1
|
Helia O, Matúšová B, Havlová K, Hýsková A, Lyčka M, Beying N, Puchta H, Fajkus J, Fojtová M. Chromosome engineering points to the cis-acting mechanism of chromosome arm-specific telomere length setting and robustness of plant phenotype, chromatin structure and gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70024. [PMID: 39962352 PMCID: PMC11832813 DOI: 10.1111/tpj.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/20/2025]
Abstract
The study investigates the impact of targeted chromosome engineering on telomere dynamics, chromatin structure, gene expression, and phenotypic stability in Arabidopsis thaliana. Using precise CRISPR/Cas-based engineering, reciprocal translocations of chromosome arms were introduced between non-homologous chromosomes. The subsequent homozygous generations of plants were assessed for phenotype, transcriptomic changes and chromatin modifications near translocation breakpoints, and telomere length maintenance. Phenotypically, translocated lines were indistinguishable from wild-type plants, as confirmed through morphological assessments and principal component analysis. Gene expression profiling detected minimal differential expression, with affected genes dispersed across the genome, indicating negligible transcriptional impact. Similarly, ChIPseq analysis showed no substantial alterations in the enrichment of key histone marks (H3K27me3, H3K4me1, H3K56ac) near junction sites or across the genome. Finally, bulk and arm-specific telomere lengths remained stable across multiple generations, except for minor variations in one translocation line. These findings highlight the remarkable genomic and phenotypic robustness of A. thaliana despite large-scale chromosomal rearrangements. The study offers insights into the cis-acting mechanisms underlying chromosome arm-specific telomere length setting and establishes the feasibility of chromosome engineering for studies of plant genome evolution and crop improvement strategies.
Collapse
Affiliation(s)
- Ondřej Helia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
| | - Barbora Matúšová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
| | - Kateřina Havlová
- Department of Cell Biology and Radiobiology, Institute of BiophysicsAcademy of Sciences of the Czech RepublicBrnoCZ‐61200Czech Republic
| | - Anna Hýsková
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
| | - Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
| | - Natalja Beying
- Joseph Gottlieb Kölreuter Institute for Plant Sciences – Molecular BiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
| | - Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences – Molecular BiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
- Department of Cell Biology and Radiobiology, Institute of BiophysicsAcademy of Sciences of the Czech RepublicBrnoCZ‐61200Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
| |
Collapse
|
2
|
Valeeva LR, Sannikova AV, Shafigullina NR, Abdulkina LR, Sharipova MR, Shakirov EV. Telomere Length Variation in Model Bryophytes. PLANTS (BASEL, SWITZERLAND) 2024; 13:387. [PMID: 38337920 PMCID: PMC10856949 DOI: 10.3390/plants13030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
The ends of linear chromosomes of most eukaryotes consist of protein-bound DNA arrays called telomeres, which play essential roles in protecting genome integrity. Despite general evolutionary conservation in function, telomeric DNA is known to drastically vary in length and sequence between different eukaryotic lineages. Bryophytes are a group of early diverging land plants that include mosses, liverworts, and hornworts. This group of ancient land plants recently emerged as a new model for important discoveries in genomics and evolutionary biology, as well as for understanding plant adaptations to a terrestrial lifestyle. We measured telomere length in different ecotypes of model bryophyte species, including Physcomitrium patens, Marchantia polymorpha, Ceratodon purpureus, and in Sphagnum isolates. Our data indicate that all analyzed moss and liverwort genotypes have relatively short telomeres. Furthermore, all analyzed ecotypes and isolates of model mosses and liverworts display evidence of substantial natural variation in telomere length. Interestingly, telomere length also differs between male and female strains of the dioecious liverwort M. polymorpha and dioecious moss C. purpureus. Given that bryophytes are extraordinarily well adapted to different ecological niches from polar to tropical environments, our data will contribute to understanding the impact of natural telomere length variation on evolutionary adaptations in this ancient land plant lineage.
Collapse
Affiliation(s)
- Liia R. Valeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia; (A.V.S.); (L.R.A.)
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
| | - Anastasia V. Sannikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia; (A.V.S.); (L.R.A.)
| | - Nadiya R. Shafigullina
- Institute of Environmental Sciences, Department of General Ecology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Liliia R. Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia; (A.V.S.); (L.R.A.)
| | - Margarita R. Sharipova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia; (A.V.S.); (L.R.A.)
| | - Eugene V. Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
3
|
Wong SY, Soman A, Korolev N, Surya W, Chen Q, Shum W, van Noort J, Nordenskiöld L. The shelterin component TRF2 mediates columnar stacking of human telomeric chromatin. EMBO J 2024; 43:87-111. [PMID: 38177309 PMCID: PMC10883271 DOI: 10.1038/s44318-023-00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 01/06/2024] Open
Abstract
Telomere repeat binding factor 2 (TRF2) is an essential component of the telomeres and also plays an important role in a number of other non-telomeric processes. Detailed knowledge of the binding and interaction of TRF2 with telomeric nucleosomes is limited. Here, we study the binding of TRF2 to in vitro-reconstituted kilobasepair-long human telomeric chromatin fibres using electron microscopy, single-molecule force spectroscopy and analytical ultracentrifugation sedimentation velocity. Our electron microscopy results revealed that full-length and N-terminally truncated TRF2 promote the formation of a columnar structure of the fibres with an average width and compaction larger than that induced by the addition of Mg2+, in agreement with the in vivo observations. Single-molecule force spectroscopy showed that TRF2 increases the mechanical and thermodynamic stability of the telomeric fibres when stretched with magnetic tweezers. This was in contrast to the result for fibres reconstituted on the 'Widom 601' high-affinity nucleosome positioning sequence, where minor effects on fibre stability were observed. Overall, TRF2 binding induces and stabilises columnar fibres, which may play an important role in telomere maintenance.
Collapse
Affiliation(s)
- Sook Yi Wong
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Department of Emerging Infectious Diseases, Duke-NUS, Medical School, Singapore, 169857, Singapore
| | - Aghil Soman
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Qinming Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- M Diagnostics PTE. LTD, 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
| | - Wayne Shum
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - John van Noort
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Huygens-Kamerlingh Ones Laboratory, Leiden University, Leiden, 2333 AL, The Netherlands
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
4
|
Abdulkina LR, Agabekian IA, Valeeva LR, Kozlova OS, Sharipova MR, Shakirov EV. Comparative Application of Terminal Restriction Fragment Analysis Tools to Large-Scale Genomic Assays. Int J Mol Sci 2023; 24:17194. [PMID: 38139024 PMCID: PMC10742804 DOI: 10.3390/ijms242417194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The analysis of telomere length is an important component of many studies aiming to characterize the role of telomere maintenance mechanisms in cellular lifespan, disease, or in general chromosome protection and DNA replication pathways. Several powerful methods to accurately measure the telomere length from Southern blots have been developed, but their utility for large-scale genomic studies has not been previously evaluated. Here, we performed a comparative analysis of two recently developed programs, TeloTool and WALTER, for the extraction of mean telomere length values from Southern blots. Using both software packages, we measured the telomere length in two extensive experimental datasets for the model plant Arabidopsis thaliana, consisting of 537 natural accessions and 65 T-DNA (transfer DNA for insertion mutagenesis) mutant lines in the reference Columbia (Col-0) genotype background. We report that TeloTool substantially overestimates the telomere length in comparison to WALTER, especially for values over 4500 bp. Importantly, the TeloTool- and WALTER-calculated telomere length values correlate the most in the 2100-3500 bp range, suggesting that telomeres in this size interval can be estimated by both programs equally well. We further show that genome-wide association studies using datasets from both telomere length analysis tools can detect the most significant SNP candidates equally well. However, GWAS analysis with the WALTER dataset consistently detects fewer significant SNPs than analysis with the TeloTool dataset, regardless of the GWAS method used. These results imply that the telomere length data generated by WALTER may represent a more stringent approach to GWAS and SNP selection for the downstream molecular screening of candidate genes. Overall, our work reveals the unanticipated impact of the telomere length analysis method on the outcomes of large-scale genomic screens.
Collapse
Affiliation(s)
- Liliia R. Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia; (L.R.A.); (I.A.A.); (L.R.V.); (O.S.K.); (M.R.S.)
| | - Inna A. Agabekian
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia; (L.R.A.); (I.A.A.); (L.R.V.); (O.S.K.); (M.R.S.)
| | - Liia R. Valeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia; (L.R.A.); (I.A.A.); (L.R.V.); (O.S.K.); (M.R.S.)
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
| | - Olga S. Kozlova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia; (L.R.A.); (I.A.A.); (L.R.V.); (O.S.K.); (M.R.S.)
| | - Margarita R. Sharipova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia; (L.R.A.); (I.A.A.); (L.R.V.); (O.S.K.); (M.R.S.)
| | - Eugene V. Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
5
|
Teano G, Concia L, Wolff L, Carron L, Biocanin I, Adamusová K, Fojtová M, Bourge M, Kramdi A, Colot V, Grossniklaus U, Bowler C, Baroux C, Carbone A, Probst AV, Schrumpfová PP, Fajkus J, Amiard S, Grob S, Bourbousse C, Barneche F. Histone H1 protects telomeric repeats from H3K27me3 invasion in Arabidopsis. Cell Rep 2023; 42:112894. [PMID: 37515769 DOI: 10.1016/j.celrep.2023.112894] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/02/2022] [Accepted: 07/13/2023] [Indexed: 07/31/2023] Open
Abstract
While the pivotal role of linker histone H1 in shaping nucleosome organization is well established, its functional interplays with chromatin factors along the epigenome are just starting to emerge. Here we show that, in Arabidopsis, as in mammals, H1 occupies Polycomb Repressive Complex 2 (PRC2) target genes where it favors chromatin condensation and H3K27me3 deposition. We further show that, contrasting with its conserved function in PRC2 activation at genes, H1 selectively prevents H3K27me3 accumulation at telomeres and large pericentromeric interstitial telomeric repeat (ITR) domains by restricting DNA accessibility to Telomere Repeat Binding (TRB) proteins, a group of H1-related Myb factors mediating PRC2 cis recruitment. This study provides a mechanistic framework by which H1 avoids the formation of gigantic H3K27me3-rich domains at telomeric sequences and contributes to safeguard nucleus architecture.
Collapse
Affiliation(s)
- Gianluca Teano
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France; Université Paris-Saclay, 91190 Orsay, France
| | - Lorenzo Concia
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Léa Wolff
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Léopold Carron
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Ivona Biocanin
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France; Université Paris-Saclay, 91190 Orsay, France
| | - Kateřina Adamusová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michael Bourge
- Cytometry Facility, Imagerie-Gif, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Amira Kramdi
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Vincent Colot
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Chris Bowler
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Célia Baroux
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Aline V Probst
- CNRS UMR6293, Université Clermont Auvergne, INSERM U1103, GReD, CRBC, Clermont-Ferrand, France
| | - Petra Procházková Schrumpfová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Simon Amiard
- CNRS UMR6293, Université Clermont Auvergne, INSERM U1103, GReD, CRBC, Clermont-Ferrand, France
| | - Stefan Grob
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Clara Bourbousse
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Fredy Barneche
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
6
|
Vozárová R, Wang W, Lunerová J, Shao F, Pellicer J, Leitch IJ, Leitch AR, Kovařík A. Mega-sized pericentromeric blocks of simple telomeric repeats and their variants reveal patterns of chromosome evolution in ancient Cycadales genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:646-663. [PMID: 36065632 PMCID: PMC9827991 DOI: 10.1111/tpj.15969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Simple telomeric repeats composed of six to seven iterating nucleotide units are important sequences typically found at the ends of chromosomes. Here we analyzed their abundance and homogeneity in 42 gymnosperm (29 newly sequenced), 29 angiosperm (one newly sequenced), and eight bryophytes using bioinformatics, conventional cytogenetic and molecular biology approaches to explore their diversity across land plants. We found more than 10 000-fold variation in the amounts of telomeric repeats among the investigated taxa. Repeat abundance was positively correlated with increasing intragenomic sequence heterogeneity and occurrence at non-telomeric positions, but there was no correlation with genome size. The highest abundance/heterogeneity was found in the gymnosperm genus Cycas (Cycadaceae), in which megabase-sized blocks of telomeric repeats (i.e., billions of copies) were identified. Fluorescent in situ hybridization experiments using variant-specific probes revealed canonical Arabidopsis-type telomeric TTTAGGG repeats at chromosome ends, while pericentromeric blocks comprised at least four major telomeric variants with decreasing abundance: TTTAGGG>TTCAGGG >TTTAAGG>TTCAAGG. Such a diversity of repeats was not found in the sister cycad family Zamiaceae or in any other species analyzed. Using immunocytochemistry, we showed that the pericentromeric blocks of telomeric repeats overlapped with histone H3 serine 10 phosphorylation signals. We show that species of Cycas have amplified their telomeric repeats in centromeric and telomeric positions on telocentric chromosomes to extraordinary high levels. The ancestral chromosome number reconstruction suggests their occurrence is unlikely to be the product of ancient Robertsonian chromosome fusions. We speculate as to how the observed chromosome dynamics may be associated with the diversification of cycads.
Collapse
Affiliation(s)
- Radka Vozárová
- Department of Molecular EpigeneticsInstitute of Biophysics, Czech Academy of Sciencesv.v.i., Královopolská 135612 65BrnoCzech Republic
- Department of Experimental Biology, Faculty of ScienceMasaryk University611 37BrnoCzech Republic
| | - Wencai Wang
- Science and Technology Innovation CentreGuangzhou University of Chinese MedicineGuangzhou510405China
| | - Jana Lunerová
- Department of Molecular EpigeneticsInstitute of Biophysics, Czech Academy of Sciencesv.v.i., Královopolská 135612 65BrnoCzech Republic
| | - Fengqing Shao
- Science and Technology Innovation CentreGuangzhou University of Chinese MedicineGuangzhou510405China
| | - Jaume Pellicer
- Royal Botanic GardensKew, RichmondSurreyTW9 3ABUK
- Institut Botànic de Barcelona (IBB, CSIC‐Ajuntament de Barcelona)Passeig del Migdia sn08038BarcelonaSpain
| | | | - Andrew R. Leitch
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonE1 4NSUK
| | - Aleš Kovařík
- Department of Molecular EpigeneticsInstitute of Biophysics, Czech Academy of Sciencesv.v.i., Královopolská 135612 65BrnoCzech Republic
| |
Collapse
|
7
|
Shakirov EV, Chen JJL, Shippen DE. Plant telomere biology: The green solution to the end-replication problem. THE PLANT CELL 2022; 34:2492-2504. [PMID: 35511166 PMCID: PMC9252485 DOI: 10.1093/plcell/koac122] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/14/2022] [Indexed: 05/04/2023]
Abstract
Telomere maintenance is a fundamental cellular process conserved across all eukaryotic lineages. Although plants and animals diverged over 1.5 billion years ago, lessons learned from plants continue to push the boundaries of science, revealing detailed molecular mechanisms in telomere biology with broad implications for human health, aging biology, and stress responses. Recent studies of plant telomeres have unveiled unexpected divergence in telomere sequence and architecture, and the proteins that engage telomeric DNA and telomerase. The discovery of telomerase RNA components in the plant kingdom and some algae groups revealed new insight into the divergent evolution and the universal core of telomerase across major eukaryotic kingdoms. In addition, resources cataloging the abundant natural variation in Arabidopsis thaliana, maize (Zea mays), and other plants are providing unparalleled opportunities to understand the genetic networks that govern telomere length polymorphism and, as a result, are uncovering unanticipated crosstalk between telomeres, environmental factors, organismal fitness, and plant physiology. Here we recap current advances in plant telomere biology and put this field in perspective relative to telomere and telomerase research in other eukaryotic lineages.
Collapse
Affiliation(s)
- Eugene V Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia 25701, USA
| | - Julian J -L Chen
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | | |
Collapse
|
8
|
Zhou Y, Wang Y, Xiong X, Appel AG, Zhang C, Wang X. Profiles of telomeric repeats in Insecta reveal diverse forms of telomeric motifs in Hymenopterans. Life Sci Alliance 2022; 5:5/7/e202101163. [PMID: 35365574 PMCID: PMC8977481 DOI: 10.26508/lsa.202101163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
Telomeres consist of highly conserved simple tandem telomeric repeat motif (TRM): (TTAGG)n in arthropods, (TTAGGG)n in vertebrates, and (TTTAGGG)n in most plants. TRM can be detected from chromosome-level assembly, which typically requires long-read sequencing data. To take advantage of short-read data, we developed an ultra-fast Telomeric Repeats Identification Pipeline and evaluated its performance on 91 species. With proven accuracy, we applied Telomeric Repeats Identification Pipeline in 129 insect species, using 7 Tbp of short-read sequences. We confirmed (TTAGG)n as the TRM in 19 orders, suggesting it is the ancestral form in insects. Systematic profiling in Hymenopterans revealed a diverse range of TRMs, including the canonical 5-bp TTAGG (bees, ants, and basal sawflies), three independent losses of tandem repeat form TRM (Ichneumonoids, hunting wasps, and gall-forming wasps), and most interestingly, a common 8-bp (TTATTGGG)n in Chalcid wasps with two 9-bp variants in the miniature wasp (TTACTTGGG) and fig wasps (TTATTGGGG). Our results identified extraordinary evolutionary fluidity of Hymenopteran TRMs, and rapid evolution of TRM and repeat abundance at all evolutionary scales, providing novel insights into telomere evolution.
Collapse
Affiliation(s)
- Yihang Zhou
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, USA
| | - Yi Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiao Xiong
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, USA
| | - Arthur G Appel
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, USA.,Department of Entomology and Plant Pathology, Auburn University, AL, USA
| | - Chao Zhang
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, USA.,Department of Entomology and Plant Pathology, Auburn University, AL, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| |
Collapse
|
9
|
Watson JM, Trieb J, Troestl M, Renfrew K, Mandakova T, Fulnecek J, Shippen DE, Riha K. A hypomorphic allele of telomerase uncovers the minimal functional length of telomeres in Arabidopsis. Genetics 2021; 219:6339584. [PMID: 34849882 DOI: 10.1093/genetics/iyab126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/23/2021] [Indexed: 12/23/2022] Open
Abstract
Despite the essential requirement of telomeric DNA for genome stability, the length of telomere tracts between species substantially differs, raising the question of the minimal length of telomeric DNA necessary for proper function. Here, we address this question using a hypomorphic allele of the telomerase catalytic subunit, TERT. We show that although this construct partially restored telomerase activity to a tert mutant, telomeres continued to shorten over several generations, ultimately stabilizing at a bimodal size distribution. Telomeres on two chromosome arms were maintained at a length of 1 kb, while the remaining telomeres were maintained at 400 bp. The longest telomeres identified in this background were also significantly longer in wild-type populations, suggesting cis-acting elements on these arms either promote telomerase processivity or recruitment. Genetically disrupting telomerase processivity in this background resulted in immediate lethality. Thus, telomeres of 400 bp are both necessary and sufficient for Arabidopsis viability. As this length is the estimated minimal length for t-loop formation, our data suggest that telomeres long enough to form a t-loop constitute the minimal functional length.
Collapse
Affiliation(s)
- J Matthew Watson
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Johanna Trieb
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Martina Troestl
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Kyle Renfrew
- Department of Biochemistry, Texas A&M University, College Station, TX 77840, USA
| | - Terezie Mandakova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Jaroslav Fulnecek
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Dorothy E Shippen
- Department of Biochemistry, Texas A&M University, College Station, TX 77840, USA
| | - Karel Riha
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
10
|
Garrido-Ramos MA. The Genomics of Plant Satellite DNA. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:103-143. [PMID: 34386874 DOI: 10.1007/978-3-030-74889-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The twenty-first century began with a certain indifference to the research of satellite DNA (satDNA). Neither genome sequencing projects were able to accurately encompass the study of satDNA nor classic methodologies were able to go further in undertaking a better comprehensive study of the whole set of satDNA sequences of a genome. Nonetheless, knowledge of satDNA has progressively advanced during this century with the advent of new analytical techniques. The enormous advantages that genome-wide approaches have brought to its analysis have now stimulated a renewed interest in the study of satDNA. At this point, we can look back and try to assess more accurately many of the key questions that were left unsolved in the past about this enigmatic and important component of the genome. I review here the understanding gathered on plant satDNAs over the last few decades with an eye on the near future.
Collapse
|
11
|
Franek M, Kilar A, Fojtík P, Olšinová M, Benda A, Rotrekl V, Dvořáčková M, Fajkus J. Super-resolution microscopy of chromatin fibers and quantitative DNA methylation analysis of DNA fiber preparations. J Cell Sci 2021; 134:jcs258374. [PMID: 34350964 DOI: 10.1242/jcs.258374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Analysis of histone variants and epigenetic marks is dominated by genome-wide approaches in the form of chromatin immunoprecipitation-sequencing (ChIP-seq) and related methods. Although uncontested in their value for single-copy genes, mapping the chromatin of DNA repeats is problematic for biochemical techniques that involve averaging of cell populations or analysis of clusters of tandem repeats in a single-cell analysis. Extending chromatin and DNA fibers allows us to study the epigenetics of individual repeats in their specific chromosomal context, and thus constitutes an important tool for gaining a complete understanding of the epigenetic organization of genomes. We report that using an optimized fiber extension protocol is essential in order to obtain more reproducible data and to minimize the clustering of fibers. We also demonstrate that the use of super-resolution microscopy is important for reliable evaluation of the distribution of histone modifications on individual fibers. Furthermore, we introduce a custom script for the analysis of methylation levels on DNA fibers and apply it to map the methylation of telomeres, ribosomal genes and centromeres.
Collapse
Affiliation(s)
- Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Agata Kilar
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-61137 Brno, Czech Republic
| | - Petr Fojtík
- International Clinical Research Center (ICRC) at St. Anne's University Hospital, Pekařská 53, CZ-65691 Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Marie Olšinová
- Charles University, Faculty of Science, Biology Section, Imaging methods core facility at BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Aleš Benda
- Charles University, Faculty of Science, Biology Section, Imaging methods core facility at BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Vladimír Rotrekl
- International Clinical Research Center (ICRC) at St. Anne's University Hospital, Pekařská 53, CZ-65691 Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Jíří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-61137 Brno, Czech Republic
| |
Collapse
|
12
|
Barbier J, Vaillant C, Volff JN, Brunet FG, Audit B. Coupling between Sequence-Mediated Nucleosome Organization and Genome Evolution. Genes (Basel) 2021; 12:genes12060851. [PMID: 34205881 PMCID: PMC8228248 DOI: 10.3390/genes12060851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
The nucleosome is a major modulator of DNA accessibility to other cellular factors. Nucleosome positioning has a critical importance in regulating cell processes such as transcription, replication, recombination or DNA repair. The DNA sequence has an influence on the position of nucleosomes on genomes, although other factors are also implicated, such as ATP-dependent remodelers or competition of the nucleosome with DNA binding proteins. Different sequence motifs can promote or inhibit the nucleosome formation, thus influencing the accessibility to the DNA. Sequence-encoded nucleosome positioning having functional consequences on cell processes can then be selected or counter-selected during evolution. We review the interplay between sequence evolution and nucleosome positioning evolution. We first focus on the different ways to encode nucleosome positions in the DNA sequence, and to which extent these mechanisms are responsible of genome-wide nucleosome positioning in vivo. Then, we discuss the findings about selection of sequences for their nucleosomal properties. Finally, we illustrate how the nucleosome can directly influence sequence evolution through its interactions with DNA damage and repair mechanisms. This review aims to provide an overview of the mutual influence of sequence evolution and nucleosome positioning evolution, possibly leading to complex evolutionary dynamics.
Collapse
Affiliation(s)
- Jérémy Barbier
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
| | - Cédric Vaillant
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
- Correspondence: (J.-N.V.); (B.A.)
| | - Frédéric G. Brunet
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
| | - Benjamin Audit
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
- Correspondence: (J.-N.V.); (B.A.)
| |
Collapse
|
13
|
Choi JY, Abdulkina LR, Yin J, Chastukhina IB, Lovell JT, Agabekian IA, Young PG, Razzaque S, Shippen DE, Juenger TE, Shakirov EV, Purugganan MD. Natural variation in plant telomere length is associated with flowering time. THE PLANT CELL 2021; 33:1118-1134. [PMID: 33580702 PMCID: PMC8599780 DOI: 10.1093/plcell/koab022] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/14/2021] [Indexed: 05/05/2023]
Abstract
Telomeres are highly repetitive DNA sequences found at the ends of chromosomes that protect the chromosomes from deterioration duringcell division. Here, using whole-genome re-sequencing and terminal restriction fragment assays, we found substantial natural intraspecific variation in telomere length in Arabidopsis thaliana, rice (Oryza sativa), and maize (Zea mays). Genome-wide association study (GWAS) mapping in A. thaliana identified 13 regions with GWAS-significant associations underlying telomere length variation, including a region that harbors the telomerase reverse transcriptase (TERT) gene. Population genomic analysis provided evidence for a selective sweep at the TERT region associated with longer telomeres. We found that telomere length is negatively correlated with flowering time variation not only in A. thaliana, but also in maize and rice, indicating a link between life-history traits and chromosome integrity. Our results point to several possible reasons for this correlation, including the possibility that longer telomeres may be more adaptive in plants that have faster developmental rates (and therefore flower earlier). Our work suggests that chromosomal structure itself might be an adaptive trait associated with plant life-history strategies.
Collapse
Affiliation(s)
- Jae Young Choi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York 10003, NY, USA
- Author for correspondence: (J.Y.C), (E.V.S.) or (M.D.P.)
| | - Liliia R Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
| | - Jun Yin
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
| | - Inna B Chastukhina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
| | - John T Lovell
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Alabama 35806, USA
| | - Inna A Agabekian
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
| | - Pierce G Young
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, USA
| | - Samsad Razzaque
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA
| | - Eugene V Shakirov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Republic of Tatarstan 420008, Russia
- Department of Biological Sciences, College of Science, Marshall University, West Virginia 25701, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, West Virginia 25755, USA
- Author for correspondence: (J.Y.C), (E.V.S.) or (M.D.P.)
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York 10003, NY, USA
- Author for correspondence: (J.Y.C), (E.V.S.) or (M.D.P.)
| |
Collapse
|
14
|
Lyčka M, Peska V, Demko M, Spyroglou I, Kilar A, Fajkus J, Fojtová M. WALTER: an easy way to online evaluate telomere lengths from terminal restriction fragment analysis. BMC Bioinformatics 2021; 22:145. [PMID: 33752601 PMCID: PMC7986547 DOI: 10.1186/s12859-021-04064-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/07/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Telomeres, nucleoprotein structures comprising short tandem repeats and delimiting the ends of linear eukaryotic chromosomes, play an important role in the maintenance of genome stability. Therefore, the determination of the length of telomeres is of high importance for many studies. Over the last years, new methods for the analysis of the length of telomeres have been developed, including those based on PCR or analysis of NGS data. Despite that, terminal restriction fragment (TRF) method remains the gold standard to this day. However, this method lacks universally accepted and precise tool capable to analyse and statistically evaluate TRF results. RESULTS To standardize the processing of TRF results, we have developed WALTER, an online toolset allowing rapid, reproducible, and user-friendly analysis including statistical evaluation of the data. Given its web-based nature, it provides an easily accessible way to analyse TRF data without any need to install additional software. CONCLUSIONS WALTER represents a major upgrade from currently available tools for the image processing of TRF scans. This toolset enables a rapid, highly reproducible, and user-friendly evaluation of almost any TRF scan including in-house statistical evaluation of the data. WALTER platform together with user manual describing the evaluation of TRF scans in detail and presenting tips and troubleshooting, as well as test data to demo the software are available at https://www.ceitec.eu/chromatin-molecular-complexes-jiri-fajkus/rg51/tab?tabId=125#WALTER and the source code at https://github.com/mlyc93/WALTER .
Collapse
Affiliation(s)
- Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Vratislav Peska
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., 612 00, Brno, Czech Republic.
| | - Martin Demko
- Core Facility Bioinformatics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Faculty of Informatics, Masaryk University, 602 00, Brno, Czech Republic
| | - Ioannis Spyroglou
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
| | - Agata Kilar
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., 612 00, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
15
|
Aguilar M, Prieto P. Telomeres and Subtelomeres Dynamics in the Context of Early Chromosome Interactions During Meiosis and Their Implications in Plant Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:672489. [PMID: 34149773 PMCID: PMC8212018 DOI: 10.3389/fpls.2021.672489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/06/2021] [Indexed: 05/08/2023]
Abstract
Genomic architecture facilitates chromosome recognition, pairing, and recombination. Telomeres and subtelomeres play an important role at the beginning of meiosis in specific chromosome recognition and pairing, which are critical processes that allow chromosome recombination between homologs (equivalent chromosomes in the same genome) in later stages. In plant polyploids, these terminal regions are even more important in terms of homologous chromosome recognition, due to the presence of homoeologs (equivalent chromosomes from related genomes). Although telomeres interaction seems to assist homologous pairing and consequently, the progression of meiosis, other chromosome regions, such as subtelomeres, need to be considered, because the DNA sequence of telomeres is not chromosome-specific. In addition, recombination operates at subtelomeres and, as it happens in rye and wheat, homologous recognition and pairing is more often correlated with recombining regions than with crossover-poor regions. In a plant breeding context, the knowledge of how homologous chromosomes initiate pairing at the beginning of meiosis can contribute to chromosome manipulation in hybrids or interspecific genetic crosses. Thus, recombination in interspecific chromosome associations could be promoted with the aim of transferring desirable agronomic traits from related genetic donor species into crops. In this review, we summarize the importance of telomeres and subtelomeres on chromatin dynamics during early meiosis stages and their implications in recombination in a plant breeding framework.
Collapse
Affiliation(s)
- Miguel Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- *Correspondence: Pilar Prieto, ; orcid.org/0000-0002-8160-808X
| |
Collapse
|
16
|
Aguilar M, Prieto P. Sequence analysis of wheat subtelomeres reveals a high polymorphism among homoeologous chromosomes. THE PLANT GENOME 2020; 13:e20065. [PMID: 33029942 DOI: 10.1002/tpg2.20065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 05/23/2023]
Abstract
Bread wheat, Triticum aestivum L., is one of the most important crops in the world. Understanding its genome organization (allohexaploid; AABBDD; 2n = 6x = 42) is essential for geneticists and plant breeders. Particularly, the knowledge of how homologous chromosomes (equivalent chromosomes from the same genome) specifically recognize each other to pair at the beginning of meiosis, the cellular process to generate gametes in sexually reproducing organisms, is fundamental for plant breeding and has a big influence on the fertility of wheat plants. Initial homologous chromosome interactions contribute to specific recognition and pairing between homologues at the onset of meiosis. Understanding the molecular basis of these critical processes can help to develop genetic tools in a breeding context to promote interspecific chromosome associations in hybrids or interspecific genetic crosses to facilitate the transfer of desirable agronomic traits from related species into a crop like wheat. The terminal regions of chromosomes, which include telomeres and subtelomeres, participate in chromosome recognition and pairing. We present a detailed molecular analysis of subtelomeres of wheat chromosome arms 1AS, 4AS, 7AS, 7BS and 7DS. Results showed a high polymorphism in the subtelomeric region among homoeologues (equivalent chromosomes from related genomes) for all the features analyzed, including genes, transposable elements, repeats, GC content, predicted CpG islands, recombination hotspots and targeted sequence motifs for relevant DNA-binding proteins. These polymorphisms might be the molecular basis for the specificity of homologous recognition and pairing in initial chromosome interactions at the beginning of meiosis in wheat.
Collapse
Affiliation(s)
- Miguel Aguilar
- Área de Fisiología Vegetal. Universidad de Córdoba. Campus de Rabanales, edif. C4, 3a planta, Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, Córdoba, 14080, Spain
| |
Collapse
|
17
|
Khosravi S, Schindele P, Gladilin E, Dunemann F, Rutten T, Puchta H, Houben A. Application of Aptamers Improves CRISPR-Based Live Imaging of Plant Telomeres. FRONTIERS IN PLANT SCIENCE 2020; 11:1254. [PMID: 32973827 PMCID: PMC7468473 DOI: 10.3389/fpls.2020.01254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/30/2020] [Indexed: 06/01/2023]
Abstract
Development of live imaging techniques for providing information how chromatin is organized in living cells is pivotal to decipher the regulation of biological processes. Here, we demonstrate the improvement of a live imaging technique based on CRISPR/Cas9. In this approach, the sgRNA scaffold is fused to RNA aptamers including MS2 and PP7. When the dead Cas9 (dCas9) is co-expressed with chimeric sgRNA, the fluorescent coat protein-tagged for MS2 and PP7 aptamers (tdMCP-FP and tdPCP-FP) are recruited to the targeted sequence. Compared to previous work with dCas9:GFP, we show that the quality of telomere labeling was improved in transiently transformed Nicotiana benthamiana using aptamer-based CRISPR-imaging constructs. Labeling is influenced by the copy number of aptamers and less by the promoter types. The same constructs were not applicable for labeling of repeats in stably transformed plants and roots. The constant interaction of the RNP complex with its target DNA might interfere with cellular processes.
Collapse
Affiliation(s)
- Solmaz Khosravi
- Department for Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Evgeny Gladilin
- Department for Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Frank Dunemann
- Institute for Breeding Research on Horticultural Crops, Julius Kühn-Institut (JKI), Quedlinburg, Germany
| | - Twan Rutten
- Department for Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Andreas Houben
- Department for Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| |
Collapse
|
18
|
Functional Diversification of Replication Protein A Paralogs and Telomere Length Maintenance in Arabidopsis. Genetics 2020; 215:989-1002. [PMID: 32532801 DOI: 10.1534/genetics.120.303222] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Replication protein A (RPA) is essential for many facets of DNA metabolism. The RPA gene family expanded in Arabidopsis thaliana with five phylogenetically distinct RPA1 subunits (RPA1A-E), two RPA2 (RPA2A and B), and two RPA3 (RPA3A and B). RPA1 paralogs exhibit partial redundancy and functional specialization in DNA replication (RPA1B and RPA1D), repair (RPA1C and RPA1E), and meiotic recombination (RPA1A and RPA1C). Here, we show that RPA subunits also differentially impact telomere length set point. Loss of RPA1 resets bulk telomeres at a shorter length, with a functional hierarchy for replication group over repair and meiosis group RPA1 subunits. Plants lacking RPA2A, but not RPA2B, harbor short telomeres similar to the replication group. Telomere shortening does not correlate with decreased telomerase activity or deprotection of chromosome ends in rpa mutants. However, in vitro assays show that RPA1B2A3B unfolds telomeric G-quadruplexes known to inhibit replications fork progression. We also found that ATR deficiency can partially rescue short telomeres in rpa2a mutants, although plants exhibit defects in growth and development. Unexpectedly, the telomere shortening phenotype of rpa2a mutants is completely abolished in plants lacking the RTEL1 helicase. RTEL1 has been implicated in a variety of nucleic acid transactions, including suppression of homologous recombination. Thus, the lack of telomere shortening in rpa2a mutants upon RTEL1 deletion suggests that telomere replication defects incurred by loss of RPA may be bypassed by homologous recombination. Taken together, these findings provide new insight into how RPA cooperates with replication and recombination machinery to sustain telomeric DNA.
Collapse
|
19
|
Adamusová K, Khosravi S, Fujimoto S, Houben A, Matsunaga S, Fajkus J, Fojtová M. Two combinatorial patterns of telomere histone marks in plants with canonical and non-canonical telomere repeats. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:678-687. [PMID: 31834959 DOI: 10.1111/tpj.14653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 05/24/2023]
Abstract
Telomeres, nucleoprotein structures at the ends of linear eukaryotic chromosomes, are crucial for the maintenance of genome integrity. In most plants, telomeres consist of conserved tandem repeat units comprising the TTTAGGG motif. Recently, non-canonical telomeres were described in several plants and plant taxons, including the carnivorous plant Genlisea hispidula (TTCAGG/TTTCAGG), the genus Cestrum (Solanaceae; TTTTTTAGGG), and plants from the Asparagales order with either a vertebrate-type telomere repeat TTAGGG or Allium genus-specific CTCGGTTATGGG repeat. We analyzed epigenetic modifications of telomeric histones in plants with canonical and non-canonical telomeres, and further in telomeric chromatin captured from leaves of Nicotiana benthamiana transiently transformed by telomere CRISPR-dCas9-eGFP, and of Arabidopsis thaliana stably transformed with TALE_telo C-3×GFP. Two combinatorial patterns of telomeric histone modifications were identified: (i) an Arabidopsis-like pattern (A. thaliana, G. hispidula, Genlisea nigrocaulis, Allium cepa, Narcissus pseudonarcissus, Petunia hybrida, Solanum tuberosum, Solanum lycopersicum) with telomeric histones decorated predominantly by H3K9me2; (ii) a tobacco-like pattern (Nicotiana tabacum, N. benthamiana, C. elegans) with a strong H3K27me3 signal. Our data suggest that epigenetic modifications of plant telomere-associated histones are related neither to the sequence of the telomere motif nor to the lengths of the telomeres. Nor the phylogenetic position of the species plays the role; representatives of the Solanaceae family are included in both groups. As both patterns of histone marks are compatible with fully functional telomeres in respective plants, we conclude that the described specific differences in histone marks are not critical for telomere functions.
Collapse
Affiliation(s)
- Kateřina Adamusová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| | - Solmaz Khosravi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Satoru Fujimoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| |
Collapse
|
20
|
Achrem M, Szućko I, Kalinka A. The epigenetic regulation of centromeres and telomeres in plants and animals. COMPARATIVE CYTOGENETICS 2020; 14:265-311. [PMID: 32733650 PMCID: PMC7360632 DOI: 10.3897/compcytogen.v14i2.51895] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 05/10/2023]
Abstract
The centromere is a chromosomal region where the kinetochore is formed, which is the attachment point of spindle fibers. Thus, it is responsible for the correct chromosome segregation during cell division. Telomeres protect chromosome ends against enzymatic degradation and fusions, and localize chromosomes in the cell nucleus. For this reason, centromeres and telomeres are parts of each linear chromosome that are necessary for their proper functioning. More and more research results show that the identity and functions of these chromosomal regions are epigenetically determined. Telomeres and centromeres are both usually described as highly condensed heterochromatin regions. However, the epigenetic nature of centromeres and telomeres is unique, as epigenetic modifications characteristic of both eu- and heterochromatin have been found in these areas. This specificity allows for the proper functioning of both regions, thereby affecting chromosome homeostasis. This review focuses on demonstrating the role of epigenetic mechanisms in the functioning of centromeres and telomeres in plants and animals.
Collapse
Affiliation(s)
- Magdalena Achrem
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| | - Izabela Szućko
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| | - Anna Kalinka
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| |
Collapse
|
21
|
Ishii T, Schubert V, Khosravi S, Dreissig S, Metje‐Sprink J, Sprink T, Fuchs J, Meister A, Houben A. RNA-guided endonuclease - in situ labelling (RGEN-ISL): a fast CRISPR/Cas9-based method to label genomic sequences in various species. THE NEW PHYTOLOGIST 2019; 222:1652-1661. [PMID: 30847946 PMCID: PMC6593734 DOI: 10.1111/nph.15720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/24/2019] [Indexed: 06/02/2023]
Abstract
Visualising the spatio-temporal organisation of the genome will improve our understanding of how chromatin structure and function are intertwined. We developed a tool to visualise defined genomic sequences in fixed nuclei and chromosomes based on a two-part guide RNA with a recombinant Cas9 endonuclease complex. This method does not require any special construct or transformation method. In contrast to classical fluorescence in situ hybridiaztion, RGEN-ISL (RNA-guided endonuclease - in situ labelling) does not require DNA denaturation, and therefore permits a better structural chromatin preservation. The application of differentially labelled trans-activating crRNAs allows the multiplexing of RGEN-ISL. Moreover, this technique is combinable with immunohistochemistry. Real-time visualisation of the CRISPR/Cas9-mediated DNA labelling process revealed the kinetics of the reaction. The broad range of adaptability of RGEN-ISL to different temperatures and combinations of methods has the potential to advance the field of chromosome biology.
Collapse
Affiliation(s)
- Takayoshi Ishii
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
- Arid Land Research Center (ALRC)Tottori University1390 HamasakaTottori680‐0001Japan
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Solmaz Khosravi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Steven Dreissig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Janina Metje‐Sprink
- Julius Kühn‐InstituteInstitute of Biosafety in Plant BiotechnologyQuedlinburgD‐06484Germany
| | - Thorben Sprink
- Julius Kühn‐InstituteInstitute of Biosafety in Plant BiotechnologyQuedlinburgD‐06484Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Armin Meister
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| |
Collapse
|
22
|
Peška V, Mandáková T, Ihradská V, Fajkus J. Comparative Dissection of Three Giant Genomes: Allium cepa, Allium sativum, and Allium ursinum. Int J Mol Sci 2019; 20:E733. [PMID: 30744119 PMCID: PMC6387171 DOI: 10.3390/ijms20030733] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 02/07/2023] Open
Abstract
Knowledge of the fascinating world of DNA repeats is continuously being enriched by newly identified elements and their hypothetical or well-established biological relevance. Genomic approaches can be used for comparative studies of major repeats in any group of genomes, regardless of their size and complexity. Such studies are particularly fruitful in large genomes, and useful mainly in crop plants where they provide a rich source of molecular markers or information on indispensable genomic components (e.g., telomeres, centromeres, or ribosomal RNA genes). Surprisingly, in Allium species, a comprehensive comparative study of repeats is lacking. Here we provide such a study of two economically important species, Allium cepa (onion), and A. sativum (garlic), and their distantly related A. ursinum (wild garlic). We present an overview and classification of major repeats in these species and have paid specific attention to sequence conservation and copy numbers of major representatives in each type of repeat, including retrotransposons, rDNA, or newly identified satellite sequences. Prevailing repeats in all three studied species belonged to Ty3/gypsy elements, however they significantly diverged and we did not detect them in common clusters in comparative analysis. Actually, only a low number of clusters was shared by all three species. Such conserved repeats were for example 5S and 45S rDNA genes and surprisingly a specific and quite rare Ty1/copia lineage. Species-specific long satellites were found mainly in A. cepa and A. sativum. We also show in situ localization of selected repeats that could potentially be applicable as chromosomal markers, e.g., in interspecific breeding.
Collapse
Affiliation(s)
- Vratislav Peška
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
| | - Terezie Mandáková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | - Veronika Ihradská
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | - Jiří Fajkus
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| |
Collapse
|
23
|
Telomeres in Plants and Humans: Not So Different, Not So Similar. Cells 2019; 8:cells8010058. [PMID: 30654521 PMCID: PMC6356271 DOI: 10.3390/cells8010058] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/01/2023] Open
Abstract
Parallel research on multiple model organisms shows that while some principles of telomere biology are conserved among all eukaryotic kingdoms, we also find some deviations that reflect different evolutionary paths and life strategies, which may have diversified after the establishment of telomerase as a primary mechanism for telomere maintenance. Much more than animals, plants have to cope with environmental stressors, including genotoxic factors, due to their sessile lifestyle. This is, in principle, made possible by an increased capacity and efficiency of the molecular systems ensuring maintenance of genome stability, as well as a higher tolerance to genome instability. Furthermore, plant ontogenesis differs from that of animals in which tissue differentiation and telomerase silencing occur during early embryonic development, and the “telomere clock” in somatic cells may act as a preventive measure against carcinogenesis. This does not happen in plants, where growth and ontogenesis occur through the serial division of apical meristems consisting of a small group of stem cells that generate a linear series of cells, which differentiate into an array of cell types that make a shoot and root. Flowers, as generative plant organs, initiate from the shoot apical meristem in mature plants which is incompatible with the human-like developmental telomere shortening. In this review, we discuss differences between human and plant telomere biology and the implications for aging, genome stability, and cell and organism survival. In particular, we provide a comprehensive comparative overview of telomere proteins acting in humans and in Arabidopsis thaliana model plant, and discuss distinct epigenetic features of telomeric chromatin in these species.
Collapse
|
24
|
Sováková PP, Magdolenová A, Konečná K, Rájecká V, Fajkus J, Fojtová M. Telomere elongation upon transfer to callus culture reflects the reprogramming of telomere stability control in Arabidopsis. PLANT MOLECULAR BIOLOGY 2018; 98:81-99. [PMID: 30128721 DOI: 10.1007/s11103-018-0765-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/12/2018] [Indexed: 05/23/2023]
Abstract
KEY MESSAGE Standard pathways involved in the regulation of telomere stability do not contribute to gradual telomere elongation observed in the course of A. thaliana calli propagation. Genetic and epigenetic changes accompanying the culturing of plant cells have frequently been reported. Here we aimed to characterize the telomere homeostasis during long term callus propagation. While in Arabidopsis thaliana calli gradual telomere elongation was observed, telomeres were stable in Nicotiana tabacum and N. sylvestris cultures. Telomere elongation during callus propagation is thus not a general feature of plant cells. The long telomere phenotype in Arabidopsis calli was correlated neither with changes in telomerase activity nor with activation of alternative mechanisms of telomere elongation. The dynamics of telomere length changes was maintained in mutant calli with loss of function of important epigenetic modifiers but compromised in the presence of epigenetically active drug zebularine. To examine whether the cell culture-induced disruption of telomere homeostasis is associated with the modulated structure of chromosome ends, epigenetic properties of telomere chromatin were analysed. Albeit distinct changes in epigenetic modifications of telomere histones were observed, these were broadly stochastic. Our results show that contrary to animal cells, the structure and function of plant telomeres is not determined significantly by the epigenetic character of telomere chromatin. Set of differentially transcribed genes was identified in calli, but considering the known telomere- or telomerase-related functions of respective proteins, none of these changes per se was apparently related to the elongated telomere phenotype. Based on our data, we propose that the disruption in telomere homeostasis in Arabidopsis calli arises from the interplay of multiple factors, as a part of reprogramming of plant cells to long-term culture conditions.
Collapse
Affiliation(s)
- Pavla Polanská Sováková
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Alžbeta Magdolenová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Klára Konečná
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Veronika Rájecká
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., 612 65, Brno, Czech Republic
| | - Miloslava Fojtová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
25
|
Rosato M, Álvarez I, Feliner GN, Rosselló JA. Inter- and intraspecific hypervariability in interstitial telomeric-like repeats (TTTAGGG)n in Anacyclus (Asteraceae). ANNALS OF BOTANY 2018; 122:387-395. [PMID: 29800070 PMCID: PMC6110349 DOI: 10.1093/aob/mcy079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/24/2018] [Indexed: 05/18/2023]
Abstract
Background and Aims Interstitial telomeric repeat (ITR) sites, consisting of tandem repeats of telomeric motifs localized at intrachromosomal sites, have been reported in a few unrelated organisms including plants. However, the causes for the occurrence of ITRs outside of the chromosomal termini are not fully understood. One possible explanation are the chromosomal rearrangements involving telomeric sites, which could also affect the location of other structural genome elements, such as the 45S rDNA. Taking advantage of the high dynamism in 45S rDNA loci previously found in Anacyclus (Asteraceae, Anthemideae), the occurrence and patterns of variation of ITRs were explored in this genus with the aim of finding common underlying causes. Methods In total, 132 individuals from 44 populations of nine species were analysed by fluorescence in situ hybridization using an Arabidopsis-type telomeric sequence as a probe. Key results Variable presence of ITR sites was detected in six out of nine species of Anacyclus, ranging from two to 45 sites and showing contrasting chromosomal locations and a differential presence of the ITR site on homologous chromosome pairs. At the intraspecific level, the ranges were as large as 0-12 ITR sites. Although only 26 % of the total observed ITR sites were localized in chromosomes bearing 45S rDNA loci, all cases of interstitial 45S rDNA reported in a previous work co-occurred with ITRs in close proximity in the same chromosome arms. Conclusions High levels of ITR polymorphism within a single species have not been previously reported in plants and suggest that this pattern might have been overlooked due to insufficient sampling. Although ancient Robertsonian translocations or the amplification of terminal 45S rDNA sites cannot, on their own, explain all of the levels of variability in ITRs reported here, there are suggestions that they may have been involved in the evolutionary history of this genus or its ancestors in Anthemideae.
Collapse
Affiliation(s)
- Marcela Rosato
- Jardín Botánico, ICBIBE-Unidad Asociada CSIC, Universidad de Valencia, Spain
| | - Inés Álvarez
- Real Jardín Botánico (CSIC), Plaza de Murillo, Spain
| | | | - Josep A Rosselló
- Jardín Botánico, ICBIBE-Unidad Asociada CSIC, Universidad de Valencia, Spain
| |
Collapse
|
26
|
Dreissig S, Schiml S, Schindele P, Weiss O, Rutten T, Schubert V, Gladilin E, Mette MF, Puchta H, Houben A. Live-cell CRISPR imaging in plants reveals dynamic telomere movements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:565-573. [PMID: 28509419 PMCID: PMC5599988 DOI: 10.1111/tpj.13601] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/11/2017] [Accepted: 05/09/2017] [Indexed: 05/11/2023]
Abstract
Elucidating the spatiotemporal organization of the genome inside the nucleus is imperative to our understanding of the regulation of genes and non-coding sequences during development and environmental changes. Emerging techniques of chromatin imaging promise to bridge the long-standing gap between sequencing studies, which reveal genomic information, and imaging studies that provide spatial and temporal information of defined genomic regions. Here, we demonstrate such an imaging technique based on two orthologues of the bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9). By fusing eGFP/mRuby2 to catalytically inactive versions of Streptococcus pyogenes and Staphylococcus aureus Cas9, we show robust visualization of telomere repeats in live leaf cells of Nicotiana benthamiana. By tracking the dynamics of telomeres visualized by CRISPR-dCas9, we reveal dynamic telomere movements of up to 2 μm over 30 min during interphase. Furthermore, we show that CRISPR-dCas9 can be combined with fluorescence-labelled proteins to visualize DNA-protein interactions in vivo. By simultaneously using two dCas9 orthologues, we pave the way for the imaging of multiple genomic loci in live plants cells. CRISPR imaging bears the potential to significantly improve our understanding of the dynamics of chromosomes in live plant cells.
Collapse
Affiliation(s)
- Steven Dreissig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466SeelandGermany
| | - Simon Schiml
- Botanical InstituteKarlsruhe Institute of TechnologyPOB 698076049KarlsruheGermany
| | - Patrick Schindele
- Botanical InstituteKarlsruhe Institute of TechnologyPOB 698076049KarlsruheGermany
| | - Oda Weiss
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466SeelandGermany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466SeelandGermany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466SeelandGermany
| | - Evgeny Gladilin
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466SeelandGermany
| | - Michael F. Mette
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466SeelandGermany
- Present address:
King Abdullah University of Science & TechnologyThuwal23955‐6900Saudi Arabia
| | - Holger Puchta
- Botanical InstituteKarlsruhe Institute of TechnologyPOB 698076049KarlsruheGermany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466SeelandGermany
| |
Collapse
|
27
|
Červenák F, Juríková K, Sepšiová R, Neboháčová M, Nosek J, Tomáška L. Double-stranded telomeric DNA binding proteins: Diversity matters. Cell Cycle 2017; 16:1568-1577. [PMID: 28749196 DOI: 10.1080/15384101.2017.1356511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Telomeric sequences constitute only a small fraction of the whole genome yet they are crucial for ensuring genomic stability. This function is in large part mediated by protein complexes recruited to telomeric sequences by specific telomere-binding proteins (TBPs). Although the principal tasks of nuclear telomeres are the same in all eukaryotes, TBPs in various taxa exhibit a surprising diversity indicating their distinct evolutionary origin. This diversity is especially pronounced in ascomycetous yeasts where they must have co-evolved with rapidly diversifying sequences of telomeric repeats. In this article we (i) provide a historical overview of the discoveries leading to the current list of TBPs binding to double-stranded (ds) regions of telomeres, (ii) describe examples of dsTBPs highlighting their diversity in even closely related species, and (iii) speculate about possible evolutionary trajectories leading to a long list of various dsTBPs fulfilling the same general role(s) in their own unique ways.
Collapse
Affiliation(s)
- Filip Červenák
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Katarína Juríková
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Regina Sepšiová
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Martina Neboháčová
- b Department of Biochemistry , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Jozef Nosek
- b Department of Biochemistry , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - L'ubomír Tomáška
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| |
Collapse
|
28
|
Jurečková JF, Sýkorová E, Hafidh S, Honys D, Fajkus J, Fojtová M. Tissue-specific expression of telomerase reverse transcriptase gene variants in Nicotiana tabacum. PLANTA 2017; 245:549-561. [PMID: 27900472 DOI: 10.1007/s00425-016-2624-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
MAIN CONCLUSION In tobacco, three sequence variants of the TERT gene have been described. We revealed unbalanced levels of TERT variant transcripts in vegetative tobacco tissues and enhanced TERT transcription and telomerase activity in reproductive tissues. Telomerase is a ribonucleoprotein complex responsible for the maintenance of telomeres, structures delimiting ends of linear eukaryotic chromosomes. In the Nicotiana tabacum (tobacco) allotetraploid plant, three sequence variants (paralogs) of the gene coding for the telomerase reverse transcriptase subunit (TERT) have been described, two of them derived from the maternal N. sylvestris genome (TERT_Cs, TERT_D) and one originated from the N. tomentosiformis paternal genome (TERT_Ct). In this work, we analyzed the transcription of TERT variants in correlation with telomerase activity in tobacco tissues. High and approximately comparable levels of TERT_Ct and TERT_Cs transcripts were detected in seedlings, roots, flower buds and leaves, while the transcript of the TERT_D variant was markedly underrepresented. Similarly, in N. sylvestris tissues, TERT_Cs transcript significantly predominated. A specific pattern of TERT transcripts was found in samples of tobacco pollen with the TERT_Cs variant clearly dominating particularly at the early stage of pollen development. Detailed analysis of TERT_C variants representation in functionally distinct fractions of pollen transcriptome revealed their prevalence in large ribonucleoprotein particles encompassing translationally silent mRNA; only a minority of TERT_Ct and TERT_Cs transcripts were localized in actively translated polysomes. Histones of the TERT_C chromatin were decorated predominantly with the euchromatin-specific epigenetic modification in both telomerase-positive and telomerase-negative tobacco tissues. We conclude that the existence and transcription pattern of tobacco TERT paralogs represents an interesting phenomenon and our results indicate its functional significance. Nicotiana species have again proved to be appropriate and useful model plants in telomere biology studies.
Collapse
Affiliation(s)
- Jana Fišerová Jurečková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Said Hafidh
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic v.v.i., Rozvojová 263, 165 02, Prague, Czech Republic
| | - David Honys
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic v.v.i., Rozvojová 263, 165 02, Prague, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
29
|
Yang QF, Liu L, Liu Y, Zhou ZG. Telomeric localization of the Arabidopsis-type heptamer repeat, (TTTAGGG) n , at the chromosome ends in Saccharina japonica (Phaeophyta). JOURNAL OF PHYCOLOGY 2017; 53:235-240. [PMID: 27885670 DOI: 10.1111/jpy.12497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Telomeres generally consist of short repeats of minisatellite DNA sequences and are useful in chromosome identification and karyotype analysis. To date, telomeres have not been characterized in the economically important brown seaweed Saccharina japonica, thus its full cytogenetic research and genetic breeding potential has not been realized. Herein, the tentative sequence of telomeres in S. japonica was identified by PCR amplification with primers designed based on the Arabidopsis-type telomere sequence (TTTAGGG)n , which was chosen out of three possible telomeric repeat DNA sequences typically present in plants and algae. After PCR optimization and cloning, sequence analysis of the amplified products from S. japonica genomic DNA showed that they were composed of repeat units, (TTTAGGG)n , in which the repeat number ranged from 15 to 63 (n = 46). This type of repeat sequence was verified by a Southern blot assay with the Arabidopsis-type telomere sequence as a probe. The digestion of S. japonica genomic DNA with the exonuclease Bal31 illustrated that the target sequence corresponding to the Arabidopsis-type telomere sequence was susceptible to Bal31 digestion, suggesting that the repeat sequence was likely located at the outermost ends of the kelp chromosomes. Fluorescence in situ hybridizations with the aforementioned probe provided the initial cytogenetic evidence that the hybridization signals were principally localized at both ends of S. japonica chromosomes. This study indicates that the telomeric repeat of the kelp chromosomes is (TTTAGGG)n which differs from the previously reported (TTAGGG)n sequence in Ectocarpus siliculosus through genome sequencing, thereby suggesting distinct telomeres in brown seaweeds.
Collapse
Affiliation(s)
- Qi-Fan Yang
- College of Aqua-Life Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Li Liu
- College of Aqua-Life Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yu Liu
- College of Aqua-Life Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhi-Gang Zhou
- College of Aqua-Life Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
30
|
Mikulski P, Komarynets O, Fachinelli F, Weber AP, Schubert D. Characterization of the Polycomb-Group Mark H3K27me3 in Unicellular Algae. FRONTIERS IN PLANT SCIENCE 2017; 8:607. [PMID: 28484477 PMCID: PMC5405695 DOI: 10.3389/fpls.2017.00607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/04/2017] [Indexed: 05/03/2023]
Abstract
Polycomb Group (PcG) proteins mediate chromatin repression in plants and animals by catalyzing H3K27 methylation and H2AK118/119 mono-ubiquitination through the activity of the Polycomb repressive complex 2 (PRC2) and PRC1, respectively. PcG proteins were extensively studied in higher plants, but their function and target genes in unicellular branches of the green lineage remain largely unknown. To shed light on PcG function and modus operandi in a broad evolutionary context, we demonstrate phylogenetic relationship of core PRC1 and PRC2 proteins and H3K27me3 biochemical presence in several unicellular algae of different phylogenetic subclades. We focus then on one of the species, the model red alga Cyanidioschizon merolae, and show that H3K27me3 occupies both, genes and repetitive elements, and mediates the strength of repression depending on the differential occupancy over gene bodies. Furthermore, we report that H3K27me3 in C. merolae is enriched in telomeric and subtelomeric regions of the chromosomes and has unique preferential binding toward intein-containing genes involved in protein splicing. Thus, our study gives important insight for Polycomb-mediated repression in lower eukaryotes, uncovering a previously unknown link between H3K27me3 targets and protein splicing.
Collapse
Affiliation(s)
- Pawel Mikulski
- Institute of Biology, Free University of BerlinBerlin, Germany
- Institute of Genetics, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Olga Komarynets
- Institute of Genetics, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
- Faculty of Medicine, University of GenevaGeneva, Switzerland
| | - Fabio Fachinelli
- Institute of Plant Biochemistry, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Andreas P.M. Weber
- Institute of Plant Biochemistry, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Daniel Schubert
- Institute of Biology, Free University of BerlinBerlin, Germany
- Institute of Genetics, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
- *Correspondence: Daniel Schubert,
| |
Collapse
|
31
|
Röhrig S, Schröpfer S, Knoll A, Puchta H. The RTR Complex Partner RMI2 and the DNA Helicase RTEL1 Are Both Independently Involved in Preserving the Stability of 45S rDNA Repeats in Arabidopsis thaliana. PLoS Genet 2016; 12:e1006394. [PMID: 27760121 PMCID: PMC5070779 DOI: 10.1371/journal.pgen.1006394] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/29/2016] [Indexed: 11/18/2022] Open
Abstract
The stability of repetitive sequences in complex eukaryotic genomes is safeguarded by factors suppressing homologues recombination. Prominent in this is the role of the RTR complex. In plants, it consists of the RecQ helicase RECQ4A, the topoisomerase TOP3α and RMI1. Like mammals, but not yeast, plants harbor an additional complex partner, RMI2. Here, we demonstrate that, in Arabidopsis thaliana, RMI2 is involved in the repair of aberrant replication intermediates in root meristems as well as in intrastrand crosslink repair. In both instances, RMI2 is involved independently of the DNA helicase RTEL1. Surprisingly, simultaneous loss of RMI2 and RTEL1 leads to loss of male fertility. As both the RTR complex and RTEL1 are involved in suppression of homologous recombination (HR), we tested the efficiency of HR in the double mutant rmi2-2 rtel1-1 and found a synergistic enhancement (80-fold). Searching for natural target sequences we found that RTEL1 is required for stabilizing 45S rDNA repeats. In the double mutant with rmi2-2 the number of 45S rDNA repeats is further decreased sustaining independent roles of both factors in this process. Thus, loss of suppression of HR does not only lead to a destabilization of rDNA repeats but might be especially deleterious for tissues undergoing multiple cell divisions such as the male germline. The Bloom syndrome and Hoyeraal Hreidarsson syndrome are severe diseases in humans that are correlated with genome instability. Interestingly, plants harbor homologs of factors that are defective in the respective diseases. In the model plant A. thaliana these proteins play important roles in various aspects of the repair of genetic information and the maintenance of repetitive elements. Here, we show that the concomitant loss of function of two specific factors that are representative for each syndrome leads in plants to male sterility, due to somatic catastrophe leading to instability and cell death. This defect is correlated with a massive loss of repetitive genes involved in general protein production. It has been shown before for mammals that loss of certain other factors involved in genome stability leads to a defect in neural development. Our results now demonstrate that genome instability can also result in organ-specific defects in plants, in our case during flower development, leading to a defect in the cell proliferation of the premeiotic male germline.
Collapse
Affiliation(s)
- Sarah Röhrig
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Susan Schröpfer
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
32
|
Procházková Schrumpfová P, Schořová Š, Fajkus J. Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell. FRONTIERS IN PLANT SCIENCE 2016; 7:851. [PMID: 27446102 PMCID: PMC4924339 DOI: 10.3389/fpls.2016.00851] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/31/2016] [Indexed: 05/20/2023]
Abstract
Telomeres, as physical ends of linear chromosomes, are targets of a number of specific proteins, including primarily telomerase reverse transcriptase. Access of proteins to the telomere may be affected by a number of diverse factors, e.g., protein interaction partners, local DNA or chromatin structures, subcellular localization/trafficking, or simply protein modification. Knowledge of composition of the functional nucleoprotein complex of plant telomeres is only fragmentary. Moreover, the plant telomeric repeat binding proteins that were characterized recently appear to also be involved in non-telomeric processes, e.g., ribosome biogenesis. This interesting finding was not totally unexpected since non-telomeric functions of yeast or animal telomeric proteins, as well as of telomerase subunits, have been reported for almost a decade. Here we summarize known facts about the architecture of plant telomeres and compare them with the well-described composition of telomeres in other organisms.
Collapse
Affiliation(s)
- Petra Procházková Schrumpfová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrno, Czech Republic
- *Correspondence: Petra Procházková Schrumpfová,
| | - Šárka Schořová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.Brno, Czech Republic
| |
Collapse
|
33
|
Dvořáčková M, Fojtová M, Fajkus J. Chromatin dynamics of plant telomeres and ribosomal genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:18-37. [PMID: 25752316 DOI: 10.1111/tpj.12822] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 05/03/2023]
Abstract
Telomeres and genes encoding 45S ribosomal RNA (rDNA) are frequently located adjacent to each other on eukaryotic chromosomes. Although their primary roles are different, they show striking similarities with respect to their features and additional functions. Both genome domains have remarkably dynamic chromatin structures. Both are hypersensitive to dysfunctional histone chaperones, responding at the genomic and epigenomic levels. Both generate non-coding transcripts that, in addition to their epigenetic roles, may induce gross chromosomal rearrangements. Both give rise to chromosomal fragile sites, as their replication is intrinsically problematic. However, at the same time, both are essential for maintenance of genomic stability and integrity. Here we discuss the structural and functional inter-connectivity of telomeres and rDNA, with a focus on recent results obtained in plants.
Collapse
Affiliation(s)
- Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Kamenice 5, 62500, Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Kamenice 5, 62500, Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Kamenice 5, 62500, Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| |
Collapse
|
34
|
Peška V, Fajkus P, Fojtová M, Dvořáčková M, Hapala J, Dvořáček V, Polanská P, Leitch AR, Sýkorová E, Fajkus J. Characterisation of an unusual telomere motif (TTTTTTAGGG)n in the plant Cestrum elegans (Solanaceae), a species with a large genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:644-54. [PMID: 25828846 DOI: 10.1111/tpj.12839] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 05/26/2023]
Abstract
The characterization of unusual telomere sequence sheds light on patterns of telomere evolution, maintenance and function. Plant species from the closely related genera Cestrum, Vestia and Sessea (family Solanaceae) lack known plant telomeric sequences. Here we characterize the telomere of Cestrum elegans, work that was a challenge because of its large genome size and few chromosomes (1C 9.76 pg; n = 8). We developed an approach that combines BAL31 digestion, which digests DNA from the ends and chromosome breaks, with next-generation sequencing (NGS), to generate data analysed in RepeatExplorer, designed for de novo repeats identification and quantification. We identify an unique repeat motif (TTTTTTAGGG)n in C. elegans, occurring in ca. 30 400 copies per haploid genome, averaging ca. 1900 copies per telomere, and synthesized by telomerase. We demonstrate that the motif is synthesized by telomerase. The occurrence of an unusual eukaryote (TTTTTTAGGG)n telomeric motif in C. elegans represents a switch in motif from the 'typical' angiosperm telomere (TTTAGGG)n . That switch may have happened with the divergence of Cestrum, Sessea and Vestia. The shift in motif when it arose would have had profound effects on telomere activity. Thus our finding provides a unique handle to study how telomerase and telomeres responded to genetic change, studies that will shed more light on telomere function.
Collapse
Affiliation(s)
- Vratislav Peška
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic
- Faculty of Science, and CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Petr Fajkus
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic
- Faculty of Science, and CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Miloslava Fojtová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic
- Faculty of Science, and CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Martina Dvořáčková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic
- Faculty of Science, and CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Jan Hapala
- Faculty of Science, and CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Vojtěch Dvořáček
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic
| | - Pavla Polanská
- Faculty of Science, and CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Eva Sýkorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic
- Faculty of Science, and CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Jiří Fajkus
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic
- Faculty of Science, and CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| |
Collapse
|
35
|
Fojtová M, Sýkorová E, Najdekrová L, Polanská P, Zachová D, Vagnerová R, Angelis KJ, Fajkus J. Telomere dynamics in the lower plant Physcomitrella patens. PLANT MOLECULAR BIOLOGY 2015; 87:591-601. [PMID: 25701469 DOI: 10.1007/s11103-015-0299-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/16/2015] [Indexed: 06/04/2023]
Abstract
A comparative approach in biology is needed to assess the universality of rules governing this discipline. In plant telomere research, most of the key principles were established based on studies in only single model plant, Arabidopsis thaliana. These principles include the absence of telomere shortening during plant development and the corresponding activity of telomerase in dividing (meristem) plant cells. Here we examine these principles in Physcomitrella patens as a representative of lower plants. To follow telomerase expression, we first characterize the gene coding for the telomerase reverse transcriptase subunit PpTERT in P. patens, for which only incomplete prediction has been available so far. In protonema cultures of P. patens, growing by filament apical cell division, the proportion of apical (dividing) cells was quantified and telomere length, telomerase expression and activity were determined. Our results show telomere stability and demonstrate proportionality of telomerase activity and expression with the number of apical cells. In addition, we analyze telomere maintenance in mre11, rad50, nbs1, ku70 and lig4 mutants of P. patens and compare the impact of these mutations in double-strand-break (DSB) repair pathways with earlier observations in corresponding A. thaliana mutants. Telomere phenotypes are absent and DSB repair kinetics is not affected in P. patens mutants for DSB factors involved in non-homologous end joining (NHEJ). This is compliant with the overall dominance of homologous recombination over NHEJ pathways in the moss, contrary to the inverse situation in flowering plants.
Collapse
Affiliation(s)
- Miloslava Fojtová
- Faculty of Science and CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Mursalimov S, Sidorchuk Y, Baiborodin S, Deineko E. Distribution of telomeres in the tobacco meiotic nuclei during cytomixis. Cell Biol Int 2015; 39:491-5. [PMID: 25492305 DOI: 10.1002/cbin.10406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/07/2014] [Indexed: 11/09/2022]
Abstract
Cytomixis is the migration of nuclei from one cell to another in higher plants, most frequently observable during microsporogenesis, which has a potential evolutionary significance. Currently, a major challenge is to label the chromatin migrating between cells to clarify its further fate. We have for the first time succeeded in visualizing the telomeric chromatin regions in the nuclei migrating between cells using fluorescent in situ hybridization. It has been shown that the telomeric signals in tobacco microsporocytes are randomly distributed in migrating nuclei without any deviations from their normal meiotic dynamics. According to our data, the chromatin migrating during cytomixis always contains telomeres and the telomeric signals are retained in the micronuclei formed after cytomixis.
Collapse
Affiliation(s)
- Sergey Mursalimov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| | | | | | | |
Collapse
|
37
|
Nelson ADL, Forsythe ES, Gan X, Tsiantis M, Beilstein MA. Extending the model of Arabidopsis telomere length and composition across Brassicaceae. Chromosome Res 2015; 22:153-66. [PMID: 24846723 DOI: 10.1007/s10577-014-9423-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Telomeres are repetitive TG-rich DNA elements essential for maintaining the stability of genomes and replicative capacity of cells in almost all eukaryotes. Most of what is known about telomeres in plants comes from the angiosperm Arabidopsis thaliana, which has become an important comparative model for telomere biology. Arabidopsis tolerates numerous insults to its genome, many of which are catastrophic or lethal in other eukaryotic systems such as yeast and vertebrates. Despite the importance of Arabidopsis in establishing a model for the structure and regulation of plant telomeres, only a handful of studies have used this information to assay components of telomeres from across land plants, or even among the closest relatives of Arabidopsis in the plant family Brassicaceae. Here, we determined how well Arabidopsis represents Brassicaceae by comparing multiple aspects of telomere biology in species that represent major clades in the family tree. Specifically, we determined the telomeric repeat sequence, measured bulk telomere length, and analyzed variation in telomere length on syntenic chromosome arms. In addition, we used a phylogenetic approach to infer the evolutionary history of putative telomere-binding proteins, CTC1, STN1, TEN1 (CST), telomere repeat-binding factor like (TRFL), and single Myb histone (SMH). Our analyses revealed conservation of the telomeric DNA repeat sequence, but considerable variation in telomere length among the sampled species, even in comparisons of syntenic chromosome arms. We also found that the single-stranded and double-stranded telomeric DNA-binding complexes CST and TRFL, respectively, differ in their pattern of gene duplication and loss. The TRFL and SMH gene families have undergone numerous duplication events, and these duplicate copies are often retained in the genome. In contrast, CST components occur as single-copy genes in all sampled genomes, even in species that experienced recent whole genome duplication events. Taken together, our results place the Arabidopsis model in the context of other species in Brassicaceae, making the family the best characterized plant group in regard to telomere architecture.
Collapse
Affiliation(s)
- Andrew D L Nelson
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | | | | | | | | |
Collapse
|
38
|
Fulcher N, Teubenbacher A, Kerdaffrec E, Farlow A, Nordborg M, Riha K. Genetic architecture of natural variation of telomere length in Arabidopsis thaliana. Genetics 2015; 199:625-35. [PMID: 25488978 PMCID: PMC4317667 DOI: 10.1534/genetics.114.172163] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/25/2014] [Indexed: 11/18/2022] Open
Abstract
Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation.
Collapse
Affiliation(s)
- Nick Fulcher
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria
| | - Astrid Teubenbacher
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria
| | - Envel Kerdaffrec
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria
| | - Ashley Farlow
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, Czech Republic
| |
Collapse
|
39
|
Fojtová M, Fajkus J. Epigenetic Regulation of Telomere Maintenance. Cytogenet Genome Res 2014; 143:125-35. [DOI: 10.1159/000360775] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
40
|
Fulcher N, Derboven E, Valuchova S, Riha K. If the cap fits, wear it: an overview of telomeric structures over evolution. Cell Mol Life Sci 2014; 71:847-65. [PMID: 24042202 PMCID: PMC11113737 DOI: 10.1007/s00018-013-1469-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/16/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
Genome organization into linear chromosomes likely represents an important evolutionary innovation that has permitted the development of the sexual life cycle; this process has consequently advanced nuclear expansion and increased complexity of eukaryotic genomes. Chromosome linearity, however, poses a major challenge to the internal cellular machinery. The need to efficiently recognize and repair DNA double-strand breaks that occur as a consequence of DNA damage presents a constant threat to native chromosome ends known as telomeres. In this review, we present a comparative survey of various solutions to the end protection problem, maintaining an emphasis on DNA structure. This begins with telomeric structures derived from a subset of prokaryotes, mitochondria, and viruses, and will progress into the typical telomere structure exhibited by higher organisms containing TTAGG-like tandem sequences. We next examine non-canonical telomeres from Drosophila melanogaster, which comprise arrays of retrotransposons. Finally, we discuss telomeric structures in evolution and possible switches between canonical and non-canonical solutions to chromosome end protection.
Collapse
Affiliation(s)
- Nick Fulcher
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Elisa Derboven
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Sona Valuchova
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
- Central European Institute of Technology, Kamenice 753/5, Brno, Czech Republic
| |
Collapse
|
41
|
Majerová E, Mandáková T, Vu GTH, Fajkus J, Lysak MA, Fojtová M. Chromatin features of plant telomeric sequences at terminal vs. internal positions. FRONTIERS IN PLANT SCIENCE 2014; 5:593. [PMID: 25408695 PMCID: PMC4219495 DOI: 10.3389/fpls.2014.00593] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/11/2014] [Indexed: 05/19/2023]
Abstract
Epigenetic mechanisms are involved in regulation of crucial cellular processes in eukaryotic organisms. Data on the epigenetic features of plant telomeres and their epigenetic regulation were published mostly for Arabidopsis thaliana, in which the presence of interstitial telomeric repeats (ITRs) may interfere with genuine telomeres in most analyses. Here, we studied the epigenetic landscape and transcription of telomeres and ITRs in Nicotiana tabacum with long telomeres and no detectable ITRs, and in Ballantinia antipoda with large blocks of pericentromeric ITRs and relatively short telomeres. Chromatin of genuine telomeres displayed heterochromatic as well as euchromatic marks, while ITRs were just heterochromatic. Methylated cytosines were present at telomeres and ITRs, but showed a bias with more methylation toward distal telomere positions and different blocks of B. antipoda ITRs methylated to different levels. Telomeric transcripts TERRA (G-rich) and ARRET (C-rich) were identified in both plants and their levels varied among tissues with a maximum in blossoms. Plants with substantially different proportions of internally and terminally located telomeric repeats are instrumental in clarifying the chromatin status of telomeric repeats at distinct chromosome locations.
Collapse
Affiliation(s)
- Eva Majerová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology and Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Terezie Mandáková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology and Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Giang T. H. Vu
- Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology and Faculty of Science, Masaryk UniversityBrno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i.Brno, Czech Republic
| | - Martin A. Lysak
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology and Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology and Faculty of Science, Masaryk UniversityBrno, Czech Republic
- *Correspondence: Miloslava Fojtová, Central European Institute of Technology and Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic e-mail:
| |
Collapse
|
42
|
Ogrocká A, Polanská P, Majerová E, Janeba Z, Fajkus J, Fojtová M. Compromised telomere maintenance in hypomethylated Arabidopsis thaliana plants. Nucleic Acids Res 2013; 42:2919-31. [PMID: 24334955 PMCID: PMC3950684 DOI: 10.1093/nar/gkt1285] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Telomeres, nucleoprotein structures at the ends of linear eukaryotic chromosomes, are important for the maintenance of genomic stability. Telomeres were considered as typical heterochromatic regions, but in light of recent results, this view should be reconsidered. Asymmetrically located cytosines in plant telomeric DNA repeats may be substrates for a DNA methyltransferase enzyme and indeed, it was shown that these repeats are methylated. Here, we analyse the methylation of telomeric cytosines and the length of telomeres in Arabidopsis thaliana methylation mutants (met 1-3 and ddm 1-8), and in their wild-type siblings that were germinated in the presence of hypomethylation drugs. Our results show that cytosine methylation in telomeric repeats depends on the activity of MET1 and DDM1 enzymes. Significantly shortened telomeres occur in later generations of methylation mutants as well as in plants germinated in the presence of hypomethylation drugs, and this phenotype is stably transmitted to the next plant generation. A possible role of compromised in vivo telomerase action in the observed telomere shortening is hypothesized based on telomere analysis of hypomethylated telomerase knockout plants. Results are discussed in connection with previous data in this field obtained using different model systems.
Collapse
Affiliation(s)
- Anna Ogrocká
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo nám. 2, 166 10, Prague, Czech Republic and Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
43
|
Ichikawa Y, Morohashi N, Nishimura Y, Kurumizaka H, Shimizu M. Telomeric repeats act as nucleosome-disfavouring sequences in vivo. Nucleic Acids Res 2013; 42:1541-52. [PMID: 24174540 PMCID: PMC3919577 DOI: 10.1093/nar/gkt1006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Telomeric DNAs consist of tandem repeats of G-clusters such as TTAGGG and TG1-3, which are the human and yeast repeat sequences, respectively. In the yeast Saccharomyces cerevisiae, the telomeric repeats are non-nucleosomal, whereas in humans, they are organized in tightly packaged nucleosomes. However, previous in vitro studies revealed that the binding affinities of human and yeast telomeric repeat sequences to histone octamers in vitro were similar, which is apparently inconsistent with the differences in the human and yeast telomeric chromatin structures. To further investigate the relationship between telomeric sequences and chromatin structure, we examined the effect of telomeric repeats on the formation of positioned nucleosomes in vivo by indirect end-label mapping, primer extension mapping and nucleosome repeat analyses, using a defined minichromosome in yeast cells. We found that the human and yeast telomeric repeat sequences both disfavour nucleosome assembly and alter nucleosome positioning in the yeast minichromosome. We further demonstrated that the G-clusters in the telomeric repeats are required for the nucleosome-disfavouring properties. Thus, our results suggest that this inherent structural feature of the telomeric repeat sequences is involved in the functional dynamics of the telomeric chromatin structure.
Collapse
Affiliation(s)
- Yuichi Ichikawa
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering/RISE, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8640, Japan, Program in Chemistry and Life Science, School of Science and Engineering, Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan and Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | |
Collapse
|
44
|
Sýkorová E, Fojtová M, Peška V. A polymerase chain reaction-based approach for evaluation of telomere-associated sequences and interstitial telomeric sequences. Anal Biochem 2013; 439:8-10. [PMID: 23583821 DOI: 10.1016/j.ab.2013.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 11/27/2022]
Abstract
Telomere minisatellites could be present in both terminal and internal chromosomal regions. We monitored the progress of BAL-31 nuclease digestion on Arabidopsis thaliana genomic DNA prepared by standard isolation techniques to verify its cleavage at terminal and internal genomic regions. A subtelomeric position of candidate sequences was validated using conventional polymerase chain reaction (PCR), combining the C-strand-specific telomeric primer with a subtelomeric reverse primer, and confirmed by quantitative PCR (qPCR) using sequence-specific primer pairs on DNA samples after BAL-31 digestion. qPCR amplification showed a gradual decrease in subtelomeric sequence signals, in contrast to interstitial telomeric sequences from pericentromere and control sequences.
Collapse
Affiliation(s)
- Eva Sýkorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic.
| | | | | |
Collapse
|
45
|
Lee YW, Kim WT. Telomerase-dependent 3' G-strand overhang maintenance facilitates GTBP1-mediated telomere protection from misplaced homologous recombination. THE PLANT CELL 2013; 25:1329-42. [PMID: 23572544 PMCID: PMC3663271 DOI: 10.1105/tpc.112.107573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/17/2013] [Accepted: 03/26/2013] [Indexed: 05/09/2023]
Abstract
At the 3'-end of telomeres, single-stranded G-overhang telomeric repeats form a stable T-loop. Many studies have focused on the mechanisms that generate and regulate the length of telomere 3' G-strand overhangs, but the roles of G-strand overhang length control in proper T-loop formation and end protection remain unclear. Here, we examined functional relationships between the single-stranded telomere binding protein GTBP1 and G-strand overhang lengths maintained by telomerase in tobacco (Nicotiana tabacum). In tobacco plants, telomerase reverse transcriptase subunit (TERT) repression severely worsened the GTBP1 knockdown phenotypes, which were formally characterized as an outcome of telomere destabilization. TERT downregulation shortened the telomere 3' G-overhangs and increased telomere recombinational aberrations in GTBP1-suppressed plants. Correlatively, GTBP1-mediated inhibition of single-strand invasion into the double-strand telomeric sequences was impaired due to shorter single-stranded telomeres. Moreover, TERT/GTBP1 double knockdown amplified misplaced homologous recombination of G-strand overhangs into intertelomeric regions. Thus, proper G-overhang length maintenance is required to protect telomeres against intertelomeric recombination, which is achieved by the balanced functions of GTBP1 and telomerase activity.
Collapse
Affiliation(s)
- Yong Woo Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
46
|
Galati A, Micheli E, Cacchione S. Chromatin structure in telomere dynamics. Front Oncol 2013; 3:46. [PMID: 23471416 PMCID: PMC3590461 DOI: 10.3389/fonc.2013.00046] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/21/2013] [Indexed: 11/13/2022] Open
Abstract
The establishment of a specific nucleoprotein structure, the telomere, is required to ensure the protection of chromosome ends from being recognized as DNA damage sites. Telomere shortening below a critical length triggers a DNA damage response that leads to replicative senescence. In normal human somatic cells, characterized by telomere shortening with each cell division, telomere uncapping is a regulated process associated with cell turnover. Nevertheless, telomere dysfunction has also been associated with genomic instability, cell transformation, and cancer. Despite the essential role telomeres play in chromosome protection and in tumorigenesis, our knowledge of the chromatin structure involved in telomere maintenance is still limited. Here we review the recent findings on chromatin modifications associated with the dynamic changes of telomeres from protected to deprotected state and their role in telomere functions.
Collapse
Affiliation(s)
- Alessandra Galati
- Dipartimento di Biologia e Biotecnologie, Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza Università di Roma Rome, Italy
| | | | | |
Collapse
|
47
|
Vaquero-Sedas MI, Luo C, Vega-Palas MA. Analysis of the epigenetic status of telomeres by using ChIP-seq data. Nucleic Acids Res 2012; 40:e163. [PMID: 22855559 PMCID: PMC3505975 DOI: 10.1093/nar/gks730] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/06/2012] [Indexed: 01/17/2023] Open
Abstract
The chromatin structure of eukaryotic telomeres plays an essential role in telomere functions. However, their study might be impaired by the presence of interstitial telomeric sequences (ITSs), which have a widespread distribution in different model systems. We have developed a simple approach to study the chromatin structure of Arabidopsis telomeres independently of ITSs by analyzing ChIP-seq data. This approach could be used to study the chromatin structure of telomeres in some other eukaryotes. The analysis of ChIP-seq experiments revealed that Arabidopsis telomeres have higher density of histone H3 than centromeres, which might reflects their short nucleosomal organization. These experiments also revealed that Arabidopsis telomeres have lower levels of heterochromatic marks than centromeres (H3K9(Me2) and H3K27(Me)), higher levels of some euchromatic marks (H3K4(Me2) and H3K9Ac) and similar or lower levels of other euchromatic marks (H3K4(Me3), H3K36(Me2), H3K36(Me3) and H3K18Ac). Interestingly, the ChIP-seq experiments also revealed that Arabidopsis telomeres exhibit high levels of H3K27(Me3), a repressive mark that associates with many euchromatic genes. The epigenetic profile of Arabidopsis telomeres is closely related to the previously defined chromatin state 2. This chromatin state is found in 23% of Arabidopsis genes, many of which are repressed or lowly expressed. At least, in part, this scenario is similar in rice.
Collapse
Affiliation(s)
- María I. Vaquero-Sedas
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, IBVF (CSIC-USE), c/ Américo Vespucio n° 49, 41092 Seville, Spain and Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA
| | - Chongyuan Luo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, IBVF (CSIC-USE), c/ Américo Vespucio n° 49, 41092 Seville, Spain and Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA
| | - Miguel A. Vega-Palas
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, IBVF (CSIC-USE), c/ Américo Vespucio n° 49, 41092 Seville, Spain and Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
48
|
Sýkorová E, Fulnečková J, Mokroš P, Fajkus J, Fojtová M, Peška V. Three TERT genes in Nicotiana tabacum. Chromosome Res 2012; 20:381-94. [PMID: 22543812 DOI: 10.1007/s10577-012-9282-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/15/2012] [Accepted: 03/29/2012] [Indexed: 01/15/2023]
Abstract
Telomerase is essential for proper functioning of telomeres in eukaryotes. We cloned and characterised genes for the protein subunit of telomerase (TERT) in the allotetraploid Nicotiana tabacum (tobacco) and its diploid progenitor species Nicotiana sylvestris and Nicotiana tomentosiformis with the aim of determining if allopolyploidy (hybridisation and genome duplication) influences TERT activity and divergence. Two of the three sequence variants present in the tobacco genome (NtTERT-C/s and NtTERT-D) revealed similarity to two sequence variants found in N. sylvestris and another variant (NtTERT-C/t) was similar to TERT of N. tomentosiformis. Variants of N. sylvestris origin showed less similarity to each other (80.5 % in the genomic region; 90.1 % in the coding sequence) than that between the NtTERT-C/s and NtTERT-C/t variants (93.6 and 97.2 %, respectively). The NtTERT-D variant was truncated at the 5' end, and indels indicated that it was a pseudogene. All tobacco variants were transcribed and alternatively spliced sequences were detected. Analysis of gene arrangements uncovered a novel exon in the N-terminal domain of TERT variants, a feature that is likely to be commonly found in Solanaceae species. In addition, species-specific duplications were observed within exon 5. The putative function, copy number and evolutionary origin of these NtTERT sequence variants are discussed.
Collapse
Affiliation(s)
- Eva Sýkorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
49
|
Polanská E, Dobšáková Z, Dvořáčková M, Fajkus J, Štros M. HMGB1 gene knockout in mouse embryonic fibroblasts results in reduced telomerase activity and telomere dysfunction. Chromosoma 2012; 121:419-31. [PMID: 22544226 DOI: 10.1007/s00412-012-0373-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 01/09/2023]
Abstract
Telomere repeats are added onto chromosome ends by telomerase, consisting of two main core components: a catalytic protein subunit (telomerase reverse trancriptase, TERT), and an RNA subunit (telomerase RNA, TR). Here, we report for the first time evidence that HMGB1 (a chromatin-associated protein in mammals, acting as a DNA chaperone in transcription, replication, recombination, and repair) can modulate cellular activity of mammalian telomerase. Knockout of the HMGB1 gene (HMGB1 KO) in mouse embryonic fibroblasts (MEFs) results in chromosomal abnormalities, enhanced colocalization of γ-H2AX foci at telomeres, and a moderate shortening of telomere lengths. HMGB1 KO MEFs also exhibit significantly (>5-fold) lower telomerase activity than the wild-type MEFs. Correspondingly, enhanced telomerase activity is observed upon overexpression of HMGB1 in MEFs. HMGB1 physically interacts with both TERT and TR, as well as with active telomerase complex in vitro. However, direct interaction of HMGB1 with telomerase is most likely not accountable for the observed higher telomerase activity in HMGB1-containing cells, as revealed from the inability of purified HMGB1 protein to stimulate telomerase activity in vitro. While no transcriptional silencing of TERT is observed in HMGB1 KO MEFs, levels of TR are diminished (~3-fold), providing possible explanation for the observed lower telomerase activity in HMGB1 KO cells. Interestingly, knockout of the HMGB2 gene elevates telomerase activity (~3-fold) in MEFs, suggesting that the two closely related proteins of the HMGB family, HMGB1 and HMGB2, have opposite effects on telomerase activity in the cell. The ability of HMGB1 to modulate cellular activity of telomerase and to maintain telomere integrity can help to understand some aspects of the protein involvement in chromosome stability and cancer.
Collapse
Affiliation(s)
- Eva Polanská
- Academy of Sciences of the Czech Republic, Institute of Biophysics, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
50
|
Galati A, Magdinier F, Colasanti V, Bauwens S, Pinte S, Ricordy R, Giraud-Panis MJ, Pusch MC, Savino M, Cacchione S, Gilson E. TRF2 controls telomeric nucleosome organization in a cell cycle phase-dependent manner. PLoS One 2012; 7:e34386. [PMID: 22536324 PMCID: PMC3335031 DOI: 10.1371/journal.pone.0034386] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/27/2012] [Indexed: 01/12/2023] Open
Abstract
Mammalian telomeres stabilize chromosome ends as a result of their assembly into a peculiar form of chromatin comprising a complex of non-histone proteins named shelterin. TRF2, one of the shelterin components, binds to the duplex part of telomeric DNA and is essential to fold the telomeric chromatin into a protective cap. Although most of the human telomeric DNA is organized into tightly spaced nucleosomes, their role in telomere protection and how they interplay with telomere-specific factors in telomere organization is still unclear. In this study we investigated whether TRF2 can regulate nucleosome assembly at telomeres. By means of chromatin immunoprecipitation (ChIP) and Micrococcal Nuclease (MNase) mapping assay, we found that the density of telomeric nucleosomes in human cells was inversely proportional to the dosage of TRF2 at telomeres. This effect was not observed in the G1 phase of the cell cycle but appeared coincident of late or post-replicative events. Moreover, we showed that TRF2 overexpression altered nucleosome spacing at telomeres increasing internucleosomal distance. By means of an in vitro nucleosome assembly system containing purified histones and remodeling factors, we reproduced the short nucleosome spacing found in telomeric chromatin. Importantly, when in vitro assembly was performed in the presence of purified TRF2, nucleosome spacing on a telomeric DNA template increased, in agreement with in vivo MNase mapping. Our results demonstrate that TRF2 negatively regulates the number of nucleosomes at human telomeres by a cell cycle-dependent mechanism that alters internucleosomal distance. These findings raise the intriguing possibility that telomere protection is mediated, at least in part, by the TRF2-dependent regulation of nucleosome organization.
Collapse
Affiliation(s)
- Alessandra Galati
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
- Laboratoire de Biologie Moléculaire de la cellule, Université de Lyon, CNRS UMR5239, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Frédérique Magdinier
- Laboratoire de Biologie Moléculaire de la cellule, Université de Lyon, CNRS UMR5239, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Valentina Colasanti
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Serge Bauwens
- Laboratoire de Biologie Moléculaire de la cellule, Université de Lyon, CNRS UMR5239, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Sébastien Pinte
- Laboratoire de Biologie Moléculaire de la cellule, Université de Lyon, CNRS UMR5239, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Ruggero Ricordy
- Istituto di Biologia e Patologia Molecolari del CNR, Roma, Italy
| | - Marie-Josèphe Giraud-Panis
- Laboratoire de Biologie Moléculaire de la cellule, Université de Lyon, CNRS UMR5239, Ecole Normale Supérieure de Lyon, Lyon, France
- Institute for Research on Cancer and Aging in Nice (IRCAN), UMR 7284 CNRS U1081 INSERM 28 Faculté de Médecine, University of Nice, Nice, France
| | - Miriam Caroline Pusch
- Adolf-Butenandt-Institut, Molekularbiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Maria Savino
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
- Istituto di Biologia e Patologia Molecolari del CNR, Roma, Italy
- Istituto Pasteur-Fondazione Cenci-Bolognetti, Roma, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
- Istituto Pasteur-Fondazione Cenci-Bolognetti, Roma, Italy
- * E-mail: (SC); (EG)
| | - Eric Gilson
- Laboratoire de Biologie Moléculaire de la cellule, Université de Lyon, CNRS UMR5239, Ecole Normale Supérieure de Lyon, Lyon, France
- Institute for Research on Cancer and Aging in Nice (IRCAN), UMR 7284 CNRS U1081 INSERM 28 Faculté de Médecine, University of Nice, Nice, France
- Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, Nice, France
- * E-mail: (SC); (EG)
| |
Collapse
|