1
|
Hertig C, Rutten T, Melzer M, Schippers JHM, Thiel J. Dissection of Developmental Programs and Regulatory Modules Directing Endosperm Transfer Cell and Aleurone Identity in the Syncytial Endosperm of Barley. PLANTS (BASEL, SWITZERLAND) 2023; 12:1594. [PMID: 37111818 PMCID: PMC10142620 DOI: 10.3390/plants12081594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Endosperm development in barley starts with the formation of a multinucleate syncytium, followed by cellularization in the ventral part of the syncytium generating endosperm transfer cells (ETCs) as first differentiating subdomain, whereas aleurone (AL) cells will originate from the periphery of the enclosing syncytium. Positional signaling in the syncytial stage determines cell identity in the cereal endosperm. Here, we performed a morphological analysis and employed laser capture microdissection (LCM)-based RNA-seq of the ETC region and the peripheral syncytium at the onset of cellularization to dissect developmental and regulatory programs directing cell specification in the early endosperm. Transcriptome data revealed domain-specific characteristics and identified two-component signaling (TCS) and hormone activities (auxin, ABA, ethylene) with associated transcription factors (TFs) as the main regulatory links for ETC specification. On the contrary, differential hormone signaling (canonical auxin, gibberellins, cytokinin) and interacting TFs control the duration of the syncytial phase and timing of cellularization of AL initials. Domain-specific expression of candidate genes was validated by in situ hybridization and putative protein-protein interactions were confirmed by split-YFP assays. This is the first transcriptome analysis dissecting syncytial subdomains of cereal seeds and provides an essential framework for initial endosperm differentiation in barley, which is likely also valuable for comparative studies with other cereal crops.
Collapse
Affiliation(s)
- Christian Hertig
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Twan Rutten
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Michael Melzer
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Jos H. M. Schippers
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Johannes Thiel
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| |
Collapse
|
2
|
Ye JL, Zhu AD, Tao NG, Xu Q, Xu J, Deng XX. Comprehensive analysis of expressed sequence tags from the pulp of the red mutant 'Cara Cara' navel orange (Citrus sinensis Osbeck). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:856-867. [PMID: 20883438 DOI: 10.1111/j.1744-7909.2010.00952.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Expressed sequence tag (EST) analysis of the pulp of the red-fleshed mutant 'Cara Cara' navel orange provided a starting point for gene discovery and transcriptome survey during citrus fruit maturation. Interpretation of the EST datasets revealed that the mutant pulp transcriptome held a high section of stress responses related genes, such as the type III metallothionein-like gene (6.0%), heat shock protein (2.8%), Cu/Zn superoxide dismutase (0.8%), late embryogenesis abundant protein 5 (0.8%), etc. 133 transcripts were detected to be differentially expressed between the red mutant and its orange-color wild genotype 'Washington' via digital expression analysis. Among them, genes involved in metabolism, defense/stress and signal transduction were statistical overrepresented. Fifteen transcription factors, composed of NAM, ATAF, and CUC transcription factor (NAC); myeloblastosis (MYB); myelocytomatosis (MYC); basic helix-loop-helix (bHLH); basic leucine zipper (bZIP) domain members, were also included. The data reflected the distinct expression profile and the unique regulatory module associated with these two genotypes. Eight differently expressed genes analyzed in digital were validated by quantitative real-time polymerase chain reaction. For structural polymorphism, both simple sequence repeats and single nucleotide polymorphisms (SNP) loci were surveyed; dinucleotide presentation revealed a bias toward AG/GA/TC/CT repeats (52.5%), against GC/CG repeats (0%). SNPs analysis found that transitions (73%) outnumbered transversions (27%). Seventeen potential cultivar-specific and 387 heterozygous SNP loci were detected from 'Cara Cara' and 'Washington' EST pool.
Collapse
Affiliation(s)
- Jun-Li Ye
- National Center of Citrus Breeding, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
3
|
White J, Pacey-Miller T, Crawford A, Cordeiro G, Barbary D, Bundock P, Henry R. Abundant transcripts of malting barley identified by serial analysis of gene expression (SAGE). PLANT BIOTECHNOLOGY JOURNAL 2006; 4:289-301. [PMID: 17147635 DOI: 10.1111/j.1467-7652.2006.00181.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Serial analysis of gene expression (SAGE) was applied to the major cereal crop barley (Hordeum vulgare) to characterize the transcriptional profile of grain during the malting process. Seven SAGE libraries were generated from seed at different time points during malting, in addition to one library from dry mature seed. A total of 155,206 LongSAGE tags, representing 41,909 unique sequences, was generated. This study reports an in-depth analysis of the most abundant transcripts from each of eight specific time points in a malting barley time course. The 100 most abundant tags from each library were analysed to identify the putative functional role of highly abundant transcripts. The largest functional groups included transcripts coding for stress response and cell defence, ribosomal proteins and storage proteins. The most abundant tag represented B22EL8, a barley metallothionein, which showed significant up-regulation across the malting time course. Considerable changes in the abundance profiles of some of the highly abundant tags occurred at 24 h post-steeping, indicating that it may be an important time point for gene expression changes associated with barley seed germination.
Collapse
Affiliation(s)
- Jessica White
- Grain Foods CRC, Centre for Plant Conservation Genetics, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia
| | | | | | | | | | | | | |
Collapse
|
4
|
Ibrahim AFM, Hedley PE, Cardle L, Kruger W, Marshall DF, Muehlbauer GJ, Waugh R. A comparative analysis of transcript abundance using SAGE and Affymetrix arrays. Funct Integr Genomics 2005; 5:163-74. [PMID: 15714318 DOI: 10.1007/s10142-005-0135-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 12/13/2004] [Accepted: 12/22/2004] [Indexed: 12/18/2022]
Abstract
A number of methods are currently used for gene expression profiling. They differ in scale, economy and sensitivity. We present the results of a direct comparison between serial analysis of gene expression (SAGE) and the Barley1 Affymetrix GeneChip. Both technology platforms were used to obtain quantitative measurements of transcript abundance using identical RNA samples and assessed for their ability to quantify differential gene expression. For SAGE, a total of 82,122 tags were generated from two independent libraries representing whole developing barley caryopsis and dissected embryos. The Barley1 GeneChip contains 22,791 probe sets. Results obtained from both methods are generally comparable, indicating that both will lead to similar conclusions regarding transcript levels and differential gene expression. However, excluding singletons, 24.4% of the unique SAGE tags had no corresponding probe set on the Barley1 array indicating that a broader snapshot of gene expression was obtained by SAGE. Discrepancies were observed for a number of "genes" and these are discussed.
Collapse
Affiliation(s)
- Adel F M Ibrahim
- Genome Dynamics, Scottish Crop Research Institute, Invergowrie, Dundee, UK.
| | | | | | | | | | | | | |
Collapse
|
5
|
Chatthai M, Osusky M, Osuska L, Yevtushenko D, Misra S. Functional analysis of a Douglas-fir metallothionein-like gene promoter: transient assays in zygotic and somatic embryos and stable transformation in transgenic tobacco. PLANTA 2004; 220:118-28. [PMID: 15349778 DOI: 10.1007/s00425-004-1332-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 06/02/2004] [Indexed: 05/24/2023]
Abstract
Douglas-fir (Pseudotsuga menziesii [Mirb] Franco) metallothionein (PmMT) cDNA encodes a novel cysteine- and serine-rich MT, indicating a new subtype or prototype MT from which other plant MTs may have evolved. A genomic library of Douglas-fir was screened using MT cDNA probes, and genomic sequences that mediate tissue-specific, temporal as well as inducible expression of the embryo-specific MT-gene were analyzed. The promoter region of the PmMT genomic clone (gPmMT) contained a hexameric G-box, two putative ethylene-responsive elements and an inverted repeat of a motif similar to the core metal regulatory element. Interestingly, comparison of the upstream region of Douglas-fir gPm2S1 and gPmMTa genes revealed a conserved motif, CATTATTGA, not found in any known angiosperm gene promoter. Chimeric gene constructs containing a series of deletions in the gPmMTa promoter fused to the uidA reporter gene were assayed in Douglas-fir and transgenic tobacco (Nicotiana tabacum L.). Transient-expression assays in Douglas-fir megagametophyte and zygotic embryos indicated that the sequence -190 to +88 of gPmMTa was sufficient to drive the expression of the reporter gene and that the 225-bp fragment (-677 to -453) contained sequences necessary for high-level expression. In transgenic tobacco seedlings the beta-glucuronidase activity was localized in the vacuolar tissue and proliferating tissue of the auxiliary buds and stem elongation zone. The gPmMTa promoter was not active in the seeds of transgenic tobacco or in the roots of seedlings up to 3 weeks old. Detailed studies of transient expression and stable transformation provided important information on evolutionary conservation as well as novel features found in the conifer promoter. This is the first report of an MT-like gene promoter from conifers.
Collapse
Affiliation(s)
- Malinee Chatthai
- Department of Biochemistry and Microbiology, Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | | | | | | | | |
Collapse
|
6
|
Meza TJ, Stangeland B, Mercy IS, Skårn M, Nymoen DA, Berg A, Butenko MA, Håkelien AM, Haslekås C, Meza-Zepeda LA, Aalen RB. Analyses of single-copy Arabidopsis T-DNA-transformed lines show that the presence of vector backbone sequences, short inverted repeats and DNA methylation is not sufficient or necessary for the induction of transgene silencing. Nucleic Acids Res 2002; 30:4556-4566. [PMID: 12384603 PMCID: PMC137132 DOI: 10.1093/nar/gkf568] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2002] [Revised: 08/22/2002] [Accepted: 08/22/2002] [Indexed: 11/12/2022] Open
Abstract
In genetically transformed plants, transgene silencing has been correlated with multiple and complex insertions of foreign DNA, e.g. T-DNA and vector backbone sequences. Occasionally, single-copy transgenes also suffer transgene silencing. We have compared integration patterns and T-DNA/plant DNA junctions in a collection of 37 single-copy T-DNA-transformed Arabidopsis lines, of which 13 displayed silencing. Vector sequences were found integrated in five lines, but only one of these displayed silencing. Truncated T-DNA copies, positioned in inverse orientation to an intact T-DNA copy, were discovered in three lines. The whole nptII gene with pnos promoter was present in the truncated copy of one such line in which heavy silencing has been observed. In the two other lines no silencing has been observed over five generations. Thus, vector sequences and short additional T-DNA sequences are not sufficient or necessary to induce transgene silencing. DNA methylation of selected restriction endonuclease sites could not be correlated with silencing. Our collection of T-DNA/plant DNA junctions has also been used to evaluate current models of T-DNA integration. Data for some of our lines are compatible with T-DNA integration in double-strand breaks, while for others initial invasion of plant DNA by the left or by the right T-DNA end seem important.
Collapse
Affiliation(s)
- Trine J Meza
- Division of Molecular Biology, Department of Biology, University of Oslo, PO Box 1031 Blindern, N-0315 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Meza TJ, Enerly E, Børu B, Larsen F, Mandal A, Aalen RB, Jakobsen KS. A human CpG island randomly inserted into a plant genome is protected from methylation. Transgenic Res 2002; 11:133-142. [PMID: 12054347 DOI: 10.1023/a:1015244400941] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vertebrate genomes the dinucleotide CpG is heavily methylated, except in CpG islands, which are normally unmethylated. It is not clear why the CpG islands are such poor substrates for DNA methyltransferase. Plant genomes display methylation, but otherwise the genomes of plants and animals represent two very divergent evolutionary lines. To gain a further understanding of the resistance of CpG islands to methylation, we introduced a human CpG island from the proteasome-like subunit I gene into the genome of the plant Arabidopsis thaliana. Our results show that prevention of methylation is an intrinsic property of CpG islands, recognized even if a human CpG island is transferred to a plant genome. Two different parts of the human CpG island - the promoter region/ first exon and exon 2-4 - both displayed resistance against methylation, but the promoter/ exon1 construct seemed to be most resistant. In contrast, certain sites in a plant CpG-rich region used as a control transgene were always methylated. The frequency of silencing of the adjacent nptII (KmR) gene in the human CpG constructs was lower than observed for the plant CpG-rich region. These results have implications for understanding DNA methylation, and for construction of vectors that will reduce transgene silencing.
Collapse
|
8
|
Aalen RB, Salehian Z, Steinum TM. Stability of barley aleurone transcripts: Dependence on protein synthesis, influence of the starchy endosperm and destabilization by GA3. PHYSIOLOGIA PLANTARUM 2001; 112:403-413. [PMID: 11473698 DOI: 10.1034/j.1399-3054.2001.1120314.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have studied the stability of Barley aleurone and embryo expressed (Balem) transcripts in aleurone layers. The Per1, Ole1 and Ole2 transcripts are abundant during desiccation and in dry resting seeds, while B12D and B22E transcripts are expressed mainly during seed maturation and germination. From 21 to 40 days post anthesis (DPA) incubation of aleurone layers resulted in a substantial, but differential reduction in the levels of these transcripts. In contrast, Balem transcript levels in aleurone layers of incubated embryoless grains were (except for B22E) similar to those of freshly dissected layers. Cycloheximide lowered transcript levels significantly. This indicates that a protein-synthesis-dependent mRNA-stabilizing mechanism is active in the aleurone cells when attached to the starchy endosperm. At the onset of seed desiccation (40 DPA), half-lives of transcripts to be stored in the dry seed were up to several days longer than the half-life of B22E, which decreases during seed maturation. While the Per1, Ole1 and Ole2 transcript levels decline rapidly in the aleurone layers of mature, germinating seeds, the genes are actively transcribed and their transcripts highly stable in the aleurone of incubated embryoless seeds. The expression of Ole1 and Ole2, as well as Per1, can be repressed 100-1 000-fold by gibberellic acid (GA3) in a dose-dependent manner. Abscisic acid can counteract the GA3 repression. Incubations with transcriptional and translational inhibitors indicate that GA3 inhibits the transcription of these genes and at the same time induces a protein-synthesis-dependent mechanism destabilizing their mRNA molecules present.
Collapse
Affiliation(s)
- R. B. Aalen
- Division of Molecular Biology, University of Oslo, P.O. Box 1031, Blindern, N-0315 Oslo, Norway; Present address: Department of Pharmacology, Microbiology and Food Hygiene, Norwegian College of Veterinary Medicine, P.O. Box 8146, N-0033 Oslo, Norway
| | | | | |
Collapse
|
9
|
Olsen OA. ENDOSPERM DEVELOPMENT: Cellularization and Cell Fate Specification. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:233-267. [PMID: 11337398 DOI: 10.1146/annurev.arplant.52.1.233] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endosperm develops from the central cell of the megagametophyte after introduction of the second male gamete into the diploid central cell. Of the three forms of endosperm in angiosperms, the nuclear type is prevalent in economically important species, including the cereals. Landmarks in nuclear endosperm development are the coenocytic, cellularization, differentiation, and maturation stages. The differentiated endosperm contains four major cell types: starchy endosperm, aleurone, transfer cells, and the cells of the embryo surrounding region. Recent research has demonstrated that the first two phases of endosperm occur via mechanisms that are conserved among all groups of angiosperms, involving directed nuclear migration during the coenocytic stage and anticlinal cell wall deposition by cytoplasmic phragmoplasts formed in interzones between radial microtubular systems emanating from nuclear membranes. Complete cellularization of the endosperm coenocyte is achieved through centripetal growth of cell files, extending to the center of the endosperm cavity. Key points in cell cycle control and control of the MT (microtubular) cytoskeletal apparatus central to endosperm development are discussed. Specification of cell fates in the cereal endosperm appears to occur via positional signaling; cells in peripheral positions, except over the main vascular tissues, assume aleurone cell fate. Cells over the main vascular tissue become transfer cells and all interior cells become starchy endosperm cells. Studies in maize have implicated Crinkly4, a protein receptor kinase-like molecule, in aleurone cell fate specification.
Collapse
Affiliation(s)
- Odd-Arne Olsen
- Department of Chemistry and Biotechnology, Agricultural University of Norway, PO. Box 5051, N-1432 Aas, Norway; e-mail:
| |
Collapse
|
10
|
Cloning and promoter analysis of the cotton lipid transfer protein gene Ltp311The nucleotide sequence data reported will appear in the GenBank Nucleotide Sequence Databases under the accession number AF228333. Biochim Biophys Acta Mol Cell Biol Lipids 2000. [DOI: 10.1016/s1388-1981(00)00072-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Stacy RA, Munthe E, Steinum T, Sharma B, Aalen RB. A peroxiredoxin antioxidant is encoded by a dormancy-related gene, Per1, expressed during late development in the aleurone and embryo of barley grains. PLANT MOLECULAR BIOLOGY 1996; 31:1205-1216. [PMID: 8914536 DOI: 10.1007/bf00040837] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Antioxidants can remove damaging reactive oxygen species produced as by-products of desiccation and respiration during late embryogenesis, imbibition of dormant seeds and germination. We have expressed a protein, PER1, encoded by the Balem (barley aleurone and embryo) transcript previously called B15C, and show it to reduce oxidative damage in vitro. PER1 shares high similarity to a novel group of thiol-requiring antioxidants, named peroxiredoxins, and represents a subgroup with only one conserved cysteine residue (1-Cys). PER1 is the first antioxidant belonging to the 1-Cys subgroup shown to be functionally active, and the first peroxiredoxin of any kind to be functionally described in plants. The steady state level of the transcript, Per1, homologous to a dormancy-related transcript (pBS128) from bromegrass (Bromus secalinus), increases considerably in imbibed embryos from dormant barley (Hordeum vulgare L.) grains. Our investigations also indicate that Per1 transcript levels are dormancy-related in the aleurone layer of whole grains. In contrast to most seed-expressed antioxidants Per1 disappears in germinating embryos, and in the mature aleurone the transcript is down-regulated by the germinating embryo or by gibberellic acid (GA). Our data show that the barley seed peroxiredoxin is encoded by a single Per1 gene. Possible roles of the PER1 peroxiredoxin in barley grains during desiccation, dormancy and imbibition are discussed.
Collapse
Affiliation(s)
- R A Stacy
- Division of General Genetics, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
12
|
Ledger SE, Gardner RC. Cloning and characterization of five cDNAs for genes differentially expressed during fruit development of kiwifruit (Actinidia deliciosa var. deliciosa). PLANT MOLECULAR BIOLOGY 1994; 25:877-886. [PMID: 8075403 DOI: 10.1007/bf00028882] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Five cDNAs for genes differentially expressed during fruit development of kiwifruit (Actinidia deliciosa var. deliciosa cv. Hayward) were isolated from a library made from young fruit, 8-10 days after anthesis. One gene (pKIWI503) has low levels of expression in young fruit but is induced late in fruit development and during fruit ripening, and has some homology to plant metallothionein-like proteins. The other four genes are highly expressed in young fruit with reduced expression in the later stages of fruit development. pKIWI504 has strong homology to plant metallothionein-like proteins and pKIWI505 exhibits homology to the beta-subunit of the mitochondrial ATP synthase gene. The two other genes (pKIWI501 and 502) encode proteins with no significant homology to other known sequences.
Collapse
Affiliation(s)
- S E Ledger
- Centre for Gene Technology, School of Biological Sciences, University of Auckland, New Zealand
| | | |
Collapse
|
13
|
Affiliation(s)
- N J Robinson
- Department of Biological Sciences, University of Durham, U.K
| | | | | | | |
Collapse
|