic and linoleic acids, and these fatty acids were released at a combined rate of 6.6 and 0.67 ng/min/seed from corn and cucumber, respectively. In the absence of seed exudate sugars, E. cloacae degraded linoleic acid at rates of 29 to 39 ng/min, exceeding the rate of total fatty acid release from seeds. Sugars constituted a significant percentage of corn seed exudate, accounting for 41% of the total dry seed weight. Only 5% of cucumber seed exudate was comprised of sugars. Glucose, fructose, and sucrose were the most abundant sugars present in seed exudate from both plant species. Corn seeds released a total of 137 microg/seed of these three sugars within 30 min of sowing, whereas cucumber seeds released 0.83 microg/seed within the same time frame. Levels of glucose, fructose, and sucrose found in corn seed exudate (90 to 342 microg) reduced the rate of linoleic acid degradation by E. cloacae to 7.5 to 8.8 ng/min in the presence of either sugar, leaving sufficient concentrations of linoleic acid to activate Pythium ultimum sporangia Our results demonstrate that elevated levels of sugars in the corn spermosphere can prevent the degradation of LCUFA by E. cloacae, leading to its failure to suppress P. ultimum sporangial activation, germination, and subsequent disease development.
Collapse
|
24
|
Brzostek K, Brzóstkowska M, Bukowska I, Karwicka E, Raczkowska A. OmpR negatively regulates expression of invasin in Yersinia enterocolitica. MICROBIOLOGY-SGM 2007; 153:2416-2425. [PMID: 17660406 DOI: 10.1099/mic.0.2006/003202-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Invasin, the major adhesion and invasion factor of Yersinia enterocolitica, is encoded by the inv gene, which is regulated by growth phase and in response to a variety of environmental conditions such as temperature, pH and osmolarity. So far, three proteins, RovA, H-NS and YmoA, have been identified as factors regulating the expression of the inv gene in enteropathogenic Yersinia. Here, data from inv' : : lacZYA chromosomal gene fusion studies are presented indicating that OmpR, the response regulator of the EnvZ/OmpR two-component system, acts to negatively regulate inv expression at the transcriptional level at 25 degrees C, and that high osmolarity enhances the inhibitory effect of this protein. In a strain lacking OmpR the expression of inv at 25 degrees C was increased sixfold, but at 37 degrees C, a temperature known to repress inv expression, this effect was not observed, suggesting that temperature regulation of inv is OmpR-independent. Furthermore, the expression of inv in the ompR background was no longer responsive to increased osmolarity. Complementation with the active ompR allele restored wild-type inv expression in the ompR mutant. In silico analysis of the Y. enterocolitica O : 9 inv promoter sequence revealed the presence of an OmpR consensus binding site located in the -15 to -33 region. OmpR was able to specifically bind to a fragment of the inv promoter containing this putative binding site in electrophoretic mobility shift assays. Thus, OmpR seems to be a repressor of inv in Y. enterocolitica.
Collapse
Affiliation(s)
- Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Marta Brzóstkowska
- Department of Applied Microbiology, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Iwona Bukowska
- Department of Applied Microbiology, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Ewa Karwicka
- Department of Applied Microbiology, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
25
|
Cho BK, Knight EM, Palsson BØ. Transcriptional regulation of the fad regulon genes of Escherichia coli by ArcA. MICROBIOLOGY-SGM 2006; 152:2207-2219. [PMID: 16849788 DOI: 10.1099/mic.0.28912-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ArcA is a global transcription factor required for optimal growth of Escherichia coli during anaerobic growth. In this study, the role of ArcA on the transcriptional regulatory subnetwork of the fad regulon was investigated. Gene expression profiles of deletion mutants (Delta arcA, Delta fadR and Delta arcA/Delta fadR) indicated that (i) ArcA is a major transcription factor for the transcriptional regulation of fatty acid metabolism in the absence of oxygen, and (ii) ArcA and FadR cooperatively regulate the fad regulon under anaerobic conditions. To determine the direct interaction between ArcA and the promoters of the fad regulon genes, chromatin immunoprecipitation (ChIP) analysis was performed. ChIP analysis suggested that ArcA directly binds to the promoter regions of the fad regulon genes in vivo. An ArcA-binding motif was identified from known binding sequences and predicted putative binding sites in the promoter regions of the fad regulon genes. These results indicate that ArcA directly represses the expression of fad regulon genes during anaerobic growth.
Collapse
Affiliation(s)
- Byung-Kwan Cho
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Eric M Knight
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Bernhard Ø Palsson
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| |
Collapse
|
26
|
Clark DP, Cronan JE. Two-Carbon Compounds and Fatty Acids as Carbon Sources. EcoSal Plus 2005; 1. [PMID: 26443509 DOI: 10.1128/ecosalplus.3.4.4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Indexed: 06/05/2023]
Abstract
This review concerns the uptake and degradation of those molecules that are wholly or largely converted to acetyl-coenzyme A (CoA) in the first stage of metabolism in Escherichia coli and Salmonella enterica. These include acetate, acetoacetate, butyrate and longer fatty acids in wild type cells plus ethanol and some longer alcohols in certain mutant strains. Entering metabolism as acetyl-CoA has two important general consequences. First, generation of energy from acetyl-CoA requires operation of both the citric acid cycle and the respiratory chain to oxidize the NADH produced. Hence, acetyl-CoA serves as an energy source only during aerobic growth or during anaerobic respiration with such alternative electron acceptors as nitrate or trimethylamine oxide. In the absence of a suitable oxidant, acetyl-CoA is converted to a mixture of acetic acid and ethanol by the pathways of anaerobic fermentation. Catabolism of acetyl-CoA via the citric acid cycle releases both carbon atoms of the acetyl moiety as carbon dioxide and growth on these substrates as sole carbon source therefore requires the operation of the glyoxylate bypass to generate cell material. The pair of related two-carbon compounds, glycolate and glyoxylate are also discussed. However, despite having two carbons, these are metabolized via malate and glycerate, not via acetyl-CoA. In addition, mutants of E. coli capable of growth on ethylene glycol metabolize it via the glycolate pathway, rather than via acetyl- CoA. Propionate metabolism is also discussed because in many respects its pathway is analogous to that of acetate. The transcriptional regulation of these pathways is discussed in detail.
Collapse
Affiliation(s)
- David P Clark
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois 62901
| | - John E Cronan
- Departments of Microbiology and Biochemistry, University of Illinois, B103 CLSL, 601 S. Goodwin Avenue, Urbana, Illinois 61801
| |
Collapse
|
27
|
Goh EB, Siino DF, Igo MM. The Escherichia coli tppB (ydgR) gene represents a new class of OmpR-regulated genes. J Bacteriol 2004; 186:4019-24. [PMID: 15175316 PMCID: PMC419963 DOI: 10.1128/jb.186.12.4019-4024.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The EnvZ/OmpR two-component regulatory system plays a critical role in the Escherichia coli stress response. In this study, we examined the expression of a new OmpR-regulated gene, ydgR. Our results indicate that ydgR is equivalent to the Salmonella enterica serovar Typhimurium tppB gene and represents a new class of OmpR-regulated genes.
Collapse
Affiliation(s)
- Ee-Been Goh
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
28
|
Bang IS, Audia JP, Park YK, Foster JW. Autoinduction of the ompR response regulator by acid shock and control of the Salmonella enterica acid tolerance response. Mol Microbiol 2002; 44:1235-50. [PMID: 12068808 DOI: 10.1046/j.1365-2958.2002.02937.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Salmonella enterica serovar Typhimurium periodically experiences acid stress in a variety of host and non-host environments. An encounter with non-lethal acid stress (pH > 4) induces an assortment of physiological changes, called the acid tolerance response (ATR), that helps the cell to tolerate extreme low pH (pH 3). These physiological changes differ in log phase and stationary phase cells and are controlled by different regulatory proteins. OmpR is an acid-induced response regulator critical to the stationary phase ATR but not to the log phase ATR. As OmpR also controls the expression of the acid-induced virulence operon ssrAB, acid shock induction of ompR was examined to gain insight into how Salmonella links virulence with survival at extreme acid pH. The results indicate that acid pH induces ompR from a promoter different from that used for basal expression. Transcription from this promoter is repressed by the histone-like protein H-NS and requires OmpR-P for induction. The classic sensor kinase EnvZ and acetyl phosphate collaborate to produce the optimum level of OmpR-P needed for autoinduction. Although OmpR-P is required for acid-induced expression of ompR in wild-type cells, OmpR is not needed for ompR transcription in the absence of H-NS. Thus, the role of OmpR-P in autoinduction is to help to counteract repression by H-NS. This evidence, combined with the finding that relaxing DNA supercoiling with novobiocin also increased ompR transcription, suggests that acid stress induces ompR by altering local DNA topology, not by changing the phosphorylation status of OmpR.
Collapse
Affiliation(s)
- Iel Soo Bang
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL 36688, USA
| | | | | | | |
Collapse
|
29
|
Prohinar P, Forst SA, Reed D, Mandic-Mulec I, Weiss J. OmpR-dependent and OmpR-independent responses of Escherichia coli to sublethal attack by the neutrophil bactericidal/permeability increasing protein. Mol Microbiol 2002; 43:1493-504. [PMID: 11952900 DOI: 10.1046/j.1365-2958.2002.02804.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bactericidal/permeability-increasing protein (BPI) of neutrophils is a lipopolysaccharide (LPS)-binding antibacterial protein with specificity for Gram negative bacteria. BPI binding to the bacterial surface rapidly triggers potentially reversible bacterial growth inhibition and alterations of the outer membrane and, later, disruption of the inner membrane and lethal injury. Initial effects include selective OmpR-dependent changes in the synthesis of outer membrane porins (OmpF and OmpC). Because OmpR is a global transcriptional regulator, we have examined its possible role in responses of E. coli to sublethal injury caused by BPI. Early (<15 min) reversible effects of BPI on bacterial colony-forming ability and outer membrane permeability were virtually identical in isogenic wild-type (wt) and ompR- E. coli. Both strains could repair the outer membrane permeability barrier after Mg2+-induced displacement of bound BPI. However, OmpR was essential for the ability of E. coli to tolerate low doses of BPI and escape the progression of sublethal to lethal damage. Scanning electron microscopy revealed that BPI treatment produced greater membrane perturbations in the ompR- strain, apparent even before lethal injury. These findings suggest that the fate of E. coli exposed to BPI depends on both OmpR-independent mechanisms engaged in outer membrane repair and OmpR- dependent processes that modulate porin synthesis and retard progression of injury from the outer to the inner membrane.
Collapse
Affiliation(s)
- Polonca Prohinar
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
30
|
Matsubara M, Kitaoka SI, Takeda SI, Mizuno T. Tuning of the porin expression under anaerobic growth conditions by his-to-Asp cross-phosphorelay through both the EnvZ-osmosensor and ArcB-anaerosensor in Escherichia coli. Genes Cells 2000; 5:555-69. [PMID: 10947842 DOI: 10.1046/j.1365-2443.2000.00347.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Widespread bacterial signal transduction circuits are generally referred to as 'two-component systems' or 'histidine (His)-to-aspartate (Asp) phosphorelays.' In Escherichia coli, as many as 30 distinct His-to-Asp phosphorelay signalling pathways operate in response to a wide variety of environmental stimuli, such as medium osmolarity and anaerobiosis. In this regard, it is of interest whether or not some of them together constitute a network of signalling pathways through a physiologically relevant mechanism (often referred to as 'cross-regulation'). We have addressed this issue, with special reference to the osmo-responsive EnvZ and anaero-responsive ArcB phosphorelay signalling pathways in E. coli. RESULTS Under standard aerobic growth conditions, it is well known that the osmoregulatory profile of the outer membrane porins (OmpC and OmpF) is mainly regulated by the EnvZ-OmpR phosphorelay system in response to medium osmolarity. In this study, it was found that, under anaerobic growth conditions, E. coli cells exhibit a markedly altered expression profile of OmpC and OmpF This profile was significantly different from that observed for the cells grown aerobically. Results from extensive genetic studies showed that, under such anaerobic growth conditions, the arcB gene encoding the anaero-sensory His-kinase appears to be an auxiliary genetic determinant that regulates the expression profile of porins. We then provided several lines of in vivo and in vitro evidence, which taken together, supported the following conclusions. CONCLUSIONS Under anaerobic growth conditions, porin expression is tuned not only by the authentic osmo-resposive EnvZ sensor, but also by the anaero-responsive ArcB sensor, in an OmpR-dependent manner. It is suggested that such ArcB-mediated cross-regulation plays a physiological role by integrating anaerobic respiratory signals into the porin regulation in E. coli anaerobiosis. The proposed model is a clear example of the interplay of two distinct His-to-Asp phosphorelay signalling pathways.
Collapse
Affiliation(s)
- M Matsubara
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
31
|
Tran VK, Oropeza R, Kenney LJ. A single amino acid substitution in the C terminus of OmpR alters DNA recognition and phosphorylation. J Mol Biol 2000; 299:1257-70. [PMID: 10873450 DOI: 10.1006/jmbi.2000.3809] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In bacteria and lower eukaryotes, adaptation to changes in the environment is often mediated by two-component regulatory systems. Such systems provide the basis for chemotaxis, nitrogen and phosphate regulation and adaptation to osmotic stress, for example. In Escherichia coli, the sensor kinase EnvZ detects a change in the osmotic environment and phosphorylates the response regulator OmpR. Phospho-OmpR binds to the regulatory regions of the porin genes ompF and ompC, and alters their expression. Recent evidence suggests that OmpR functions as a global regulator, regulating additional genes besides the porin genes. In this study, we have characterized a previously isolated OmpR2 mutant (V203M) that constitutively activates ompF and fails to express ompC. Because the substitution was located in the C-terminal DNA-binding domain, it had been assumed that the substitution would not affect phosphorylation of the N-terminal domain of OmpR. Our results indicate that this substitution completely eliminates phosphorylation by a small phosphate donor, acetyl phosphate, but not phosphorylation by the kinase EnvZ. The mutant OmpR has altered dephosphorylation kinetics and altered binding affinities to both ompF and ompC sites compared to the wild-type. Thus, a single amino acid substitution in the C-terminal DNA-binding domain has dramatic effects on the N-terminal phosphorylation domain. Most strikingly, we have identified a single base change in the OmpR binding site of ompC that restores high-affinity binding activity by the mutant. We interpret our results in the context of a model for porin gene expression.
Collapse
Affiliation(s)
- V K Tran
- Department of Molecular Microbiology & Immunology, L-220, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97201-3098, USA
| | | | | |
Collapse
|
32
|
Bang IS, Kim BH, Foster JW, Park YK. OmpR regulates the stationary-phase acid tolerance response of Salmonella enterica serovar typhimurium. J Bacteriol 2000; 182:2245-52. [PMID: 10735868 PMCID: PMC111274 DOI: 10.1128/jb.182.8.2245-2252.2000] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/1999] [Accepted: 01/24/2000] [Indexed: 11/20/2022] Open
Abstract
Tolerance to acidic environments is an important property of free-living and pathogenic enteric bacteria. Salmonella enterica serovar Typhimurium possesses two general forms of inducible acid tolerance. One is evident in exponentially growing cells exposed to a sudden acid shock. The other is induced when stationary-phase cells are subjected to a similar shock. These log-phase and stationary-phase acid tolerance responses (ATRs) are distinct in that genes identified as participating in log-phase ATR have little to no effect on the stationary-phase ATR (I. S. Lee, J. L. Slouczewski, and J. W. Foster, J. Bacteriol. 176:1422-1426, 1994). An insertion mutagenesis strategy designed to reveal genes associated with acid-inducible stationary-phase acid tolerance (stationary-phase ATR) yielded two insertions in the response regulator gene ompR. The ompR mutants were defective in stationary-phase ATR but not log-phase ATR. EnvZ, the known cognate sensor kinase, and the porin genes known to be controlled by OmpR, ompC and ompF, were not required for stationary-phase ATR. However, the alternate phosphodonor acetyl phosphate appears to play a crucial role in OmpR-mediated stationary-phase ATR and in the OmpR-dependent acid induction of ompC. This conclusion was based on finding that a mutant form of OmpR, which is active even though it cannot be phosphorylated, was able to suppress the acid-sensitive phenotype of an ack pta mutant lacking acetyl phosphate. The data also revealed that acid shock increases the level of ompR message and protein in stationary-phase cells. Thus, it appears that acid shock induces the production of OmpR, which in its phosphorylated state can trigger expression of genes needed for acid-induced stationary-phase acid tolerance.
Collapse
Affiliation(s)
- I S Bang
- Graduate School of Biotechnology, Korea University, Seoul 136701, Korea
| | | | | | | |
Collapse
|
33
|
Ames SK, Frankema N, Kenney LJ. C-terminal DNA binding stimulates N-terminal phosphorylation of the outer membrane protein regulator OmpR from Escherichia coli. Proc Natl Acad Sci U S A 1999; 96:11792-7. [PMID: 10518529 PMCID: PMC18365 DOI: 10.1073/pnas.96.21.11792] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expression of the porin genes of Escherichia coli is regulated in part by the osmolarity of the growth medium. The process is controlled by the histidine kinase EnvZ and the response regulator OmpR. We have previously shown that phosphorylation of OmpR increases its affinity for the upstream regulatory regions of ompF and ompC. We now report that, in the presence of DNA, there is a dramatic stimulation in the level of phospho-OmpR. This effect is independent of the source of phosphorylation, i.e., stimulation of phosphorylation is observed with a small phosphorylating agent such as acetyl phosphate or with protein-catalyzed phosphorylation by the kinase EnvZ. The dephosphorylation rate of phospho-OmpR is affected only slightly by the presence of DNA; thus, the increased level is largely caused by an increased rate of phosphorylation. Stimulation of phosphorylation requires specific binding of DNA by OmpR. Occupancy of the DNA binding domain exposes a trypsin cleavage site in the linker, which connects the phosphorylation domain with the DNA binding domain. Our results indicate that when DNA binds in the C terminus, it enhances phosphorylation in the N terminus, and the linker undergoes a conformational change. A generalized mechanism involving a four-state model for response regulators is proposed.
Collapse
Affiliation(s)
- S K Ames
- Department of Molecular Microbiology, L-220 Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97201-3098, USA
| | | | | |
Collapse
|
34
|
DiRusso CC, Black PN, Weimar JD. Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Prog Lipid Res 1999; 38:129-97. [PMID: 10396600 DOI: 10.1016/s0163-7827(98)00022-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- C C DiRusso
- Department of Biochemistry and Molecular Biology, Albany Medical College, New York, USA.
| | | | | |
Collapse
|
35
|
DiRusso CC, Nyström T. The fats of Escherichia coli during infancy and old age: regulation by global regulators, alarmones and lipid intermediates. Mol Microbiol 1998; 27:1-8. [PMID: 9466250 DOI: 10.1046/j.1365-2958.1998.00645.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fluidity and phase state of bacterial lipid bilayers commonly change in response to ambient environmental conditions to maintain the critical functions of the envelope as a semipermeable and selective boundary. A special, and intricate, set of alterations in membrane lipid metabolism is elicited by conditions causing growth arrest. Under such conditions, specific alterations in the membrane lipid-fatty acid composition are required for survival of the cell and, concurrently, the membrane lipids are suggested to serve as endogenous reserves providing carbon/energy for maintenance requirements. It appears that the global regulator FadR is required for both of these activities to be performed properly and that the FadR regulon is interconnected to the universal stress response of Escherichia coli. FadR, in conjunction with long-chain fatty acyl-CoA, long-chain acyl-ACP, ppGpp and cAMP, are key players in regulating the activities of enzymes and expression of genes involved in fatty acid and phospholipid metabolism in dividing and ageing E. coli cells.
Collapse
Affiliation(s)
- C C DiRusso
- Department of Biochemistry and Molecular Biology, The Albany Medical College, USA
| | | |
Collapse
|
36
|
Higashitani A, Higashitani N, Horiuchi K. Minus-strand origin of filamentous phage versus transcriptional promoters in recognition of RNA polymerase. Proc Natl Acad Sci U S A 1997; 94:2909-14. [PMID: 9096320 PMCID: PMC20296 DOI: 10.1073/pnas.94.7.2909] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Replication of complementary-strand DNA in filamentous phages is initiated by a primer RNA that is synthesized at the minus-strand origin on the viral single-stranded DNA by Escherichia coli RNA polymerase holoenzyme containing the sigma70 subunit. We have demonstrated that the affinity of RNA polymerase in vitro to the origin is about 16-fold higher than that to the lacUV5 promoter. We have also shown that the temperature dependence of the primer RNA synthesis is much lower than that of lacUV5 transcription. The high affinity of RNA polymerase to the origin depends on the single strandedness of the "-10 region." A nucleotide sequence of the nontemplate strand in the -10 region was found to be important for the function, but that of the template strand was not. These observations suggest that sigma70 subunit directly interacts with the single-stranded nontemplate strand containing adenine residue(s) at the -10 region of promoter.
Collapse
Affiliation(s)
- A Higashitani
- Division of Microbial Genetics, National Institute of Genetics, Mishima, Japan
| | | | | |
Collapse
|
37
|
Skarphol K, Waukau J, Forst SA. Role of His243 in the phosphatase activity of EnvZ in Escherichia coli. J Bacteriol 1997; 179:1413-6. [PMID: 9023231 PMCID: PMC178845 DOI: 10.1128/jb.179.4.1413-1416.1997] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
EnvZ undergoes autophosphorylation at His243 and subsequently transfers the phosphate group to OmpR. EnvZ also possesses an OmpR-phosphate phosphatase activity. We examined the role of His243 in the phosphatase function by replacing His with either Val, Tyr, Ser, Asp, or Asn. EnvZH243V and EnvZH243Y were both shown to possess phosphatase activity in vitro. In addition, the mutant proteins were able to reduce the high level of OmpR-phosphate present in the envZ473 strain. These results indicate that His243 of EnvZ is not essential for stimulating the dephosphorylation of OmpR-phosphate.
Collapse
Affiliation(s)
- K Skarphol
- Department of Biological Sciences, University of Wisconsin--Milwaukee, 53201, USA
| | | | | |
Collapse
|
38
|
Shin S, Park C. Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 1995; 177:4696-702. [PMID: 7642497 PMCID: PMC177235 DOI: 10.1128/jb.177.16.4696-4702.1995] [Citation(s) in RCA: 226] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
During the search for unknown factors involved in motility, we have found that expression of the flagellar master operon flhDC is affected by mutations of the pta and ackA genes, encoding phosphotransacetylase and acetate kinase, respectively (S. Shin, J. Sheen, and C. Park, Korean J. Microbiol. 31:504-511, 1993). Here we describe results showing that this effect is modulated by externally added acetate, except when both pta and ackA are mutated, suggesting the role of acetyl phosphate, an intermediate of acetate metabolism, as a regulatory effector. Furthermore, the following evidence indicates that the phosphorylation of OmpR, a trans factor for osmoregulation, regulates flagellar expression. First, in a strain lacking ompR, the expression of flhDC is no longer responsive to a change in the level of acetyl phosphate. Second, an increase in medium osmolarity does not decrease flhDC expression in an ompR mutant. It is known that such an increase normally enhances OmpR phosphorylation. Third, OmpR protein binds to the DNA fragment containing the flhDC promoter, and its affinity is increased with phosphorylation by acetyl phosphate. DNase I footprinting revealed the regions of the flhDC promoter protected by OmpR in the presence or absence of phosphorylation. Therefore, we propose that the phosphorylated OmpR, generated by either osmolarity change or the internal level of acetyl phosphate, negatively regulates the expression of flagella.
Collapse
Affiliation(s)
- S Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yusong-Ku, Taejon
| | | |
Collapse
|