1
|
Van der Linden E, Burgdorf T, Bernhard M, Bleijlevens B, Friedrich B, Albracht SPJ. The soluble [NiFe]-hydrogenase from Ralstonia eutropha contains four cyanides in its active site, one of which is responsible for the insensitivity towards oxygen. J Biol Inorg Chem 2004; 9:616-26. [PMID: 15164270 DOI: 10.1007/s00775-004-0555-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Accepted: 04/27/2004] [Indexed: 11/30/2022]
Abstract
Infrared spectra of (15)N-enriched preparations of the soluble cytoplasmic NAD(+)-reducing [NiFe]-hydrogenase from Ralstonia eutropha are presented. These spectra, together with chemical analyses, show that the Ni-Fe active site contains four cyanide groups and one carbon monoxide molecule. It is proposed that the active site is a (RS)(2)(CN)Ni(micro-RS)(2)Fe(CN)(3)(CO) centre (R=Cys) and that H(2) activation solely takes place on nickel. One of the two FMN groups (FMN-a) in the enzyme can be reversibly released upon reduction of the enzyme. It is now reported that at longer times also one of the cyanide groups, the one proposed to be bound to the nickel atom, could be removed from the enzyme. This process was irreversible and induced the inhibition of the enzyme activity by oxygen; the enzyme remained insensitive to carbon monoxide. The Ni-Fe active site was EPR undetectable under all conditions tested. It is concluded that the Ni-bound cyanide group is responsible for the oxygen insensitivity of the enzyme.
Collapse
Affiliation(s)
- Eddy Van der Linden
- Swammerdam Institute for Life Sciences, Biochemistry, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
2
|
Martínez M, Brito B, Imperial J, Ruiz-Argüeso T. Characterization of a new internal promoter (P3) for Rhizobium leguminosarum hydrogenase accessory genes hupGHIJ. Microbiology (Reading) 2004; 150:665-675. [PMID: 14993316 DOI: 10.1099/mic.0.26623-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synthesis of the Rhizobium leguminosarum [NiFe] hydrogenase requires the participation of 16 accessory genes (hupCDEFGHIJKhypABFCDEX) besides the genes encoding the structural proteins (hupSL). Transcription of hupSL is controlled by a -24/-12-type promoter (P(1)), located upstream of hupS and regulated by NifA. In this work, a second -24/-12-type promoter (P(3)), located upstream of the hupG gene and transcribing hupGHIJ genes in R. leguminosarum pea (Pisum sativum L.) bacteroids, has been identified in the hup gene cluster. Promoter P(3) was also active in R. leguminosarum free-living cells, as evidenced by genetic complementation of hydrogenase mutants. Both NifA and NtrC activated P(3) expression in the heterologous host Klebsiella pneumoniae. Also, P(3) activity was highly stimulated by K. pneumoniae NifA in Escherichia coli. This NifA activation of P(3) expression only required the sigma(54)-binding site, and it was independent of any cis-acting element upstream of the sigma(54) box, which suggests a direct interaction of free NifA with the RNA polymerase holoenzyme. P(3)-dependent hupGHIJ expression in pea nodules started in interzone II/III, spanned through nitrogen-fixing zone III, and was coincident with the NifA-dependent nifH expression pattern. However, P(3) was dispensable for hupGHIJ transcription and hydrogenase activity in pea bacteroids due to transcription initiated at P(1). This fact and the lack of an activator recruitment system suggest that P(3) plays a secondary role in symbiotic hupGHIJ expression.
Collapse
Affiliation(s)
- Marta Martínez
- Departamento de Biotecnología, E. T. S. de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Belén Brito
- Departamento de Biotecnología, E. T. S. de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Juan Imperial
- Consejo Superior de Investigaciones Científicas (C.S.I.C.), 28040 Madrid, Spain
| | - Tomás Ruiz-Argüeso
- Departamento de Biotecnología, E. T. S. de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Valdés J, Veloso F, Jedlicki E, Holmes D. Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis. BMC Genomics 2003; 4:51. [PMID: 14675496 PMCID: PMC324559 DOI: 10.1186/1471-2164-4-51] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Accepted: 12/15/2003] [Indexed: 11/10/2022] Open
Abstract
Background Acidithiobacillus ferrooxidans is a gamma-proteobacterium that lives at pH2 and obtains energy by the oxidation of sulfur and iron. It is used in the biomining industry for the recovery of metals and is one of the causative agents of acid mine drainage. Effective tools for the study of its genetics and physiology are not in widespread use and, despite considerable effort, an understanding of its unusual physiology remains at a rudimentary level. Nearly complete genome sequences of A. ferrooxidans are available from two public sources and we have exploited this information to reconstruct aspects of its sulfur metabolism. Results Two candidate mechanisms for sulfate uptake from the environment were detected but both belong to large paralogous families of membrane transporters and their identification remains tentative. Prospective genes, pathways and regulatory mechanisms were identified that are likely to be involved in the assimilation of sulfate into cysteine and in the formation of Fe-S centers. Genes and regulatory networks were also uncovered that may link sulfur assimilation with nitrogen fixation, hydrogen utilization and sulfur reduction. Potential pathways were identified for sulfation of extracellular metabolites that may possibly be involved in cellular attachment to pyrite, sulfur and other solid substrates. Conclusions A bioinformatic analysis of the genome sequence of A. ferrooxidans has revealed candidate genes, metabolic process and control mechanisms potentially involved in aspects of sulfur metabolism. Metabolic modeling provides an important preliminary step in understanding the unusual physiology of this extremophile especially given the severe difficulties involved in its genetic manipulation and biochemical analysis.
Collapse
Affiliation(s)
- Jorge Valdés
- Laboratory of Bioinformatics and Genome Biology, University of Santiago (USACH), Santiago, Chile
| | - Felipe Veloso
- Laboratory of Bioinformatics and Genome Biology, University of Santiago (USACH), Santiago, Chile
- Millennium Institute of Fundamental and Applied Biology, Santiago, Chile
| | - Eugenia Jedlicki
- Program of Cellular and Molecular Biology, I.C.B.M., Faculty of Medicine, University of Chile, Santiago, Chile
| | - David Holmes
- Laboratory of Bioinformatics and Genome Biology, University of Santiago (USACH), Santiago, Chile
- Millennium Institute of Fundamental and Applied Biology, Santiago, Chile
| |
Collapse
|
4
|
Baginsky C, Brito B, Imperial J, Palacios JM, Ruiz-Argüeso T. Diversity and evolution of hydrogenase systems in rhizobia. Appl Environ Microbiol 2002; 68:4915-24. [PMID: 12324339 PMCID: PMC126442 DOI: 10.1128/aem.68.10.4915-4924.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uptake hydrogenases allow rhizobia to recycle the hydrogen generated in the nitrogen fixation process within the legume nodule. Hydrogenase (hup) systems in Bradyrhizobium japonicum and Rhizobium leguminosarum bv. viciae show highly conserved sequence and gene organization, but important differences exist in regulation and in the presence of specific genes. We have undertaken the characterization of hup gene clusters from Bradyrhizobium sp. (Lupinus), Bradyrhizobium sp. (Vigna), and Rhizobium tropici and Azorhizobium caulinodans strains with the aim of defining the extent of diversity in hup gene composition and regulation in endosymbiotic bacteria. Genomic DNA hybridizations using hupS, hupE, hupUV, hypB, and hoxA probes showed a diversity of intraspecific hup profiles within Bradyrhizobium sp. (Lupinus) and Bradyrhizobium sp. (Vigna) strains and homogeneous intraspecific patterns within R. tropici and A. caulinodans strains. The analysis also revealed differences regarding the possession of hydrogenase regulatory genes. Phylogenetic analyses using partial sequences of hupS and hupL clustered R. leguminosarum and R. tropici hup sequences together with those from B. japonicum and Bradyrhizobium sp. (Lupinus) strains, suggesting a common origin. In contrast, Bradyrhizobium sp. (Vigna) hup sequences diverged from the rest of rhizobial sequences, which might indicate that those organisms have evolved independently and possibly have acquired the sequences by horizontal transfer from an unidentified source.
Collapse
Affiliation(s)
- Cecilia Baginsky
- Laboratorio de Microbiología, E.T.S. Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | | | |
Collapse
|
5
|
Brito B, Palacios JM, Imperial J, Ruiz-Argüeso T. Engineering the Rhizobium leguminosarum bv. viciae hydrogenase system for expression in free-living microaerobic cells and increased symbiotic hydrogenase activity. Appl Environ Microbiol 2002; 68:2461-7. [PMID: 11976122 PMCID: PMC127565 DOI: 10.1128/aem.68.5.2461-2467.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium leguminosarum bv. viciae UPM791 induces hydrogenase activity in pea (Pisum sativum L.) bacteroids but not in free-living cells. The symbiotic induction of hydrogenase structural genes (hupSL) is mediated by NifA, the general regulator of the nitrogen fixation process. So far, no culture conditions have been found to induce NifA-dependent promoters in vegetative cells of this bacterium. This hampers the study of the R. leguminosarum hydrogenase system. We have replaced the native NifA-dependent hupSL promoter with the FnrN-dependent fixN promoter, generating strain SPF25, which expresses the hup system in microaerobic free-living cells. SPF25 reaches levels of hydrogenase activity in microaerobiosis similar to those induced in UPM791 bacteroids. A sixfold increase in hydrogenase activity was detected in merodiploid strain SPF25(pALPF1). A time course induction of hydrogenase activity in microaerobic free-living cells of SPF25(pALPF1) shows that hydrogenase activity is detected after 3 h of microaerobic incubation. Maximal hydrogen uptake activity was observed after 10 h of microaerobiosis. Immunoblot analysis of microaerobically induced SPF25(pALPF1) cell fractions indicated that the HupL active form is located in the membrane, whereas the unprocessed protein remains in the soluble fraction. Symbiotic hydrogenase activity of strain SPF25 was not impaired by the promoter replacement. Moreover, bacteroids from pea plants grown in low-nickel concentrations induced higher levels of hydrogenase activity than the wild-type strain and were able to recycle all hydrogen evolved by nodules. This constitutes a new strategy to improve hydrogenase activity in symbiosis.
Collapse
Affiliation(s)
- B Brito
- Laboratorio de Microbiología, E. T. S. Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
6
|
Johnston AW, Yeoman KH, Wexler M. Metals and the rhizobial-legume symbiosis--uptake, utilization and signalling. Adv Microb Physiol 2002; 45:113-56. [PMID: 11450108 DOI: 10.1016/s0065-2911(01)45003-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, we consider how the nitrogen-fixing root nodule bacteria, the 'rhizobia', acquire various metals, paying particular attention to the uptake of iron. We also review the literature pertaining to the roles of molybdenum and nickel in the symbiosis with legumes. We highlight some gaps in our knowledge, for example the lack of information on how rhizobia acquire molybdenum. We examine the means whereby different metals affect rhizobial physiology and the role of metals as signals for gene regulation. We describe the ways in which genetics has shown (or not) if, and how, particular metal uptake and/or metal-mediated signalling pathways are required for the symbiotic interaction with legumes.
Collapse
Affiliation(s)
- A W Johnston
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | | |
Collapse
|
7
|
Báscones E, Imperial J, Ruiz-Argüeso T, Palacios JM. Generation of new hydrogen-recycling Rhizobiaceae strains by introduction of a novel hup minitransposon. Appl Environ Microbiol 2000; 66:4292-9. [PMID: 11010872 PMCID: PMC92298 DOI: 10.1128/aem.66.10.4292-4299.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrogen evolution by nitrogenase is a source of inefficiency for the nitrogen fixation process by the Rhizobium-legume symbiosis. To develop a strategy to generate rhizobial strains with H(2)-recycling ability, we have constructed a Tn5 derivative minitransposon (TnHB100) that contains the ca. 18-kb H(2) uptake (hup) gene cluster from Rhizobium leguminosarum bv. viciae UPM791. Bacteroids from TnHB100-containing strains of R. leguminosarum bv. viciae PRE, Bradyrhizobium japonicum, R. etli, and Mesorhizobium loti expressed high levels of hydrogenase activity that resulted in full recycling of the hydrogen evolved by nitrogenase in nodules. Efficient processing of the hydrogenase large subunit (HupL) in these strains was shown by immunoblot analysis of bacteroid extracts. In contrast, Sinorhizobium meliloti, M. ciceri, and R. leguminosarum bv. viciae UML2 strains showed poor expression of the hup system that resulted in H(2)-evolving nodules. For the latter group of strains, no immunoreactive material was detected in bacteroid extracts using anti-HupL antiserum, suggesting a low level of transcription of hup genes or HupL instability. A general procedure for the characterization of the minitransposon insertion site and removal of antibiotic resistance gene included in TnHB100 has been developed and used to generate engineered strains suitable for field release.
Collapse
Affiliation(s)
- E Báscones
- Laboratorio de Microbiología, Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
8
|
Dischert W, Vignais PM, Colbeau A. The synthesis of Rhodobacter capsulatus HupSL hydrogenase is regulated by the two-component HupT/HupR system. Mol Microbiol 1999; 34:995-1006. [PMID: 10594824 DOI: 10.1046/j.1365-2958.1999.01660.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The synthesis of the membrane-bound [NiFe]hydrogenase of Rhodobacter capsulatus (HupSL) is regulated negatively by the protein histidine kinase, HupT, and positively by the response regulator, HupR. It is demonstrated in this work that HupT and HupR are partners in a two-component signal transduction system. The binding of HupR protein to the hupS promoter regulatory region (phupS ) was studied using gel retardation and footprinting assays. HupR protected a 50 bp region localized upstream from the binding site of the histone-like integration host factor (IHF) regulator. HupR, which belongs to the NtrC subfamily, binds to an enhancer site (TTG-N5-CAA) localized at -162/-152 nt. However, the enhancer-binding HupR protein does not require the RpoN sigma factor for transcriptional activation, as is the case for NtrC from enteric bacteria, but functions with sigma70-RNA polymerase, as is the case for R. capsulatus NtrC. Besides, unlike NtrC from Escherichia coli, HupR activates transcription in the unphosphorylated form and becomes inactive by phosphorylation. This was demonstrated by replacing the putative phosphorylation site (D54) of the HupR protein with various amino acids or by deleting it using site-directed mutagenesis. Strains expressing mutated hupR genes showed high hydrogenase activities even in the absence of H2, indicating that hupSL transcription is activated by the binding of unphosphorylated HupR protein. Strains producing mutated HupRD54 proteins were derepressed for hupSL expression as were HupT- mutants. It is shown that the phosphorylated form of HupT was able to transfer phosphate to wild-type HupR protein but not to mutated D54 HupR proteins. Thus, it is concluded that HupT and HupR are the partners of a two-component regulatory system that regulates hupSL gene transcription.
Collapse
Affiliation(s)
- W Dischert
- Unité Mixte de Recherche 314 CEA-CNRS, Laboratoire de Biochimie et de Biophysique des Systèmes Intégrés, Département de Biologie Moléculaire et Structurale, CEA-Grenoble, 17 rue des Martyrs, F-38054 Grenoble cedex 9, France
| | | | | |
Collapse
|
9
|
Dainese-Hatt P, Fischer HM, Hennecke H, James P. Classifying symbiotic proteins from Bradyrhizobium japonicum into functional groups by proteome analysis of altered gene expression levels. Electrophoresis 1999; 20:3514-20. [PMID: 10612277 DOI: 10.1002/(sici)1522-2683(19991201)20:18<3514::aid-elps3514>3.0.co;2-t] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The advent of whole genome sequences has brought with it a vast number of new potential proteins whose function is unknown. We describe an approach to sorting proteins into functional groups by comparative two-dimensional (2-D) gel mapping of cells grown under different physiological conditions. Computerized image analysis selects the proteins whose expression levels change significantly for subsequent identification by mass spectrometry. The protein groupings are further subdivided by directed alteration of their expression levels (e.g., by gene inactivation) and following the changes in the expression pattern of the mutants. We have applied this approach to study the regulation of micro- and anaerobically induced genes including the genes involved in nitrogen fixation in the symbiotic bacterium Bradyrhizobium japonicum. The results obtained show that in addition to the two known regulons controlled by the transcription factors NifA and FixK2, a third set of proteins may exist in B. japonicum which are induced by anaerobic conditions and are regulated independently. The approach can be applied generally and can be used to build up functional relationship maps of genomes. Protein identification by mass spectrometry was shown to be vital to the interpretation of the expression analysis since 15% of the 2-D gel spots contained more than one protein.
Collapse
|
10
|
Van Soom C, Lerouge I, Vanderleyden J, Ruiz-Argüeso T, Palacios JM. Identification and characterization of hupT, a gene involved in negative regulation of hydrogen oxidation in Bradyrhizobium japonicum. J Bacteriol 1999; 181:5085-9. [PMID: 10438783 PMCID: PMC94000 DOI: 10.1128/jb.181.16.5085-5089.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bradyrhizobium japonicum hupT gene was sequenced, and its gene product was found to be homologous to NtrB-like histidine kinases. A hupT mutant expresses higher levels of hydrogenase activity than the wild-type strain under hydrogenase-inducing conditions (i.e., microaerobiosis plus hydrogen, or symbiosis), whereas in noninduced hupT cells, hupSL expression is derepressed but does not lead to hydrogenase activity. We conclude that HupT is involved in the repression of HupSL synthesis at the transcriptional level but that enzymatic activation requires inducing conditions.
Collapse
Affiliation(s)
- C Van Soom
- F. A. Janssens Laboratory of Genetics, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium
| | | | | | | | | |
Collapse
|
11
|
Lenz O, Friedrich B. A novel multicomponent regulatory system mediates H2 sensing in Alcaligenes eutrophus. Proc Natl Acad Sci U S A 1998; 95:12474-9. [PMID: 9770510 PMCID: PMC22855 DOI: 10.1073/pnas.95.21.12474] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxidation of molecular hydrogen catalyzed by [NiFe] hydrogenases is a widespread mechanism of energy generation among prokaryotes. Biosynthesis of the H2-oxidizing enzymes is a complex process subject to positive control by H2 and negative control by organic energy sources. In this report we describe a novel signal transduction system regulating hydrogenase gene (hox) expression in the proteobacterium Alcaligenes eutrophus. This multicomponent system consists of the proteins HoxB, HoxC, HoxJ*, and HoxA. HoxB and HoxC share characteristic features of dimeric [NiFe] hydrogenases and form the putative H2 receptor that interacts directly or indirectly with the histidine protein kinase HoxJ*. A single amino acid substitution (HoxJ*G422S) in a conserved C-terminal glycine-rich motif of HoxJ* resulted in a loss of H2-dependent signal transduction and a concomitant block in autophosphorylating activity, suggesting that autokinase activity is essential for the response to H2. Whereas deletions in hoxB or hoxC abolished hydrogenase synthesis almost completely, the autokinase-deficient strain maintained high-level hox gene expression, indicating that the active sensor kinase exerts a negative effect on hox gene expression in the absence of H2. Substitutions of the conserved phosphoryl acceptor residue Asp55 in the response regulator HoxA (HoxAD55E and HoxAD55N) disrupted the H2 signal-transduction chain. Unlike other NtrC-like regulators, the altered HoxA proteins still allowed high-level transcriptional activation. The data presented here suggest a model in which the nonphosphorylated form of HoxA stimulates transcription in concert with a yet unknown global energy-responsive factor.
Collapse
Affiliation(s)
- O Lenz
- Institut für Biologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany
| | | |
Collapse
|
12
|
Durmowicz MC, Maier RJ. The FixK2 protein is involved in regulation of symbiotic hydrogenase expression in Bradyrhizobium japonicum. J Bacteriol 1998; 180:3253-6. [PMID: 9620982 PMCID: PMC107833 DOI: 10.1128/jb.180.12.3253-3256.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The roles of the nitrogen fixation regulatory proteins NifA, FixK1, and FixK2 in the symbiotic regulation of hydrogenase structural gene expression in Bradyrhizobium japonicum have been investigated. Bacteroids from FixJ and FixK2 mutants have little or no hydrogenase activity, and extracts from these mutant bacteroids contain no hydrogenase protein. Bacteroids from a FixK1 mutant exhibit wild-type levels of hydrogenase activity. In beta-galactosidase transcriptional assays with NifA and FixK2 expression plasmids, the FixK2 protein induces transcription from the hup promoter to levels similar to those induced by HoxA, the transcriptional activator of free-living hydrogenase expression. The NifA protein does not activate transcription at the hydrogenase promoter. Therefore, FixK2 is involved in the transcriptional activation of symbiotic hydrogenase expression. By using beta-galactosidase transcriptional fusion constructs containing successive truncations of the hup promoter, the region of the hup promoter required for regulation by FixK2 was determined to be between 29 and 44 bp upstream of the transcription start site.
Collapse
Affiliation(s)
- M C Durmowicz
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
13
|
Olson JW, Maier RJ. The sequences of hypF, hypC and hypD complete the hyp gene cluster required for hydrogenase activity in Bradyrhizobium japonicum. Gene X 1997; 199:93-9. [PMID: 9358044 DOI: 10.1016/s0378-1119(97)00352-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A region of DNA 6 kb downstream of the hydrogenase (H2ase) structural genes and directly downstream of the hypB gene of Bradyrhizobium japonicum was shown by mutational analysis to be necessary for H2ase synthesis. Sequencing of this region revealed two complete open reading frames, and the 5' fragment of a third ORF. They encode proteins with homologies to the HypF, HypC and the N-terminus of HypD from other H2ase-containing organisms. The hypF of B. japonicum encodes a 753-aa protein with a predicted molecular mass of 80.3 kDa that contains the two zinc-finger motifs characteristic of other HypF proteins. The hypC encodes a 85-aa protein with a predicted molecular mass of 8.4 kDa. The 5' portion of hypD, which encodes the first 35 aa, upon combining with the previously reported C-terminus of HypD, designated HypD' (Van Soom et al. (1993) Mol. Gen. Genet. 239, 235-240) encodes a protein with a predicted molecular mass of 42.4 kDa. Complementation studies on a H2 uptake defective strain of B. japonicum containing a polar mutation in the hyp operon revealed that the products of the hyp F, C, D, E genes are required for H2ase production. Evidence is also presented that the hyp genes are co-transcribed from a large operon together with the downstream genes hupGHIJK, making a polycistronic message of 11 genes.
Collapse
Affiliation(s)
- J W Olson
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
14
|
Brito B, Martínez M, Fernández D, Rey L, Cabrera E, Palacios JM, Imperial J, Ruiz-Argüeso T. Hydrogenase genes from Rhizobium leguminosarum bv. viciae are controlled by the nitrogen fixation regulatory protein nifA. Proc Natl Acad Sci U S A 1997; 94:6019-24. [PMID: 9177161 PMCID: PMC20993 DOI: 10.1073/pnas.94.12.6019] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/1996] [Accepted: 04/07/1997] [Indexed: 02/04/2023] Open
Abstract
Rhizobium leguminosarum bv. viciae expresses an uptake hydrogenase in symbiosis with peas (Pisum sativum) but, unlike all other characterized hydrogen-oxidizing bacteria, cannot express it in free-living conditions. The hydrogenase-specific transcriptional activator gene hoxA described in other species was shown to have been inactivated in R. leguminosarum by accumulation of frameshift and deletion mutations. Symbiotic transcription of hydrogenase structural genes hupSL originates from a -24/-12 type promoter (hupSp). A regulatory region located in the -173 to -88 region was essential for promoter activity in R. leguminosarum. Activation of hupSp was observed in Klebsiella pneumoniae and Escherichia coli cells expressing the K. pneumoniae nitrogen fixation regulator NifA, and in E. coli cells expressing R. meliloti NifA. This activation required direct interaction of NifA with the essential -173 to -88 regulatory region. However, no sequences resembling known NifA-binding sites were found in or around this region. NifA-dependent activation was also observed in R. etli bean bacteroids. NifA-dependent hupSp activity in heterologous hosts was also absolutely dependent on the RpoN sigma-factor and on integration host factor. Proteins immunologically related to integration host factor were identified in R. leguminosarum. The data suggest that hupSp is structurally and functionally similar to nitrogen fixation promoters. The requirement to coordinate nitrogenase-dependent H2 production and H2 oxidation in nodules might be the reason for the loss of HoxA in R. leguminosarum and the concomitant NifA control of hup gene expression. This evolutionary acquired control would ensure regulated synthesis of uptake hydrogenase in the most common H2-rich environment for rhizobia, the legume nodule.
Collapse
Affiliation(s)
- B Brito
- Laboratorio de Microbiología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Durmowicz MC, Maier RJ. Roles of HoxX and HoxA in biosynthesis of hydrogenase in Bradyrhizobium japonicum. J Bacteriol 1997; 179:3676-82. [PMID: 9171416 PMCID: PMC179164 DOI: 10.1128/jb.179.11.3676-3682.1997] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In-frame deletion mutagenesis was used to study the roles of two Bradyrhizobium japonicum proteins, HoxX and HoxA, in hydrogenase biosynthesis; based on their sequences, these proteins were previously proposed to be sensor and regulator proteins, respectively, of a two-component regulatory system necessary for hydrogenase transcription. Deletion of the hoxX gene resulted in a strain that expressed only 30 to 40% of wild-type hydrogenase activity. The inactive unprocessed form of the hydrogenase large subunit accumulated in this strain, indicating a role for HoxX in posttranslational processing of the hydrogenase enzyme but not in transcriptional regulation. Strains containing a deletion of the hoxA gene or a double mutation (hoxX and hoxA) did not exhibit any hydrogenase activity under free-living conditions, and extracts from these strains were inactive in gel retardation assays with a 158-bp fragment of the DNA region upstream of the hupSL operon. However, bacteroids from root nodules formed by all three mutant types (hoxX, hoxA, and hoxX hoxA) exhibited hydrogenase activity comparable to that of wild-type bacteroids. Bacteroid extracts from all of these strains, including the wild type, failed to cause a shift of the hydrogenase upstream region used in our assay. It was shown that HoxA is a DNA-binding transcriptional activator of hydrogenase structural gene expression under free-living conditions but not under symbiotic conditions. Although symbiotic hydrogenase expression is still sigma54 dependent, a transcriptional activator other than HoxA functions presumably upstream of the HoxA binding site.
Collapse
Affiliation(s)
- M C Durmowicz
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
16
|
Lenz O, Strack A, Tran-Betcke A, Friedrich B. A hydrogen-sensing system in transcriptional regulation of hydrogenase gene expression in Alcaligenes species. J Bacteriol 1997; 179:1655-63. [PMID: 9045826 PMCID: PMC178879 DOI: 10.1128/jb.179.5.1655-1663.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Heterologous complementation studies using Alcaligenes eutrophus H16 as a recipient identified a hydrogenase-specific regulatory DNA region on megaplasmid pHG21-a of the related species Alcaligenes hydrogenophilus. Nucleotide sequence analysis revealed four open reading frames on the subcloned DNA, designated hoxA, hoxB, hoxC, and hoxJ. The product of hoxA is homologous to a transcriptional activator of the family of two-component regulatory systems present in a number of H2-oxidizing bacteria. hoxB and hoxC predict polypeptides of 34.5 and 52.5 kDa, respectively, which resemble the small and the large subunits of [NiFe] hydrogenases and correlate with putative regulatory proteins of Bradyrhizobium japonicum (HupU and HupV) and Rhodobacter capsulatus (HupU). hoxJ encodes a protein with typical consensus motifs of histidine protein kinases. Introduction of the complete set of genes on a broad-host-range plasmid into A. eutrophus H16 caused severe repression of soluble and membrane-bound hydrogenase (SH and MBH, respectively) synthesis in the absence of H2. This repression was released by truncation of hoxJ. H2-dependent hydrogenase gene transcription is a typical feature of A. hydrogenophilus and differs from the energy and carbon source-responding, H2-independent mode of control characteristic of A. eutrophus H16. Disruption of the A. hydrogenophilus hoxJ gene by an in-frame deletion on megaplasmid pHG21-a led to conversion of the regulatory phenotype: SH and MBH of the mutant were expressed in the absence of H2 in response to the availability of the carbon and energy source. RNA dot blot analysis showed that HoxJ functions on the transcriptional level. These results suggest that the putative histidine protein kinase HoxJ is involved in sensing molecular hydrogen, possibly in conjunction with the hydrogenase-like polypeptides HoxB and HoxC.
Collapse
Affiliation(s)
- O Lenz
- Institut für Biologie der Humboldt-Universität zu Berlin, Germany
| | | | | | | |
Collapse
|
17
|
Rey L, Fernández D, Brito B, Hernando Y, Palacios JM, Imperial J, Ruiz-Argüeso T. The hydrogenase gene cluster of Rhizobium leguminosarum bv. viciae contains an additional gene (hypX), which encodes a protein with sequence similarity to the N10-formyltetrahydrofolate-dependent enzyme family and is required for nickel-dependent hydrogenase processing and activity. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:237-48. [PMID: 8842143 DOI: 10.1007/bf02173769] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Plasmid pAL618 contains the genetic determinants for H2 uptake (hup) from Rhizobium leguminosarum bv. viciae, including a cluster of 17 genes named hupSLCDEFGHIJK-hypABFCDE. A 1.7-kb segment of insert DNA located downstream of hypE has now been sequenced, thus completing the sequence of the 20441-bp insert DNA in plasmid pAL618. An open reading frame (designated hypX) encoding a protein with a calculated M(r) of 62300 that exhibits extensive sequence similarity with HoxX from Alcaligenes eutrophus (52% identity) and Bradyrhizobium japonicum (57% identity) was identified 10 bp downstream of hypE. Nodule bacteroids produced by hypX mutants in pea (Pisum sativum L.) plants grown at optimal nickel concentrations (100 microM) for hydrogenase expression, exhibited less than 5% of the wild-type levels of hydrogenase activity. These bacteroids contained wild-type levels of mRNA from hydrogenase structural genes (hupSL) but accumulated large amounts of the immature form of HupL protein. The Hup-deficient mutants were complemented for normal hydrogenase activity and nickel-dependent maturation of HupL by a hypX gene provided in trans. From expression analysis of hypX-lacZ fusion genes, it appears that hypX gene is transcribed from the FnrN-dependent hyp promoter, thus placing hypX in the hyp operon (hypBFCDEX). Comparisons of the HypX/HoxX sequences with those in databases provided unexpected insights into their function in hydrogenase synthesis. Similarities were restricted to two distinct regions in the HypX/HoxX sequences. Region I, corresponding to a sequence conserved in N10-formyltetrahydrofolate-dependent enzymes involved in transferring one-carbon units (C1), was located in the N-terminal half of the protein, whereas region II, corresponding to a sequence conserved in enzymes of the enoyl-CoA hydratase/isomerase family, was located in the C-terminal half. These similarities strongly suggest that HypX/HoxX have dual functions: binding of the C1 donor N10-formyltetrahydrofolate and transfer of the C1 to an unknown substrate, and catalysis of a reaction involving polarization of the C = O bond of an X-CO-SCoA substrate. These results also suggest the involvement of a small organic molecule, possibly synthesized with the participation of an X-CO-SCoA precursor and of formyl groups, in the synthesis of the metal-containing active centre of hydrogenase.
Collapse
Affiliation(s)
- L Rey
- Laboratorio de Microbiologia, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Zimmer D, Schwartz E, Tran-Betcke A, Gewinner P, Friedrich B. Temperature tolerance of hydrogenase expression in Alcaligenes eutrophus is conferred by a single amino acid exchange in the transcriptional activator HoxA. J Bacteriol 1995; 177:2373-80. [PMID: 7730267 PMCID: PMC176894 DOI: 10.1128/jb.177.9.2373-2380.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Expression of the soluble (SH) and membrane-bound (MBH) hydrogenases in the facultatively lithoautotrophic bacterium Alcaligenes eutrophus is dependent on the transcriptional activator HoxA and the alternative sigma factor sigma 54. Deletion analysis revealed that a region 170 bp upstream of the transcriptional start of the SH operon is necessary for high-level promoter activity. Mobility shift assays with DNA fragments containing the SH upstream region and purified beta-galactosidase-HoxA fusion protein isolated from Escherichia coli or authentic HoxA isolated by immunoaffinity chromatography from A. eutrophus failed to detect specific binding. In contrast, A. eutrophus extracts enriched for HoxA by heparin-Sepharose chromatography and ammonium sulfate fractionation produced a weak but discrete shift in the mobility of the target DNA. This effect was not observed with comparable extracts prepared from hoxA mutants. A similar experiment using antibodies against HoxA confirmed that HoxA was responsible for the observed mobility shift. Extracts prepared from a temperature-tolerant mutant of A. eutrophus gave a stronger retardation than did those from the wild type. Unlike the wild type, the hox(Tr) mutant is able to grow with hydrogen at temperatures above 33 degrees C because of a mutation in the regulatory gene hoxA. In this paper, we show that a single amino acid substitution (Gly-468-->Val) in the C-terminal part of HoxA is responsible for temperature tolerance. The SH upstream region also contains sequence motifs resembling the E. coli integration host factor (IHF) binding site, and purified E. coli IHF protein shifted the corresponding indicator fragment.
Collapse
Affiliation(s)
- D Zimmer
- Institut für Pflanzenphysiologie und Mikrobiologie, Freien Universität Berlin, Germany
| | | | | | | | | |
Collapse
|
19
|
Black LK, Maier RJ. IHF- and RpoN-dependent regulation of hydrogenase expression in Bradyrhizobium japonicum. Mol Microbiol 1995; 16:405-13. [PMID: 7565102 DOI: 10.1111/j.1365-2958.1995.tb02406.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sequence analysis of the Bradyrhizobium japonicum hydrogenase promoter regulatory region indicated the presence of a -24/-12 type promoter, which is recognized by RpoN, and a potential integration host factor (IHF)-binding site. B. japonicum rpoN1-/rpoN2- double mutants were deficient in hydrogen-uptake activity. Using plasmid-borne hup-lacZ fusions, it was shown that the rpoN mutants were also deficient in nickel-dependent transcriptional regulation of hydrogenase. Gel-shift assays of the hydrogenase promoter regulatory region showed that purified IHF from Escherichia coli binds to a 210 bp fragment. DNase footprint analysis revealed a protected region of 31 bp between bases -44 and -75 from the transcription start site. Western analysis with B. japonicum soluble extract and antibodies against E. coli IHF gave two bands equivalent to molecular masses of 12 and 14 kDa approximately. When the IHF-binding area is mutated on a plasmid-borne hup-lacZ fusion, nickel-dependent transcriptional regulation of hydrogenase is still observed, but the transcriptional rates are clearly less than in the parent hup-lacZ fusion plasmid. Like the results with nickel, regulation of hydrogenase by other transcriptional regulators (hydrogen and oxygen) still occurs, but at a diminished level in the IHF-binding-area-mutated construct.
Collapse
Affiliation(s)
- L K Black
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
20
|
Plamann L, Li Y, Cantwell B, Mayor J. The Myxococcus xanthus asgA gene encodes a novel signal transduction protein required for multicellular development. J Bacteriol 1995; 177:2014-20. [PMID: 7721694 PMCID: PMC176844 DOI: 10.1128/jb.177.8.2014-2020.1995] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Myxococcus xanthus asgA gene is one of three known genes necessary for the production of extracellular A-signal, a cell density signal required early in fruiting body development. We determined the DNA sequence of asgA. The deduced 385-amino-acid sequence of AsgA was found to contain two domains: one homologous to the receiver domain of response regulators and the other homologous to the transmitter domain of histidine protein kinases. A kanamycin resistance (Kmr) gene was inserted at various positions within or near the asgA gene to determine the null phenotype. Those strains with the Kmr gene inserted upstream or downstream of asgA are able to form fruiting bodies, while strains containing the Kmr gene inserted within asgA fail to develop. The nature and location of the asgA476 mutation were determined. This mutation causes a leucine-to-proline substitution within a conserved stretch of hydrophobic residues in the N-terminal receiver domain. Cells containing the insertion within asgA and cells containing the asgA476 substitution have similar phenotypes with respect to development, colony color, and expression of an asg-dependent gene. An analysis of expression of a translational asgA-lacZ fusion confirms that asgA is expressed during growth and early development. Finally, we propose that AsgA functions within a signal transduction pathway that is required to sense starvation and to respond with the production of extracellular A-signal.
Collapse
Affiliation(s)
- L Plamann
- Department of Biology, Texas A&M University, College Station 77843-3258, USA
| | | | | | | |
Collapse
|
21
|
Fu C, Olson JW, Maier RJ. HypB protein of Bradyrhizobium japonicum is a metal-binding GTPase capable of binding 18 divalent nickel ions per dimer. Proc Natl Acad Sci U S A 1995; 92:2333-7. [PMID: 7892266 PMCID: PMC42477 DOI: 10.1073/pnas.92.6.2333] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bradyrhizobium japonicum hypB encodes a protein containing an extremely histidine-rich region (24 histidine residues within a 39-amino-acid stretch) and guanine nucleotide-binding domains. The product of the hypB gene was overexpressed in Escherichia coli and purified by Ni(2+)-charged metal chelate affinity chromatography (MCAC) in a single step. In SDS/PAGE, HypB migrated at 38 kDa--slightly larger than the calculated molecular mass (32.8 kDa). Purified HypB has GTPase activity with a kcat of 0.18 min-1 and a Km for GTP of 7 microM, and it has dGTPase activity as well. HypB exists as a dimer of molecular mass 78 kDa in native solution as determined by fast protein liquid chromatography on Superose 12. It binds 9.0 +/- 0.14 divalent nickel ions per monomer (18 Ni2+ per dimer) with a Kd of 2.3 microM; it also binds Zn2+, Cu2+, Co2+, Cd2+, and Mn2+. In-frame deletion of the histidine-rich region (deletion of 38 amino acids including 23 histidine residues) resulted in a truncated HypB that did not bind to the MCAC column, whereas in-frame deletion of 14 amino acids including 8 histidine residues within HypB resulted in a truncated HypB that still bound to the column. The results indicate that the histidine residues within the histidine-rich region of HypB are involved in metal binding.
Collapse
Affiliation(s)
- C Fu
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | | | |
Collapse
|
22
|
|
23
|
Black LK, Fu C, Maier RJ. Sequences and characterization of hupU and hupV genes of Bradyrhizobium japonicum encoding a possible nickel-sensing complex involved in hydrogenase expression. J Bacteriol 1994; 176:7102-6. [PMID: 7961478 PMCID: PMC197088 DOI: 10.1128/jb.176.22.7102-7106.1994] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A 2.7-kb DNA fragment of Bradyrhizobium japonicum previously shown to be involved in hydrogenase expression has been sequenced. The area is located just upstream of the hupSLCDF operon and was found to contain two open reading frames, designated hupU and hupV; these encode proteins of 35.4 and 51.8 kDa, respectively. These proteins are homologous to Rhodobacter capsulatus HupU, a possible repressor of hydrogenase expression in that organism. B. japonicum HupU is 54% identical to the N terminus of R. capsulatus HupU, and HupV is 50% identical to the C terminus of R. capsulatus HupU. HupU and HupV also show homology to the [Ni-Fe] hydrogenase small and large subunits, respectively. Notably, HupV contains the probable nickel-binding sites RxCGxC and DPCxxCxxH, which are located in the N- and C-terminal portions, respectively, of the large subunit of hydrogenases. Hydrogenase activity assays, immunological assays for hydrogenase subunits, and beta-galactosidase assays on mutant strain JHCS2 (lacking a portion of HupV) were all indicative that HupV is necessary for transcriptional activation of hydrogenase. A physiological role as a possible nickel- or other environmental (i.e., oxygen or hydrogen)-sensing complex is proposed for HupU and HupV.
Collapse
Affiliation(s)
- L K Black
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | |
Collapse
|
24
|
Abstract
This review presents a comparison between the complex genetic regulatory networks that control nitrogen fixation in three representative rhizobial species, Rhizobium meliloti, Bradyrhizobium japonicum, and Azorhizobium caulinodans. Transcription of nitrogen fixation genes (nif and fix genes) in these bacteria is induced primarily by low-oxygen conditions. Low-oxygen sensing and transmission of this signal to the level of nif and fix gene expression involve at least five regulatory proteins, FixL, FixJ, FixK, NifA, and RpoN (sigma 54). The characteristic features of these proteins and their functions within species-specific regulatory pathways are described. Oxygen interferes with the activities of two transcriptional activators, FixJ and NifA. FixJ activity is modulated via phosphorylation-dephosphorylation by the cognate sensor hemoprotein FixL. In addition to the oxygen responsiveness of the NifA protein, synthesis of NifA is oxygen regulated at the level of transcription. This type of control includes FixLJ in R. meliloti and FixLJ-FixK in A. caulinodans or is brought about by autoregulation in B. japonicum. NifA, in concert with sigma 54 RNA polymerase, activates transcription from -24/-12-type promoters associated with nif and fix genes and additional genes that are not directly involved in nitrogen fixation. The FixK proteins constitute a subgroup of the Crp-Fnr family of bacterial regulators. Although the involvement of FixLJ and FixK in nifA regulation is remarkably different in the three rhizobial species discussed here, they constitute a regulatory cascade that uniformly controls the expression of genes (fixNOQP) encoding a distinct cytochrome oxidase complex probably required for bacterial respiration under low-oxygen conditions. In B. japonicum, the FixLJ-FixK cascade also controls genes for nitrate respiration and for one of two sigma 54 proteins.
Collapse
Affiliation(s)
- H M Fischer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| |
Collapse
|
25
|
Fu C, Maier RJ. Organization of the hydrogenase gene cluster from Bradyrhizobium japonicum: sequences and analysis of five more hydrogenase-related genes. Gene X 1994; 145:91-6. [PMID: 8045431 DOI: 10.1016/0378-1119(94)90328-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previously, the deletion of a 2.9-kb chromosomal EcoRI fragment of DNA located 2.2 kb downstream from the end of the Bradyrhizobium japonicum hydrogenase structural genes caused lack of normal-sized hydrogenase (Hup) subunits and complete loss of Hup activity. It was suggested that this region encodes one or more genes required for Hup processing. Sequencing of a 3322-bp XcmI fragment of DNA covering this 2.9-kb EcoRI fragment within the hup gene cluster revealed the presence of five open reading frames (ORFs) designated hupG, hupH, hupI, hupJ and hupK, encoding polypeptides with calculated molecular masses of 15.8, 30.7, 7.6, 18.1 and 38 kDa, respectively. Based on deduced amino acid (aa) sequences, all five products of the hupGHIJK genes showed significant homology with other genes' products in several H2-utilizing bacteria. Of particular interest are HupG and HupI. HupG showed 70% similarity (28% identity) to the HyaE of the Escherichia coli hydrogenase-1 operon which was demonstrated to be involved in the processing of hydrogenase-1. HupI showed strong identity to rubredoxin and rubredoxin-like proteins from many other bacteria. The latter proteins contain two 'C-X-X-C' motifs, which may serve as iron ligands for non-heme iron proteins involved as intermediate electron carriers or in the assembly process for Fe-S (or NiFe-S) clusters.
Collapse
Affiliation(s)
- C Fu
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
26
|
Lenz O, Schwartz E, Dernedde J, Eitinger M, Friedrich B. The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation. J Bacteriol 1994; 176:4385-93. [PMID: 8021224 PMCID: PMC205652 DOI: 10.1128/jb.176.14.4385-4393.1994] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nucleotide sequence analysis revealed a 1,791-bp open reading frame in the hox gene cluster of the gram-negative chemolithotroph Alcaligenes eutrophus H16. In order to investigate the biological role of this open reading frame, we generated an in-frame deletion allele via a gene replacement strategy. The resulting mutant grew significantly more slowly than the wild type under lithoautotrophic conditions (6.1 versus 4.2 h doubling time). A reduction in the level of the soluble NAD-reducing hydrogenase (60% of the wild-type activity) was shown to be the cause of the slow lithoautotrophic growth. We used plasmid-borne gene fusions to monitor the expression of the operons encoding the soluble and membrane-bound hydrogenases. The expression of both operons was lower in the mutant than in the wild-type strain. These results suggest that the newly identified gene, designated hoxX, encodes a regulatory component which, in conjunction with the transcriptional activator HoxA, controls hydrogenase synthesis.
Collapse
Affiliation(s)
- O Lenz
- Institut für Pflanzenphysiologie und Mikrobiologie, Freien Universität Berlin, Germany
| | | | | | | | | |
Collapse
|
27
|
Kern M, Klipp W, Klemme JH. Increased Nitrogenase-Dependent H
2
Photoproduction by
hup
Mutants of
Rhodospirillum rubrum. Appl Environ Microbiol 1994; 60:1768-74. [PMID: 16349271 PMCID: PMC201560 DOI: 10.1128/aem.60.6.1768-1774.1994] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transposon Tn
5
mutagenesis was used to isolate mutants of
Rhodospirillum rubrum
which lack uptake hydrogenase (Hup) activity. Three Tn
5
insertions mapped at different positions within the same 13-kb
Eco
RI fragment (fragment E1). Hybridization experiments revealed homology to the structural hydrogenase genes
hupSLM
from
Rhodobacter capsulatus
and
hupSL
from
Bradyrhizobium japonicum
in a 3.8-kb
Eco
RI-
Cla
I subfragment of fragment E1. It is suggested that this region contains at least some of the structural genes encoding the nickel-dependent uptake hydrogenase of
R. rubrum
. At a distance of about 4.5 kb from the fragment homologous to
hupSLM
, a region with homology to a DNA fragment carrying
hypDE
and
hoxXA
from
B. japonicum
was identified. Stable insertion and deletion mutations were generated in vitro and introduced into
R. rubrum
by homogenotization. In comparison with the wild type, the resulting
hup
mutants showed increased nitrogenase-dependent H
2
photoproduction. However, a mutation in a structural
hup
gene did not result in maximum H
2
production rates, indicating that the capacity to recycle H
2
was not completely lost. Highest H
2
production rates were obtained with a mutant carrying an insertion in a nonstructural
hup
-specific sequence and with a deletion mutant affected in both structural and nonstructural
hup
genes. Thus, besides the known Hup activity, a second, previously unknown Hup activity seems to be involved in H
2
recycling. A single regulatory or accessory gene might be responsible for both enzymes. In contrast to the nickel-dependent uptake hydrogenase, the second Hup activity seems to be resistant to the metal chelator EDTA.
Collapse
Affiliation(s)
- M Kern
- Institut für Mikrobiologie und Biotechnologie, Universität Bonn, 53115 Bonn, Germany
| | | | | |
Collapse
|
28
|
Vignais PM, Toussaint B. Molecular biology of membrane-bound H2 uptake hydrogenases. Arch Microbiol 1994; 161:1-10. [PMID: 8304820 DOI: 10.1007/bf00248887] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- P M Vignais
- Laboratoire de Biochimie Microbienne (CNRS URA 1130 alliée à l'INSERM), Département de Biologie Moléculaire et Structurale/CENG/85X, Grenoble, France
| | | |
Collapse
|
29
|
Abstract
Rhizobia are gram-negative bacteria with two distinct habitats: the soil rhizosphere in which they have a saprophytic and, usually, aerobic life and a plant ecological niche, the legume nodule, which constitutes a microoxic environment compatible with the operation of the nitrogen reducing enzyme nitrogenase. The purpose of this review is to summarize the present knowledge of the changes induced in these bacteria when shifting to a microoxic environment. Oxygen concentration regulates the expression of two major metabolic pathways: energy conservation by respiratory chains and nitrogen fixation. After reviewing the genetic data on these metabolic pathways and their response to oxygen we will put special emphasis on the regulatory molecules which are involved in the control of gene expression. We will show that, although homologous regulatory molecules allow response to oxygen in different species, they are assembled in various combinations resulting in a variable regulatory coupling between genes for microaerobic respiration and nitrogen fixation genes. The significance of coordinated regulation of genes not essential for nitrogen fixation with nitrogen fixation genes will also be discussed.
Collapse
Affiliation(s)
- J Batut
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS INRA, Castanet-Tolosan, France
| | | |
Collapse
|
30
|
Hydrogenase in Bradyrhizobium japonicum: genetics, regulation and effect on plant growth. World J Microbiol Biotechnol 1993; 9:615-24. [DOI: 10.1007/bf00369567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/26/1993] [Accepted: 05/13/1993] [Indexed: 10/26/2022]
|
31
|
Elsen S, Richaud P, Colbeau A, Vignais PM. Sequence analysis and interposon mutagenesis of the hupT gene, which encodes a sensor protein involved in repression of hydrogenase synthesis in Rhodobacter capsulatus. J Bacteriol 1993; 175:7404-12. [PMID: 8226687 PMCID: PMC206885 DOI: 10.1128/jb.175.22.7404-7412.1993] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The hupT gene, which represses hydrogenase gene expression in the purple photosynthetic bacterium Rhodobacter capsulatus, has been identified and sequenced. The nucleotide sequence of hupT and of the contiguous downstream open reading frame, hupU, is reported. The HupT protein of 456 amino acids (48,414 Da) has sequence similarity with the FixL, DctB, NtrB, and ArcB proteins and is predicted to be a soluble sensor kinase. Insertional inactivation of the hupT gene led to deregulation of transcriptional control, so that the hydrogenase structural operon hupSLC became overexpressed in cells grown anaerobically or aerobically. The HupT- mutants were complemented in trans by a plasmid containing an intact copy of the hupT gene. The hupU open reading frame, capable of encoding a protein of 84,879 Da, shared identity with [NiFe]hydrogenase subunits; the strongest similarity was observed with the periplasmic hydrogenase of Desulfovibrio baculatus.
Collapse
Affiliation(s)
- S Elsen
- Laboratoire de Biochimie Microbienne (Centre National de la Recherche Scientifique Unité 1130 Alliée à l'Institut National de la Santé et de la Recherche Médicale, Centre d'Etudes Nucléaires de Grenoble, France
| | | | | | | |
Collapse
|