1
|
Johnson LC, Vo AA, Clancy JC, Myles KM, Pooranachithra M, Aguilera J, Levenson MT, Wohlenberg C, Rechtsteiner A, Ragle JM, Chisholm AD, Ward JD. NHR-23 activity is necessary for C. elegans developmental progression and apical extracellular matrix structure and function. Development 2023; 150:dev201085. [PMID: 37129010 PMCID: PMC10233720 DOI: 10.1242/dev.201085] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Nematode molting is a remarkable process where animals must repeatedly build a new apical extracellular matrix (aECM) beneath a previously built aECM that is subsequently shed. The nuclear hormone receptor NHR-23 (also known as NR1F1) is an important regulator of C. elegans molting. NHR-23 expression oscillates in the epidermal epithelium, and soma-specific NHR-23 depletion causes severe developmental delay and death. Tissue-specific RNAi suggests that nhr-23 acts primarily in seam and hypodermal cells. NHR-23 coordinates the expression of factors involved in molting, lipid transport/metabolism and remodeling of the aECM. NHR-23 depletion causes dampened expression of a nas-37 promoter reporter and a loss of reporter oscillation. The cuticle collagen ROL-6 and zona pellucida protein NOAH-1 display aberrant annular localization and severe disorganization over the seam cells after NHR-23 depletion, while the expression of the adult-specific cuticle collagen BLI-1 is diminished and frequently found in patches. Consistent with these localization defects, the cuticle barrier is severely compromised when NHR-23 is depleted. Together, this work provides insight into how NHR-23 acts in the seam and hypodermal cells to coordinate aECM regeneration during development.
Collapse
Affiliation(s)
- Londen C. Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - An A. Vo
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - John C. Clancy
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Krista M. Myles
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Aguilera
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Max T. Levenson
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Chloe Wohlenberg
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrew D. Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordan D. Ward
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
2
|
Lakdawala MF, Madhu B, Faure L, Vora M, Padgett RW, Gumienny TL. Genetic interactions between the DBL-1/BMP-like pathway and dpy body size-associated genes in Caenorhabditis elegans. Mol Biol Cell 2019; 30:3151-3160. [PMID: 31693440 PMCID: PMC6938244 DOI: 10.1091/mbc.e19-09-0500] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/22/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling pathways control many developmental and homeostatic processes, including cell size and extracellular matrix remodeling. An understanding of how this pathway itself is controlled remains incomplete. To identify novel regulators of BMP signaling, we performed a forward genetic screen in Caenorhabditis elegans for genes involved in body size regulation, a trait under the control of BMP member DBL-1. We isolated mutations that suppress the long phenotype of lon-2, a gene that encodes a negative regulator that sequesters DBL-1. This screen was effective because we isolated alleles of several core components of the DBL-1 pathway, demonstrating the efficacy of the screen. We found additional alleles of previously identified but uncloned body size genes. Our screen also identified widespread involvement of extracellular matrix proteins in DBL-1 regulation of body size. We characterized interactions between the DBL-1 pathway and extracellular matrix and other genes that affect body morphology. We discovered that loss of some of these genes affects the DBL-1 pathway, and we provide evidence that DBL-1 signaling affects many molecular and cellular processes associated with body size. We propose a model in which multiple body size factors are controlled by signaling through the DBL-1 pathway and by DBL-1-independent processes.
Collapse
Affiliation(s)
| | - Bhoomi Madhu
- Department of Biology, Texas Woman’s University, Denton, TX 76204-5799
| | - Lionel Faure
- Department of Biology, Texas Woman’s University, Denton, TX 76204-5799
| | - Mehul Vora
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020
| | - Richard W. Padgett
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020
- Waksman Institute of Microbiology Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854-8020
- Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854-8020
| | - Tina L. Gumienny
- Department of Biology, Texas Woman’s University, Denton, TX 76204-5799
| |
Collapse
|
3
|
Cornes E, Quéré CAL, Giordano-Santini R, Dupuy D. Applying antibiotic selection markers for nematode genetics. Methods 2014; 68:403-8. [PMID: 24821108 DOI: 10.1016/j.ymeth.2014.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 01/30/2023] Open
Abstract
Antibiotic selection markers have been recently developed in the multicellular model organism Caenorhabditis elegans and other related nematode species, opening great opportunities in the field of nematode transgenesis. Here we describe how these antibiotic selection systems can be easily combined with many well-established genetic approaches to study gene function, improving time- and cost-effectiveness of the nematode genetic toolbox.
Collapse
Affiliation(s)
- Eric Cornes
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain; Univ. Bordeaux, IECB, Laboratoire ARNA, F-33600 Pessac, France; INSERM, U869, Laboratoire ARNA, F-33000 Bordeaux, France
| | - Cécile A L Quéré
- Univ. Bordeaux, IECB, Laboratoire ARNA, F-33600 Pessac, France; INSERM, U869, Laboratoire ARNA, F-33000 Bordeaux, France
| | - Rosina Giordano-Santini
- Molecular and Cellular Neurobiology Laboratory, The University of Queensland, Queensland Brain Institute, Qld 4072, Australia
| | - Denis Dupuy
- Univ. Bordeaux, IECB, Laboratoire ARNA, F-33600 Pessac, France; INSERM, U869, Laboratoire ARNA, F-33000 Bordeaux, France.
| |
Collapse
|
4
|
Mokhonov VV, Theendakara VP, Gribanova YE, Ahmedli NB, Farber DB. Sequence-specific binding of recombinant Zbed4 to DNA: insights into Zbed4 participation in gene transcription and its association with other proteins. PLoS One 2012; 7:e35317. [PMID: 22693546 PMCID: PMC3365051 DOI: 10.1371/journal.pone.0035317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/15/2012] [Indexed: 11/19/2022] Open
Abstract
Zbed4, a member of the BED subclass of Zinc-finger proteins, is expressed in cone photoreceptors and glial Müller cells of human retina whereas it is only present in Müller cells of mouse retina. To characterize structural and functional properties of Zbed4, enough amounts of purified protein were needed. Thus, recombinant Zbed4 was expressed in E. coli and its refolding conditions optimized for the production of homogenous and functionally active protein. Zbed4’s secondary structure, determined by circular dichroism spectroscopy, showed that this protein contains 32% α-helices, 18% β-sheets, 20% turns and 30% unordered structures. CASTing was used to identify the target sites of Zbed4 in DNA. The majority of the DNA fragments obtained contained poly-Gs and some of them had, in addition, the core signature of GC boxes; a few clones had only GC-boxes. With electrophoretic mobility shift assays we demonstrated that Zbed4 binds both not only to DNA and but also to RNA oligonucleotides with very high affinity, interacting with poly-G tracts that have a minimum of 5 Gs; its binding to and GC-box consensus sequences. However, the latter binding depends on the GC-box flanking nucleotides. We also found that Zbed4 interacts in Y79 retinoblastoma cells with nuclear and cytoplasmic proteins Scaffold Attachment Factor B1 (SAFB1), estrogen receptor alpha (ERα), and cellular myosin 9 (MYH9), as shown with immunoprecipitation and mass spectrometry studies as well as gel overlay assays. In addition, immunostaining corroborated the co-localization of Zbed4 with these proteins. Most importantly, in vitro experiments using constructs containing promoters of genes directing expression of the luciferase gene, showed that Zbed4 transactivates the transcription of those promoters with poly-G tracts.
Collapse
Affiliation(s)
- Vladislav V. Mokhonov
- Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Veena P. Theendakara
- Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yekaterina E. Gribanova
- Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Novruz B. Ahmedli
- Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (DBF); (NBA)
| | - Debora B. Farber
- Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (DBF); (NBA)
| |
Collapse
|
5
|
Wei X, Potter CJ, Luo L, Shen K. Controlling gene expression with the Q repressible binary expression system in Caenorhabditis elegans. Nat Methods 2012; 9:391-5. [PMID: 22406855 PMCID: PMC3846601 DOI: 10.1038/nmeth.1929] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 02/09/2012] [Indexed: 11/09/2022]
Abstract
We establish the first transcription-based binary gene expression system in C. elegans using the recently developed Q system. This system, derived from genes in Neurospora crassa, uses the transcriptional activator QF to induce the expression of target genes. Activation can be efficiently suppressed by the transcriptional repressor QS, and suppression in turn can be relieved by the non-toxic small molecule, quinic acid (QA). We used QF/QS and QA to achieve temporal and spatial control of transgene expression in various tissues in C. elegans. We further developed a Split Q system, in which we separated QF into two parts encoding its DNA-binding and transcription-activation domains. Each domain shows negligible transcriptional activity when expressed alone, but co-expression reconstitutes QF activity, providing additional combinatorial power to control gene expression.
Collapse
Affiliation(s)
- Xing Wei
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, California, USA
| | | | | | | |
Collapse
|
6
|
Farber DB, Theendakara VP, Akhmedov NB, Saghizadeh M. ZBED4, a novel retinal protein expressed in cones and Müller cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 664:79-87. [PMID: 20238005 DOI: 10.1007/978-1-4419-1399-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
To identify genes expressed in cone photoreceptors, we previously carried out subtractive hybridization and microarrays of retinal mRNAs from normal and cd (cone degeneration) dogs. One of the isolated genes encoded ZBED4, a novel protein that in human retina is localized to cone photoreceptors and glial Müller cells. ZBED4 is distributed between nuclear and cytoplasmic fractions of the retina and it readily forms homodimers, probably as a consequence of its hATC dimerization domain. In addition, the ZBED4 sequence has several domains that suggest it may function as part of a co-activator complex facilitating the activation of nuclear receptors and other factors (BED finger domains) or as a co-activator/co-repressor of nuclear hormone receptors (LXXLL motifs). We have identified several putative ZBED4-interacting proteins and one of them is precisely a co-repressor of the estrogen receptor alpha.
Collapse
Affiliation(s)
- Debora B Farber
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095-7000, USA.
| | | | | | | |
Collapse
|
7
|
Giordano-Santini R, Dupuy D. Selectable genetic markers for nematode transgenesis. Cell Mol Life Sci 2011; 68:1917-27. [PMID: 21431833 PMCID: PMC11115105 DOI: 10.1007/s00018-011-0670-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/03/2011] [Accepted: 03/10/2011] [Indexed: 11/28/2022]
Abstract
The nematode Caenorhabditis elegans has been used to study genetics and development since the mid-1970s. Over the years, the arsenal of techniques employed in this field has grown steadily in parallel with the number of researchers using this model. Since the introduction of C. elegans transgenesis, nearly 20 years ago, this system has been extensively used in areas such as rescue experiments, gene expression studies, and protein localization. The completion of the C. elegans genome sequence paved the way for genome-wide studies requiring higher throughput and improved scalability than provided by traditional genetic markers. The development of antibiotic selection systems for nematode transgenesis addresses these requirements and opens the possibility to apply transgenesis to investigate biological functions in other nematode species for which no genetic markers had been developed to date.
Collapse
Affiliation(s)
- Rosina Giordano-Santini
- Genome Regulation and Evolution, Inserm U869, Université de Bordeaux, Institut Européen de Chimie et Biologie (IECB), 2, rue Robert Escarpit, 33607 Pessac, France
| | - Denis Dupuy
- Genome Regulation and Evolution, Inserm U869, Université de Bordeaux, Institut Européen de Chimie et Biologie (IECB), 2, rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
8
|
Abstract
The ability to manipulate the genome of organisms at will is perhaps the single most useful ability for the study of biological systems. Techniques for the generation of transgenics in the nematode Caenorhabditis elegans became available in the late 1980s. Since then, improvements to the original approach have been made to address specific limitations with transgene expression, expand on the repertoire of the types of biological information that transgenes can provide, and begin to develop methods to target transgenes to defined chromosomal locations. Many recent, detailed protocols have been published, and hence in this chapter, we will review various approaches to making C. elegans transgenics, discuss their applications, and consider their relative advantages and disadvantages. Comments will also be made on anticipated future developments and on the application of these methods to other nematodes.
Collapse
Affiliation(s)
- Vida Praitis
- Biology Department, Grinnell College, Grinnell, Iowa, USA
| | | |
Collapse
|
9
|
C. elegans BED domain transcription factor BED-3 controls lineage-specific cell proliferation during organogenesis. Dev Biol 2009; 338:226-36. [PMID: 20005870 PMCID: PMC2862168 DOI: 10.1016/j.ydbio.2009.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 11/09/2009] [Accepted: 12/04/2009] [Indexed: 11/23/2022]
Abstract
The control of cell division is critical to organogenesis, but how this control is achieved is not fully understood. We found that mutations in bed-3, encoding a BED Zn-finger domain transcription factor, confer a phenotype where a specific set of cell divisions during vulval organogenesis is lost. Unlike general cell cycle regulators in Caenorhabditis elegans, the function of bed-3 is restricted to specific lineages. Transcriptional reporters suggest that bed-3 is expressed in a limited number of cell types including vulval cells whose divisions are affected in bed-3 mutants. A bed-3 mutation also affects the expression pattern of the cdh-3 cadherin gene in the vulva. The phenotype of bed-3 mutants is similar to the phenotype caused by mutations in cog-1 (Nkx6), a component of a gene regulatory network controlling cell type specific gene expression in the vulval lineage. These results suggest that bed-3 is a key component linking the gene regulatory network controlling cell-type specification to control of cell division during vulval organogenesis.
Collapse
|
10
|
Schertel C, Conradt B. C. elegans orthologs of components of the RB tumor suppressor complex have distinct pro-apoptotic functions. Development 2007; 134:3691-701. [PMID: 17881492 DOI: 10.1242/dev.004606] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To obtain insight into the role of the retinoblastoma susceptibility gene (Rb; also known as Rb1) in apoptosis, we analyzed Caenorhabditis elegans mutants lacking a functional lin-35 RB gene. We found that the loss of lin-35 function results in a decrease in constitutive germ cell apoptosis. We present evidence that lin-35 promotes germ cell apoptosis by repressing the expression of ced-9, an anti-apoptotic C. elegans gene that is orthologous to the human proto-oncogene BCL2. Furthermore, we show that the genes dpl-1 DP, efl-1 E2F and efl-2 E2F also promote constitutive germ cell apoptosis. However, in contrast to lin-35, dpl-1 (and probably also efl-1 and efl-2) promotes germ cell apoptosis by inducing the expression of the pro-apoptotic genes ced-4 and ced-3, which encode an APAF1-like adaptor protein and a pro-caspase, respectively. Based on these results, we propose that C. elegans orthologs of components of the RB tumor suppressor complex have distinct pro-apoptotic functions in the germ line and that the transcriptional regulation of components of the central apoptosis machinery is a critical determinant of constitutive germ cell apoptosis in C. elegans. Finally, we demonstrate that lin-35, dpl-1 and efl-2, but not efl-1, function either downstream of or in parallel to cep-1 p53 (also known as TP53) and egl-1 BH3-only to cause DNA damage-induced germ cell apoptosis. Our results have implications for the general mechanisms through which RB-like proteins control gene expression, the role of RB-, DP- and E2F-like proteins in apoptosis, and the regulation of apoptosis.
Collapse
Affiliation(s)
- Claus Schertel
- Dartmouth Medical School, Department of Genetics, Norris Cotton Cancer Center, 7400 Remsen, Hanover, NH 03755, USA
| | | |
Collapse
|
11
|
Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat Genet 2006; 38:896-903. [PMID: 16845399 DOI: 10.1038/ng1844] [Citation(s) in RCA: 377] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 06/12/2006] [Indexed: 01/19/2023]
Abstract
Most heritable traits, including disease susceptibility, are affected by interactions between multiple genes. However, we understand little about how genes interact because very few possible genetic interactions have been explored experimentally. We have used RNA interference in Caenorhabditis elegans to systematically test approximately 65,000 pairs of genes for their ability to interact genetically. We identify approximately 350 genetic interactions between genes functioning in signaling pathways that are mutated in human diseases, including components of the EGF/Ras, Notch and Wnt pathways. Most notably, we identify a class of highly connected 'hub' genes: inactivation of these genes can enhance the phenotypic consequences of mutation of many different genes. These hub genes all encode chromatin regulators, and their activity as genetic hubs seems to be conserved across animals. We propose that these genes function as general buffers of genetic variation and that these hub genes may act as modifier genes in multiple, mechanistically unrelated genetic diseases in humans.
Collapse
Affiliation(s)
- Ben Lehner
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Paul W Sternberg
- Division of Biology and Howard Hughes Medical Institute, California Institute of Technology 156-29, Pasadena, California 91125-0001, USA.
| |
Collapse
|
13
|
Affiliation(s)
- Paul W Sternberg
- Division of Biology and Howard Hughes Medical Institute, California Institute of Technology 156-29, Pasadena, California 91125-0001, USA.
| |
Collapse
|
14
|
Tiensuu T, Larsen MK, Vernersson E, Tuck S. lin-1 has both positive and negative functions in specifying multiple cell fates induced by Ras/MAP kinase signaling in C. elegans. Dev Biol 2005; 286:338-51. [PMID: 16140291 DOI: 10.1016/j.ydbio.2005.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Revised: 07/27/2005] [Accepted: 08/05/2005] [Indexed: 11/30/2022]
Abstract
lin-1 encodes an ETS domain transcription factor that functions downstream of a Ras/MAP kinase pathway mediating induction of the 1 degrees cell fate during vulval development in the C. elegans hermaphrodite. Mutants lacking lin-1 activity display a phenotype similar to that caused by mutations that constitutively activate let-60 Ras consistent with a model in which lin-1 is a repressor of the 1 degree fate whose activity is inhibited by phosphorylation by MPK-1 MAP kinase. Here, we show that, contrary the current model, lin-1 is required positively for the proper expression of several genes regulated by the pathway in cells adopting the 1 degrees cell fate. We show that the positive requirement for lin-1 is downstream of let-60 Ras and mpk-1 MAP kinase, and that it has a focus in the vulval precursor cells themselves. lin-1 alleles encoding proteins lacking a docking site for MPK-1 MAP kinase are defective in the positive function. We also show that lin-1 apparently has both positive and negative functions during the specification of the fates of other cells in the worm requiring Ras/MAP kinase signaling.
Collapse
Affiliation(s)
- Teresa Tiensuu
- Umeå Center for Molecular Pathogenesis, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
15
|
Kenning C, Kipping I, Sommer RJ. Isolation of mutations with dumpy-like phenotypes and of collagen genes in the nematode Pristionchus pacificus. Genesis 2005; 40:176-83. [PMID: 15493014 DOI: 10.1002/gene.20084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The nematode Pristionchus pacificus was developed as a satellite system in evolutionary developmental biology and forward and reverse genetic approaches allow a detailed comparison of various developmental processes between P. pacificus and Caenorhabditis elegans. To facilitate map-based cloning in P. pacificus, a genome map was generated including a genetic linkage map of approximately 300 molecular markers and a physical map of 10,000 BAC clones. Here, we describe the isolation and characterization of more than 40 morphological mutations that can be used as genetic markers. These mutations fall into 12 Dumpy genes and one Roller gene that represent morphological markers for all six P. pacificus chromosomes. Using an in silico approach, we identified approximately 150 hits of P. pacificus collagen genes in the available EST, BAC-end, and fosmid-end sequences. However, 1:1 orthologs could only be identified for fewer than 20 collagen genes.
Collapse
Affiliation(s)
- Charlotte Kenning
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Evolutionsbiologie, Spermannstrasse 37-39, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
16
|
Merz DC, Alves G, Kawano T, Zheng H, Culotti JG. UNC-52/perlecan affects gonadal leader cell migrations in C. elegans hermaphrodites through alterations in growth factor signaling. Dev Biol 2003; 256:173-86. [PMID: 12654300 DOI: 10.1016/s0012-1606(03)00014-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The unc-52 gene of Claenorhabditis elegans encodes a homologue of the basement membrane heparan sulfate proteoglycan perlecan. Viable alleles reduce the abundance of UNC-52 in late larval stages and increase the frequency of distal tip cell (DTC) migration defects caused by mutations disrupting the UNC-6/netrin guidance system. These unc-52 alleles do not cause circumferential DTC migration defects in an otherwise wild-type genetic background. The effects of unc-52 mutations on DTC migrations are distinct from effects on myofilament organization and can be partially suppressed by mutations in several genes encoding growth factor-like molecules, including EGL-17/FGF, UNC-129/TGF-beta, DBL-1/TGF-beta, and EGL-20/WNT. We propose that UNC-52 serves dual roles in C. elegans larval development in the maintenance of muscle structure and the regulation of growth factor-like signaling pathways.
Collapse
Affiliation(s)
- David C Merz
- Department of Molecular and Medical Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
17
|
Inoue T, Sherwood DR, Aspöck G, Butler JA, Gupta BP, Kirouac M, Wang M, Lee PY, Kramer JM, Hope I, Bürglin TR, Sternberg PW. Gene expression markers for Caenorhabditis elegans vulval cells. Mech Dev 2002; 119 Suppl 1:S203-9. [PMID: 14516686 DOI: 10.1016/s0925-4773(03)00117-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The analysis of cell fate patterning during the vulval development of Caenorhabditis elegans has relied mostly on the direct observation of cell divisions and cell movements (cell lineage analysis). However, reconstruction of the developing vulva from EM serial sections has suggested seven different cell types (vulA, vulB1, vulB2, vulC, vulD, vulE, and vulF), many of which cannot be distinguished based on such observations. Here we report the vulval expression of seven genes, egl-17, cdh-3, ceh-2, zmp-1, B0034.1, T04B2.6 and F47B8.6 based on gfp, cfp and yfp (green fluorescent protein and color variants) reporter fusions. Each gene expresses in a specific subset of vulval cells, and is therefore useful as a marker for vulval cell fates. Together, expressions of markers distinguish six cell types, and reveal a strict temporal control of gene expression in the developing vulva.
Collapse
Affiliation(s)
- Takao Inoue
- HHMI and Division of Biology, Caltech, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nyström J, Shen ZZ, Aili M, Flemming AJ, Leroi A, Tuck S. Increased or decreased levels of Caenorhabditis elegans lon-3, a gene encoding a collagen, cause reciprocal changes in body length. Genetics 2002; 161:83-97. [PMID: 12019225 PMCID: PMC1462080 DOI: 10.1093/genetics/161.1.83] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Body length in C. elegans is regulated by a member of the TGFbeta family, DBL-1. Loss-of-function mutations in dbl-1, or in genes encoding components of the signaling pathway it activates, cause worms to be shorter than wild type and slightly thinner (Sma). Overexpression of dbl-1 confers the Lon phenotype characterized by an increase in body length. We show here that loss-of-function mutations in dbl-1 and lon-1, respectively, cause a decrease or increase in the ploidy of nuclei in the hypodermal syncytial cell, hyp7. To learn more about the regulation of body length in C. elegans we carried out a genetic screen for new mutations causing a Lon phenotype. We report here the cloning and characterization of lon-3. lon-3 is shown to encode a putative cuticle collagen that is expressed in hypodermal cells. We show that, whereas putative null mutations in lon-3 (or reduction of lon-3 activity by RNAi) causes a Lon phenotype, increasing lon-3 gene copy number causes a marked reduction in body length. Morphometric analyses indicate that the lon-3 loss-of-function phenotype resembles that caused by overexpression of dbl-1. Furthermore, phenotypes caused by defects in dbl-1 or lon-3 expression are in both cases suppressed by a null mutation in sqt-1, a second cuticle collagen gene. However, whereas loss of dbl-1 activity causes a reduction in hypodermal endoreduplication, the reduction in body length associated with overexpression of lon-3 occurs in the absence of defects in hypodermal ploidy.
Collapse
|
19
|
Esmaeili B, Ross JM, Neades C, Miller DM, Ahringer J. The C. elegans even-skipped homologue, vab-7, specifies DB motoneurone identity and axon trajectory. Development 2002; 129:853-62. [PMID: 11861469 DOI: 10.1242/dev.129.4.853] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Locomotory activity is defined by the specification of motoneurone subtypes. In the nematode, C. elegans, DA and DB motoneurones innervate dorsal muscles and function to induce movement in the backwards or forwards direction, respectively. These two neurone classes express separate sets of genes and extend axons with oppositely directed trajectories; anterior (DA) versus posterior (DB). The DA-specific homeoprotein UNC-4 interacts with UNC-37/Groucho to repress the DB gene, acr-5 (nicotinic acetylcholine receptor subunit). We show that the C. elegans even-skipped-like homoedomain protein, VAB-7, coordinately regulates different aspects of the DB motoneurone fate, in part by repressing unc-4. Wild-type DB motoneurones express VAB-7, have posteriorly directed axons, express ACR-5 and lack expression of the homeodomain protein UNC-4. In a vab-7 mutant, ectopic UNC-4 represses acr-5 and induces an anteriorly directed DB axon trajectory. Thus, vab-7 indirectly promotes DB-specific gene expression and posteriorly directed axon outgrowth by preventing UNC-4 repression of DB differentiation. Ectopic expression of VAB-7 also induces DB traits in an unc-4-independent manner, suggesting that VAB-7 can act through a parallel pathway. This work supports a model in which a complementary pair of homeodomain transcription factors (VAB-7 and UNC-4) specifies differences between DA and DB neurones through inhibition of the alternative fates. The recent findings that Even-skipped transcriptional repressor activity specifies neurone identity and axon guidance in the mouse and Drosophila motoneurone circuit points to an ancient origin for homeoprotein-dependent mechanisms of neuronal differentiation in the metazoan nerve cord.
Collapse
Affiliation(s)
- Behrooz Esmaeili
- Wellcome CRC Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | | | |
Collapse
|
20
|
Regulation of neurotransmitter vesicles by the homeodomain protein UNC-4 and its transcriptional corepressor UNC-37/groucho in Caenorhabditis elegans cholinergic motor neurons. J Neurosci 2001. [PMID: 11245684 DOI: 10.1523/jneurosci.21-06-02001.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Motor neuron function depends on neurotransmitter release from synaptic vesicles (SVs). Here we show that the UNC-4 homeoprotein and its transcriptional corepressor protein UNC-37 regulate SV protein levels in specific Caenorhabditis elegans motor neurons. UNC-4 is expressed in four classes (DA, VA, VC, and SAB) of cholinergic motor neurons. Antibody staining reveals that five different vesicular proteins (UNC-17, choline acetyltransferase, Synaptotagmin, Synaptobrevin, and RAB-3) are substantially reduced in unc-4 and unc-37 mutants in these cells; nonvesicular neuronal proteins (Syntaxin, UNC-18, and UNC-11) are not affected, however. Ultrastructural analysis of VA motor neurons in the mutant unc-4(e120) confirms that SV number in the presynaptic zone is reduced ( approximately 40%) whereas axonal diameter and synaptic morphology are not visibly altered. Because the UNC-4-UNC-37 complex has been shown to mediate transcriptional repression, we propose that these effects are performed via an intermediate gene. Our results are consistent with a model in which this unc-4 target gene ("gene-x") functions at a post-transcriptional level as a negative regulator of SV biogenesis or stability. Experiments with a temperature-sensitive unc-4 mutant show that the adult level of SV proteins strictly depends on unc-4 function during a critical period of motor neuron differentiation. unc-4 activity during this sensitive larval stage is also required for the creation of proper synaptic inputs to VA motor neurons. The temporal correlation of these events may mean that a common unc-4-dependent mechanism controls both the specificity of synaptic inputs as well as the strength of synaptic outputs for these motor neurons.
Collapse
|
21
|
Nilsson L, Tiensuu T, Tuck S. Caenorhabditis elegans lin-25: a study of its role in multiple cell fate specification events involving Ras and the identification and characterization of evolutionarily conserved domains. Genetics 2000; 156:1083-96. [PMID: 11063686 PMCID: PMC1461318 DOI: 10.1093/genetics/156.3.1083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Caenorhabditis elegans lin-25 functions downstream of let-60 ras in the genetic pathway for the induction of the 1 degrees cell fate during vulval development and encodes a novel 130-kD protein. The biochemical activity of LIN-25 is presently unknown, but the protein appears to function together with SUR-2, whose human homologue binds to Mediator, a protein complex required for transcriptional regulation. We describe here experiments that indicate that, besides its role in vulval development, lin-25 also participates in the fate specification of a number of other cells in the worm that are known to require Ras-mediated signaling. We also describe the cloning of a lin-25 orthologue from C. briggsae. Sequence comparisons suggest that the gene is evolving relatively rapidly. By characterizing the molecular lesions associated with 10 lin-25 mutant alleles and by assaying in vivo the activity of mutants lin-25 generated in vitro, we have identified three domains within LIN-25 that are required for activity or stability. We have also identified a sequence that is required for efficient nuclear translocation. We discuss how lin-25 might act in cell fate specification in C. elegans within the context of models for lin-25 function in cell identity and cell signaling.
Collapse
Affiliation(s)
- L Nilsson
- Umeå Center for Molecular Pathogenesis, Umeâ University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
22
|
Nash B, Colavita A, Zheng H, Roy PJ, Culotti JG. The forkhead transcription factor UNC-130 is required for the graded spatial expression of the UNC-129 TGF-beta guidance factor in C. elegans. Genes Dev 2000; 14:2486-500. [PMID: 11018016 PMCID: PMC316974 DOI: 10.1101/gad.831500] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Secreted proteins required for cellular movements along the circumference of the body wall in Caenorhabditis elegans include UNC-6/netrin and the novel TGF-beta UNC-129. Expression of these proteins is graded along the dorsoventral (D/V) axis, providing polarity information to guide migrations. Here we show that the graded expression of UNC-129 in dorsal but not ventral body muscles depends on unc-130, which encodes a Forkhead transcription factor. The phenotype of unc-130 mutants closely mimics the reported effects of ectopically expressing unc-129 in both dorsal and ventral body muscles (). This fits our present finding that unc-130 cell autonomously represses unc-129 expression in the ventral body muscles. Thus the cell-specific effects of unc-130 on ventral, but not dorsal, body muscle expression of unc-129 accounts for the D/V polarity information required for UNC-129-mediated guidance. Genetic interactions between unc-130 and other guidance genes show that several molecular pathways function in parallel to guide the ventral to dorsal migration of distal tip cells (DTCs) and axonal growth cones in C. elegans. Genetic interactions confirm that UNC-129 does not require the only known type II TGF-beta receptor in C. elegans (DAF-4) for its guidance functions. Also, unc-130 is partially required for male tail morphogenesis and for embryogenesis.
Collapse
Affiliation(s)
- B Nash
- Department of Molecular and Medical Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
23
|
Aravind L. The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. Trends Biochem Sci 2000; 25:421-3. [PMID: 10973053 DOI: 10.1016/s0968-0004(00)01620-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
24
|
Ali MY, Siddiqui ZK, Malik AB, Siddiqui SS. A novel C-terminal kinesin subfamily may be involved in chromosomal movement in caenorhabditis elegans. FEBS Lett 2000; 470:70-6. [PMID: 10722848 DOI: 10.1016/s0014-5793(00)01258-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C-terminal kinesin motor proteins, such as the Drosophila NCD and yeast KAR3, are involved in chromosomal segregation. Previously we have described two orthologs of NCD in Caenorhabditis elegans, KLP-3 and KLP-17, which also participate in chromosome movement. Here we report cDNA cloning of klp-15 and klp-16, and the expression pattern of the genes encoding C-terminal motor kinesins including klp-15 and klp-16. Interestingly KLP-15 and KLP-16 form a unique class of C-terminal kinesins, distinct from the previously known C-terminal motors in other organisms. Using in situ hybridization and RNA interference assay, we show that although all of these motors mediate chromosome segregation, they do so in a combination of unique and overlapping manners, suggesting a complex hierarchy of kinesin motor function in metazoans.
Collapse
Affiliation(s)
- M Y Ali
- Laboratory of Molecular Biology, Department of Ecological Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Japan
| | | | | | | |
Collapse
|
25
|
Hsieh J, Liu J, Kostas SA, Chang C, Sternberg PW, Fire A. The RING finger/B-box factor TAM-1 and a retinoblastoma-like protein LIN-35 modulate context-dependent gene silencing in Caenorhabditis elegans. Genes Dev 1999; 13:2958-70. [PMID: 10580003 PMCID: PMC317160 DOI: 10.1101/gad.13.22.2958] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Context-dependent gene silencing is used by many organisms to stably modulate gene activity for large chromosomal regions. We have used tandem array transgenes as a model substrate in a screen for Caenorhabditis elegans mutants that affect context-dependent gene silencing in somatic tissues. This screen yielded multiple alleles of a previously uncharacterized gene, designated tam-1 (for tandem-array-modifier). Loss-of-function mutations in tam-1 led to a dramatic reduction in the activity of numerous highly repeated transgenes. These effects were apparently context dependent, as nonrepetitive transgenes retained activity in a tam-1 mutant background. In addition to the dramatic alterations in transgene activity, tam-1 mutants showed modest alterations in expression of a subset of endogenous cellular genes. These effects include genetic interactions that place tam-1 into a group called the class B synMuv genes (for a Synthetic Multivulva phenotype); this family plays a negative role in the regulation of RAS pathway activity in C. elegans. Loss-of-function mutants in other members of the class-B synMuv family, including lin-35, which encodes a protein similar to the tumor suppressor Rb, exhibit a hypersilencing in somatic transgenes similar to that of tam-1 mutants. Molecular analysis reveals that tam-1 encodes a broadly expressed nuclear protein with RING finger and B-box motifs.
Collapse
Affiliation(s)
- J Hsieh
- Carnegie Institution of Washington, Department of Embryology, Baltimore, Maryland 21210, USA
| | | | | | | | | | | |
Collapse
|
26
|
Winnier AR, Meir JY, Ross JM, Tavernarakis N, Driscoll M, Ishihara T, Katsura I, Miller DM. UNC-4/UNC-37-dependent repression of motor neuron-specific genes controls synaptic choice in Caenorhabditis elegans. Genes Dev 1999; 13:2774-86. [PMID: 10557206 PMCID: PMC317130 DOI: 10.1101/gad.13.21.2774] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The UNC-4 homeoprotein and the Groucho-like corepressor UNC-37 specify synaptic choice in the Caenorhabditis elegans motor neuron circuit. In unc-4 mutants, VA motor neurons are miswired with inputs from interneurons normally reserved for their lineal sisters, the VB motor neurons. Here we show that UNC-4 and UNC-37 function together in VA motor neurons to repress VB-specific genes and that this activity depends on physical contact between UNC-37 and a conserved Engrailed-like repressor domain (eh1) in UNC-4. Missense mutations in the UNC-4 eh1 domain disrupt interactions between UNC-4 and UNC-37 and result in the loss of UNC-4-dependent repressor activity in vivo. A compensatory amino acid substitution in UNC-37 suppresses specific unc-4 alleles by restoring physical interactions with UNC-4 as well as UNC-4-dependent repression of VB-specific genes. We propose that repression of VB-specific genes by UNC-4 and UNC-37 is necessary for the creation of wild-type inputs to VA motor neurons. The existence of mammalian homologs of UNC-4 and UNC-37 indicates that a similar mechanism could regulate synaptic choice in the vertebrate spinal cord.
Collapse
Affiliation(s)
- A R Winnier
- Department of Cell Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391:806-11. [PMID: 9486653 DOI: 10.1038/35888] [Citation(s) in RCA: 10099] [Impact Index Per Article: 374.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Experimental introduction of RNA into cells can be used in certain biological systems to interfere with the function of an endogenous gene. Such effects have been proposed to result from a simple antisense mechanism that depends on hybridization between the injected RNA and endogenous messenger RNA transcripts. RNA interference has been used in the nematode Caenorhabditis elegans to manipulate gene expression. Here we investigate the requirements for structure and delivery of the interfering RNA. To our surprise, we found that double-stranded RNA was substantially more effective at producing interference than was either strand individually. After injection into adult animals, purified single strands had at most a modest effect, whereas double-stranded mixtures caused potent and specific interference. The effects of this interference were evident in both the injected animals and their progeny. Only a few molecules of injected double-stranded RNA were required per affected cell, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process.
Collapse
Affiliation(s)
- A Fire
- Carnegie Institution of Washington, Department of Embryology, Baltimore, Maryland 21210, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Zipkin ID, Kindt RM, Kenyon CJ. Role of a new Rho family member in cell migration and axon guidance in C. elegans. Cell 1997; 90:883-94. [PMID: 9298900 DOI: 10.1016/s0092-8674(00)80353-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rho family GTPases are thought to regulate actin-dependent processes, but their functions in vivo are still poorly understood. We have investigated the function of a new, widely expressed Rho family member in C. elegans by analyzing mutations in the endogenous gene. Activated and null alleles all inhibit cell migration, demonstrating that this protein is required for cell migration in vivo. Only a small subset of the migrations inhibited by activating mutations are inhibited by null mutations, suggesting that considerable functional redundancy exists within this system. Our findings support this conclusion and show that mig-2 functions redundantly with another pathway to regulate nuclear migration. Surprisingly, activated alleles also cause misguided axon growth, suggesting that Rho family GTPases may couple guidance cues to process outgrowth.
Collapse
Affiliation(s)
- I D Zipkin
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0554, USA
| | | | | |
Collapse
|
29
|
Burdine RD, Chen EB, Kwok SF, Stern MJ. egl-17 encodes an invertebrate fibroblast growth factor family member required specifically for sex myoblast migration in Caenorhabditis elegans. Proc Natl Acad Sci U S A 1997; 94:2433-7. [PMID: 9122212 PMCID: PMC20105 DOI: 10.1073/pnas.94.6.2433] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The proper guidance of the Caenorhabditis elegans hermaphrodite sex myoblasts (SMs) requires the genes egl-15 and egl-17. egl-15 has been shown to encode the C. elegans orthologue of the fibroblast growth factor receptor (FGFR). Here we clone egl-17 and show it to be a member of the fibroblast growth factor (FGF) family, one of the first functional invertebrate FGFs known. egl-17 shares homology with other FGF members, conserving the key residues required to form the distinctive tertiary structure common to FGFs. Genetic and molecular evidence demonstrates that the SM migration defect seen in egl-17 mutant animals represents complete loss of egl-17 function. While mutations in egl-17 affect only SM migration, mutations in egl-15 can result in larval arrest, scrawny body morphology, and the ability to suppress mutations in clr-1. We propose that EGL-17 (FGF) acts as a ligand for EGL-15 (FGFR) specifically during SM migration and that another ligand(s) activates EGL-15 for its other functions.
Collapse
Affiliation(s)
- R D Burdine
- Department of Cell Biology, Yale University, New Haven, CT 06520-8005, USA
| | | | | | | |
Collapse
|