1
|
Potapova T, Kostos P, McKinney S, Borchers M, Haug J, Guarracino A, Solar S, Gogol M, Monfort Anez G, de Lima LG, Wang Y, Hall K, Hoffman S, Garrison E, Phillippy AM, Gerton JL. Epigenetic control and inheritance of rDNA arrays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612795. [PMID: 39372739 PMCID: PMC11451732 DOI: 10.1101/2024.09.13.612795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Ribosomal RNA (rRNA) genes exist in multiple copies arranged in tandem arrays known as ribosomal DNA (rDNA). The total number of gene copies is variable, and the mechanisms buffering this copy number variation remain unresolved. We surveyed the number, distribution, and activity of rDNA arrays at the level of individual chromosomes across multiple human and primate genomes. Each individual possessed a unique fingerprint of copy number distribution and activity of rDNA arrays. In some cases, entire rDNA arrays were transcriptionally silent. Silent rDNA arrays showed reduced association with the nucleolus and decreased interchromosomal interactions, indicating that the nucleolar organizer function of rDNA depends on transcriptional activity. Methyl-sequencing of flow-sorted chromosomes, combined with long read sequencing, showed epigenetic modification of rDNA promoter and coding region by DNA methylation. Silent arrays were in a closed chromatin state, as indicated by the accessibility profiles derived from Fiber-seq. Removing DNA methylation restored the transcriptional activity of silent arrays. Array activity status remained stable through the iPS cell re-programming. Family trio analysis demonstrated that the inactive rDNA haplotype can be traced to one of the parental genomes, suggesting that the epigenetic state of rDNA arrays may be heritable. We propose that the dosage of rRNA genes is epigenetically regulated by DNA methylation, and these methylation patterns specify nucleolar organizer function and can propagate transgenerationally.
Collapse
Affiliation(s)
- Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Paxton Kostos
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Jeff Haug
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steven Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Yan Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kate Hall
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adam M. Phillippy
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
2
|
Potapova TA, Gerton JL. Ribosomal DNA and the nucleolus in the context of genome organization. Chromosome Res 2019; 27:109-127. [PMID: 30656516 DOI: 10.1007/s10577-018-9600-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
The nucleolus constitutes a prominent nuclear compartment, a membraneless organelle that was first documented in the 1830s. The fact that specific chromosomal regions were present in the nucleolus was recognized by Barbara McClintock in the 1930s, and these regions were termed nucleolar organizing regions, or NORs. The primary function of ribosomal DNA (rDNA) is to produce RNA components of ribosomes. Yet, ribosomal DNA also plays a pivotal role in nuclear organization by assembling the nucleolus. This review is focused on the rDNA and associated proteins in the context of genome organization. Recent advances in understanding chromatin organization suggest that chromosomes are organized into topological domains by a DNA loop extrusion process. We discuss the perspective that rDNA may also be organized in topological domains constrained by structural maintenance of chromosome protein complexes such as cohesin and condensin. Moreover, biophysical studies indicate that the nucleolar compartment may be formed by active processes as well as phase separation, a perspective that lends further insight into nucleolar organization. The application of the latest perspectives and technologies to this organelle help further elucidate its role in nuclear structure and function.
Collapse
Affiliation(s)
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
3
|
Schmid M, Guttenbach M, Steinlein C, Wanner G, Houben A. Cytogenetic Characterization of the TM4 Mouse Sertoli Cell Line. II. Chromosome Microdissection, FISH, Scanning Electron Microscopy, and Confocal Laser Scanning Microscopy. Cytogenet Genome Res 2016; 147:135-43. [DOI: 10.1159/000444157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2015] [Indexed: 11/19/2022] Open
Abstract
The chromosomes and interphase cell nuclei of the permanent mouse Sertoli cell line TM4 were examined by chromosome microdissection, FISH, scanning electron microscopy, and confocal laser scanning microscopy. The already known marker chromosomes m1-m5 were confirmed, and 2 new large marker chromosomes m6 and m7 were characterized. The minute heterochromatic marker chromosomes m4 and m5 were microdissected and their DNA amplified by DOP-PCR. FISH of this DNA probe on TM4 metaphase chromosomes demonstrated that the m4 and m5 marker chromosomes have derived from the centromeric regions of normal telocentric mouse chromosomes. Ectopic pairing of the m4 and m5 marker chromosomes with the centromeric region of any of the other chromosomes (centromeric associations) was apparent in ∼60% of the metaphases. Scanning electron microscopy revealed DNA-protein bridges connecting the centromeric regions of normal chromosomes and the associated m4 and m5 marker chromosomes. Interphase cell nuclei of TM4 Sertoli cells did not exhibit the characteristic morphology of Sertoli cells in the testes of adult mice as shown by fluorescence microscopy and confocal laser scanning microscopy.
Collapse
|
4
|
Abstract
Nucleoli are formed on the basis of ribosomal genes coding for RNAs of ribosomal particles, but also include a great variety of other DNA regions. In this article, we discuss the characteristics of ribosomal DNA: the structure of the rDNA locus, complex organization and functions of the intergenic spacer, multiplicity of gene copies in one cell, selective silencing of genes and whole gene clusters, relation to components of nucleolar ultrastructure, specific problems associated with replication. We also review current data on the role of non-ribosomal DNA in the organization and function of nucleoli. Finally, we discuss probable causes preventing efficient visualization of DNA in nucleoli.
Collapse
|
5
|
Yang CX, Liu Z, Fleurot R, Adenot P, Duranthon V, Vignon X, Zhou Q, Renard JP, Beaujean N. Heterochromatin reprogramming in rabbit embryos after fertilization, intra-, and inter-species SCNT correlates with preimplantation development. Reproduction 2013; 145:149-59. [PMID: 23221012 DOI: 10.1530/rep-11-0421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To investigate the embryonic genome organization upon fertilization and somatic cell nuclear transfer (SCNT), we tracked HP1β and CENP, two well-characterized protein markers of pericentric and centromeric compartments respectively, in four types of embryos produced by rabbit in vivo fertilization, rabbit parthenogenesis, rabbit-to-rabbit, and bovine-to-rabbit SCNT. In the interphase nuclei of rabbit cultured fibroblasts, centromeres and associated pericentric heterochromatin are usually isolated. Clustering into higher-order chromatin structures, such as the chromocenters seen in mouse and bovine somatic cells, could not be observed in rabbit fibroblasts. After fertilization, centromeres and associated pericentric heterochromatin are quite dispersed in rabbit embryos. The somatic-like organization is progressively established and completed only by the 8/16-cell stage, a stage that corresponds to major embryonic genome activation in this species. In SCNT embryos, pericentric heterochromatin distribution typical for rabbit and bovine somatic cells was incompletely reverted into the 1-cell embryonic form with remnants of heterochromatin clusters in 100% of bovine-to-rabbit embryos. Subsequently, the donor cell nuclear organization was rapidly re-established by the 4-cell stage. Remarkably, the incomplete remodeling of bovine-to-rabbit 1-cell embryos was associated with delayed transcriptional activation compared with rabbit-to-rabbit embryos. Together, the results confirm that pericentric heterochromatin spatio-temporal reorganization is an important step of embryonic genome reprogramming. It also appears that genome reorganization in SCNT embryos is mainly dependent on the nuclear characteristics of the donor cells, not on the recipient cytoplasm.
Collapse
Affiliation(s)
- Cai-Xia Yang
- INRA, UMR 1198 Biologie du Developpement et Reproduction, F-78350 Jouy en Josas, France
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hutten S, Prescott A, James J, Riesenberg S, Boulon S, Lam YW, Lamond AI. An intranucleolar body associated with rDNA. Chromosoma 2011; 120:481-99. [PMID: 21698343 PMCID: PMC3232531 DOI: 10.1007/s00412-011-0327-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/16/2011] [Accepted: 05/31/2011] [Indexed: 02/07/2023]
Abstract
The nucleolus is the subnuclear organelle responsible for ribosome subunit biogenesis and can also act as a stress sensor. It forms around clusters of ribosomal DNA (rDNA) and is mainly organised in three subcompartments, i.e. fibrillar centre, dense fibrillar component and granular component. Here, we describe the localisation of 21 protein factors to an intranucleolar region different to these main subcompartments, called the intranucleolar body (INB). These factors include proteins involved in DNA maintenance, protein turnover, RNA metabolism, chromatin organisation and the post-translational modifiers SUMO1 and SUMO2/3. Increase in the size and number of INBs is promoted by specific types of DNA damage and depends on the functional integrity of the nucleolus. INBs are abundant in nucleoli of unstressed cells during S phase and localise in close proximity to rDNA with heterochromatic features. The data suggest the INB is linked with regulation of rDNA transcription and/or maintenance of rDNA.
Collapse
Affiliation(s)
- Saskia Hutten
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD15EH UK
| | - Alan Prescott
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
| | - John James
- Microscopy Facility, College of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
| | - Stefanie Riesenberg
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD15EH UK
- Present Address: Life and Medical Sciences Bonn (LIMES), Genomics and Immunoregulation, University of Bonn, 53115 Bonn, Germany
| | - Séverine Boulon
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD15EH UK
- Present Address: CNRS-CRBM, Université Montpellier 2, 34293 Montpellier, France
| | - Yun Wah Lam
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Angus I. Lamond
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD15EH UK
| |
Collapse
|
7
|
Berchtold D, Fesser S, Bachmann G, Kaiser A, Eilert JC, Frohns F, Sadoni N, Muck J, Kremmer E, Eick D, Layer PG, Zink D. Nuclei of chicken neurons in tissues and three-dimensional cell cultures are organized into distinct radial zones. Chromosome Res 2011; 19:165-82. [PMID: 21249442 DOI: 10.1007/s10577-010-9182-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/22/2010] [Accepted: 12/22/2010] [Indexed: 12/15/2022]
Abstract
We used chicken retinospheroids (RS) to study the nuclear architecture of vertebrate cells in a three-dimensional (3D) cell culture system. The results showed that the different neuronal cell types of RS displayed an extreme form of radial nuclear organization. Chromatin was arranged into distinct radial zones which became already visible after DAPI staining. The distinct zones were enriched in different chromatin modifications and in different types of chromosomes. Active isoforms of RNA polymerase II were depleted in the outermost zone. Also chromocenters and nucleoli were radially aligned in the nuclear interior. The splicing factor SC35 was enriched at the central zone and did not show the typical speckled pattern of distribution. Evaluation of neuronal and non-neuronal chicken tissues showed that the highly ordered form of radial nuclear organization was also present in neuronal chicken tissues. Furthermore, the data revealed that the neuron-specific nuclear organization was remodeled when cells spread on a flat substrate. Monolayer cultures of a chicken cell line did not show this extreme form of radial organization. Rather, such monolayer cultures displayed features of nuclear organization which have been described before for many different types of monolayer cells. The finding that an extreme form radial nuclear organization, which has not been described before, is present in RS and tissues, but not in cells spread on a flat substrate, suggests that it would be important to complement studies on nuclear architecture performed with monolayer cells by studies on 3D cell culture systems and tissues.
Collapse
Affiliation(s)
- Doris Berchtold
- Department Biologie II, Ludwig-Maximilians-Universität (LMU) München, Biozentrum, Grosshadernerstr. 2, 82152, Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
van Koningsbruggen S, Gierliński M, Schofield P, Martin D, Barton GJ, Ariyurek Y, den Dunnen JT, Lamond AI. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell 2010; 21:3735-48. [PMID: 20826608 PMCID: PMC2965689 DOI: 10.1091/mbc.e10-06-0508] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 11/11/2022] Open
Abstract
The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition to rDNA, other chromatin sequences also surround the nucleolar surface and may even loop into the nucleolus. These additional nucleolar-associated domains (NADs) have not been well characterized. We present here a whole-genome, high-resolution analysis of chromatin endogenously associated with nucleoli. We have used a combination of three complementary approaches, namely fluorescence comparative genome hybridization, high-throughput deep DNA sequencing and photoactivation combined with time-lapse fluorescence microscopy. The data show that specific sequences from most human chromosomes, in addition to the rDNA repeat units, associate with nucleoli in a reproducible and heritable manner. NADs have in common a high density of AT-rich sequence elements, low gene density and a statistically significant enrichment in transcriptionally repressed genes. Unexpectedly, both the direct DNA sequencing and fluorescence photoactivation data show that certain chromatin loci can specifically associate with either the nucleolus, or the nuclear envelope.
Collapse
Affiliation(s)
| | | | | | - David Martin
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; and
| | - Geoffey J. Barton
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; and
| | - Yavuz Ariyurek
- Leiden Genome Technology Center, Human and Clinical Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Johan T. den Dunnen
- Leiden Genome Technology Center, Human and Clinical Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | | |
Collapse
|
9
|
Somatic pairing of chromosome 19 in renal oncocytoma is associated with deregulated EGLN2-mediated [corrected] oxygen-sensing response. PLoS Genet 2008; 4:e1000176. [PMID: 18773095 PMCID: PMC2518213 DOI: 10.1371/journal.pgen.1000176] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 07/18/2008] [Indexed: 12/18/2022] Open
Abstract
Chromosomal abnormalities, such as structural and numerical abnormalities, are a common occurrence in cancer. The close association of homologous chromosomes during interphase, a phenomenon termed somatic chromosome pairing, has been observed in cancerous cells, but the functional consequences of somatic pairing have not been established. Gene expression profiling studies revealed that somatic pairing of chromosome 19 is a recurrent chromosomal abnormality in renal oncocytoma, a neoplasia of the adult kidney. Somatic pairing was associated with significant disruption of gene expression within the paired regions and resulted in the deregulation of the prolyl-hydroxylase ELGN2, a key protein that regulates the oxygen-dependent degradation of hypoxia-inducible factor (HIF). Overexpression of ELGN2 in renal oncocytoma increased ubiquitin-mediated destruction of HIF and concomitantly suppressed the expression of several HIF-target genes, including the pro-death BNIP3L gene. The transcriptional changes that are associated with somatic pairing of chromosome 19 mimic the transcriptional changes that occur following DNA amplification. Therefore, in addition to numerical and structural chromosomal abnormalities, alterations in chromosomal spatial dynamics should be considered as genomic events that are associated with tumorigenesis. The identification of EGLN2 as a significantly deregulated gene that maps within the paired chromosome region directly implicates defects in the oxygen-sensing network to the biology of renal oncocytoma. Together, renal oncocytoma and chromophobe renal cell carcinoma (RCC) account for approximately 10% of masses that are resected from the kidney. However, the molecular defects that are associated with the development of these neoplasias are not clear. Here, we take advantage of recent advances in genetics and computational analysis to screen for chromosomal abnormalities that are present in both renal oncocytoma and chromophobe RCC. We show that while chromophobe RCC cells contain an extra copy of chromosome 19, the renal oncoctyoma cells contain a rarely reported chromosomal abnormality. Both of these chromosomal abnormalities result in transcriptional disruptions of EGLN2, a gene that is located on chromosome 19 and is critical for the cellular response to changes in oxygen levels. Defects in oxygen sensing are found in other types of kidney tumors, and the identification of EGLN2 directly implicates defects in the oxygen-sensing network in these neoplasias as well. These findings are important because the chromosomal defect present in renal oncocytomas may also be present in other tumor cells. In addition, deregulation of EGLN2 reveals a unique way in which perturbations in oxygen-sensing are associated with disease.
Collapse
|
10
|
Abstract
There are almost 1,300 entries for higher eukaryotes in the Nuclear Protein Database. The proteins' subcellular distribution patterns within interphase nuclei can be complex, ranging from diffuse to punctate or microspeckled, yet they all work together in a coordinated and controlled manner within the three-dimensional confines of the nuclear volume. In this review we describe recent advances in the use of quantitative methods to understand nuclear spatial organisation and discuss some of the practical applications resulting from this work.
Collapse
|
11
|
Martin C, Beaujean N, Brochard V, Audouard C, Zink D, Debey P. Genome restructuring in mouse embryos during reprogramming and early development. Dev Biol 2006; 292:317-32. [PMID: 16680825 DOI: 10.1016/j.ydbio.2006.01.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although a growing number of studies investigates functional genome organization in somatic cell nuclei, it is largely unknown how mammalian genome organization is established during embryogenesis. To address this question, we investigated chromo center formation and the peculiar arrangements of chromosome domains in early mouse embryos. At the one-cell stage, we observed characteristic arrangements of chromosomes and chromo center components. Subsequently, starting with the burst of zygotic genome transcription major rearrangements led to the establishment of somatic type chromo centers with a defined spatio-temporal organization. These processes appeared to be completed at the blastocyst stage with the onset of cell differentiation. During the same developmental period, a fraction of pericentric heterochromatin that was late replicating in the first cycle underwent switches in replication timing, spatial organization and epigenetic marks. Cloning experiments revealed that the genome organization typical for more advanced stages was quickly reverted into the one-cell stage-specific form after nuclear transfer, supporting the idea that reprogramming associated genome remodeling in normal and cloned embryos is determined by cytoplasmic factors. Together, the results suggest that distinct but characteristic forms of nuclear genome organization are required for genome reprogramming in early embryos and for proper regulation of differential gene expression patterns at later stages.
Collapse
Affiliation(s)
- Catherine Martin
- UMR 13-1198 Biologie du Développment et Reproduction, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| | | | | | | | | | | |
Collapse
|
12
|
Weidtkamp-Peters S, Rahn HP, Cardoso MC, Hemmerich P. Replication of centromeric heterochromatin in mouse fibroblasts takes place in early, middle, and late S phase. Histochem Cell Biol 2005; 125:91-102. [PMID: 16231189 DOI: 10.1007/s00418-005-0063-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2005] [Indexed: 10/25/2022]
Abstract
The replication of eukaryotic chromosomes takes place throughout S phase, but little is known how this process is organized in space and time. Early and late replicating chromosomal domains appear to localize to distinct spatial compartments of the nucleus where DNA synthesis can take place at defined times during S phase. In general, transcriptionally active chromatin replicates early in S phase whereas transcriptionally inactive chromatin replicates later. Here we provide evidence for significant deviation from this dogma in mouse NIH3T3 cells. While the bulk pericentromeric heterochromatin replicates exclusively during mid to late S phase, centromeric DNA domains associated with constitutive kinetochore proteins are replicated throughout all stages of S phase. On an average, 12+/-4% of centromeres replicate in early S phase. Early replication of a subset of centromeres was also detected in living C2C12 murine cells. Thus, in contrast to expectation, late replication is not an obligatory feature of centromeric heterochromatin in murine cells and it does not determine their 'heterochromatic state'.
Collapse
|
13
|
Solov'eva L, Svetlova M, Bodinski D, Zalensky AO. Nature of telomere dimers and chromosome looping in human spermatozoa. Chromosome Res 2005; 12:817-823. [PMID: 15702420 PMCID: PMC1405914 DOI: 10.1007/s10577-005-5513-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 09/30/2004] [Indexed: 01/17/2023]
Abstract
Specific and well-organized chromosome architecture in human sperm cells is supported by the prominent interactions between centromeres and between telomeres. The telomere-telomere interactions result in telomere dimers that are positioned at the nuclear periphery. It is unknown whether composition of sperm telomere dimers is random or specific. We now report that telomere dimers result from specific interactions between the two ends of each chromosome. FISH using pairs of subtelomeric DNA probes that correspond to the small and long arms of seven human chromosomes demonstrates that subtelomeres of one chromosome are brought together. Statistical analysis confirmed that telomere associations could not result from the random proximity of DNA sequences. Therefore, chromosomes in human sperm nuclei adopt a looped conformation. This higher-order chromosome structure is most likely required for chromosome withdrawal/decondensation during the early fertilization events leading to zygote formation.
Collapse
Affiliation(s)
- Lyudmila Solov'eva
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk VA 23507, USA
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia, 194064
| | - Maria Svetlova
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk VA 23507, USA
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia, 194064
| | - Dawn Bodinski
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk VA 23507, USA
| | - Andrei O Zalensky
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk VA 23507, USA
| |
Collapse
|
14
|
Domínguez MG, Troyo R, Vásquez AI, Ramos AL, Rivera H. Topology of constitutional reciprocal translocations in metaphase. ACTA ACUST UNITED AC 2004; 47:85-93. [PMID: 15050878 DOI: 10.1016/s0003-3995(03)00033-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2003] [Accepted: 07/17/2003] [Indexed: 11/20/2022]
Abstract
We studied in 39 carriers of 26 reciprocal translocations (including five de novo and seven of indeterminate occurrence) the metaphase localization of the derivative chromosomes, their normal non-homologous counterparts (here called A and B), and two control pairs (C and D). In eight familial translocations, we analysed two to five carriers. We digitally captured 10 G-banded lymphocyte metaphases per individual and measured in microns the largest diameter (d) of the metaphase and six intercentromeric distances: (1) der A<-->der B (problem distance 1, pd1), (2) der A<-->B (pd2), (3) der B<-->A (pd3), (4) A<-->B (control distance 1, cd1), (5) the smaller distance between C and D (cd2) and (6) the largest distance between C and D (cd3); in addition, the average between C and D (cd4) was calculated. We used the formula Delta = 100(cd - pd)/d 12 times per metaphase, compared each pd vs. each cd, and tested the differences by the Wilcoxon matched-pair test. Although, in the whole sample there were not significant differences respect to cd1, this distance emerged as the proper control. In the eight familial translocations, the three pd vs. cd1 comparisons revealed that in 19/24 times the pd was smaller but only once reached significance (cd1 vs. pd2 in t[3;4]). In the analysis per individual the pd was smaller than cd1 in 19 (pd1), 22 (pd2) and 22 (pd3) cases although only twice reached significance. We conclude that in some translocations, the derivative chromosomes actually lie close from each other or from a normal non-homologous counterpart.
Collapse
Affiliation(s)
- María G Domínguez
- División de Genética, Instituto Mexicano del Seguro Social, Apdo. Postal 1-3838, Guadalajara, Jalisco 44280, Mexico
| | | | | | | | | |
Collapse
|
15
|
De Felice B, Wilson RR, Mondola P, Matrone G, Damiano S, Garbi C, Nezi L, Su TT. Characterization of DIP1, a novel nuclear protein in Drosophila melanogaster. Biochem Biophys Res Commun 2003; 307:224-8. [PMID: 12859943 DOI: 10.1016/s0006-291x(03)01141-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have recently identified in Drosophila melanogaster a new gene encoding a nuclear protein, DIP1. Here we report the developmental expression and the finding that DIP1 subcellular localization is in the nucleus and at the nuclear periphery during interphase in embryos. Interestingly, in humans, DIP1 antibody identified signals in nuclei from cultured cells and reacted with a rough 30kDa protein in Western blotting experiments, demonstrating evolutionary conservation.
Collapse
Affiliation(s)
- Bruna De Felice
- Department of Life Sciences, University of Naples II, Caserta, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Uzbekov R, Timirbulatova E, Watrin E, Cubizolles F, Ogereau D, Gulak P, Legagneux V, Polyakov VJ, Le Guellec K, Kireev I. Nucleolar association of pEg7 and XCAP-E, two members of Xenopus laevis condensin complex in interphase cells. J Cell Sci 2003; 116:1667-78. [PMID: 12665548 DOI: 10.1242/jcs.00311] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell cycle dynamics and localization of condensins--multiprotein complexes involved in late stages of mitotic chromosome condensation--were studied in Xenopus laevis XL2 cell line. Western blot analysis of synchronized cells showed that the ratio of levels of both pEg7 and XCAP-E to beta-tubulin levels remains almost constant from G1 to M phase. pEg7 and XCAP-E were localized to the mitotic chromosomes and were detected in interphase nuclei. Immunostaining for condensins and nucleolar proteins UBF, fibrillarin and B23 revealed that both XCAP-E and pEg7 are localized in the granular component of the nucleolus. Nucleolar labeling of both proteins is preserved in segregated nucleoli after 6 hours of incubation with actinomycin D (5 mg/ml), but the size of the labeled zone was significantly smaller. The data suggest a novel interphase function of condensin subunits in spatial organization of the nucleolus and/or ribosome biogenesis.
Collapse
Affiliation(s)
- Rustem Uzbekov
- Groupe Structure Dynamique de la Chromatine, CNRS, UMR 6061, Faculte de Medicine, 35043 Rennes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Campbell MS, Chan GK, Yen TJ. Mitotic checkpoint proteins HsMAD1 and HsMAD2 are associated with nuclear pore complexes in interphase. J Cell Sci 2001; 114:953-63. [PMID: 11181178 DOI: 10.1242/jcs.114.5.953] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mad1 was first identified in budding yeast as an essential component of the checkpoint system that monitors spindle assembly in mitosis and prevents premature anaphase onset. Using antibodies to the human homologue of Mad1 (HsMAD1), we have begun to characterize this protein in mammalian cells. HsMad1 is found localized at kinetochores in mitosis. The labeling is brightest in prometaphase and is absent from kinetochores at metaphase and anaphase. In cells where most chromosomes have reached the metaphase plate, those aligned at the plate show no labeling while remaining, unaligned chromosomes are still brightly labeled. We find HsMad1 associated with HsMad2. Association with p55CDC, a protein previously shown to bind HsMad2, was not detected. Surprisingly, unlike any other known mitotic checkpoint proteins, HsMad1 and HsMAD2 were found localized at nuclear pores throughout interphase. This was confirmed by co-labeling with an antibody to known nuclear pore complex proteins and by their co-purification with enriched nuclear envelope fractions. HsMad1 was identified serendipitously by its binding to a viral protein, HTLV-1 Tax, which affects transcription of viral and human proteins. The localization of HsMad1 to nuclear pore complexes suggests an alternate, non-mitotic role for the Mad1/Tax interaction in the viral transformation of cells.
Collapse
Affiliation(s)
- M S Campbell
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
18
|
Leitch AR. Higher levels of organization in the interphase nucleus of cycling and differentiated cells. Microbiol Mol Biol Rev 2000; 64:138-52. [PMID: 10704477 PMCID: PMC98989 DOI: 10.1128/mmbr.64.1.138-152.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The review examines the structured organization of interphase nuclei using a range of examples from the plants, animals, and fungi. Nuclear organization is shown to be an important phenomenon in cell differentiation and development. The review commences by examining nuclei in dividing cells and shows that the organization patterns can be dynamic within the time frame of the cell cycle. When cells stop dividing, derived differentiated cells often show quite different nuclear organizations. The developmental fate of nuclei is divided into three categories. (i) The first includes nuclei that undergo one of several forms of polyploidy and can themselves change in structure during the course of development. Possible function roles of polyploidy is given. (ii) The second is nuclear reorganization without polyploidy, where nuclei reorganize their structure to form novel arrangements of proteins and chromosomes. (iii) The third is nuclear disintegration linked to programmed cell death. The role of the nucleus in this process is described. The review demonstrates that recent methods to probe nuclei for nucleic acids and proteins, as well as to examine their intranuclear distribution in vivo, has revealed much about nuclear structure. It is clear that nuclear organization can influence or be influenced by cell activity and development. However, the full functional role of many of the observed phenomena has still to be fully realized.
Collapse
Affiliation(s)
- A R Leitch
- Queen Mary and Westfield College, University of London, London, United Kingdom.
| |
Collapse
|
19
|
Dozortsev D, Coleman A, Nagy P, Diamond MP, Ermilov A, Weier U, Liyanage M, Reid T. Nucleoli in a pronuclei-stage mouse embryo are represented by major satellite DNA of interconnecting chromosomes. Fertil Steril 2000; 73:366-71. [PMID: 10685545 DOI: 10.1016/s0015-0282(99)00491-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate the arrangement of chromosomes within pronuclei-stage mouse zygotes. DESIGN In vitro study. SETTING Academic medical center. PATIENT(S) None. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Location of major alpha-satellite DNA, centromeres, and telomeres, and relative location of chromosomes. RESULT(S) Chromosomes appeared to be oriented inward by centromeres and to be interconnected by major alpha-satellite DNA, which appeared to be the sole DNA component of the nucleoli. This chromosomal arrangement persisted throughout interphase. Chromosomal painting failed to identify chromosomal ordering within pronuclei. CONCLUSION(S) Pronuclear nucleoli are represented by alpha-satellite sequences of interconnecting chromosomes that hold all chromosomes together during interphase. Chromosomes within the pronucleus are randomly positioned relative to each other.
Collapse
Affiliation(s)
- D Dozortsev
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The interphase nucleus is a topologically ordered, three-dimensional structure. While it remains unclear whether this structural organization also represents compartmentalization of function, the presence of the latter would likely be reflected in the spatial coupling of molecular factors involved in related events. This review summarizes morphological evidence, derived from in situ experiments, which indicates the existence of compartmentalization of both chromatin and non-chromatin components in the interphase nucleus. Moreover, the review addresses the spatial relationships of these components relative to each other and correlates these spatial relationships with such nuclear functions as transcription, splicing and nucleo-cytoplasmic transport of pre-mRNA. Given that it is increasingly recognized that such spatial relationships are dynamic, the review also addresses the emerging concept that the spatial intranuclear organization changes with changes in cell function, a concept which supports the hypothesis that the spatial organization of the interphase nucleus may represent one of the fundamental control mechanisms in gene expression.
Collapse
Affiliation(s)
- P C Park
- Department of Physiology, Faculty of Medicine, University of Toronto, ON, Canada
| | | |
Collapse
|
21
|
Tyler-Smith C, Gimelli G, Giglio S, Floridia G, Pandya A, Terzoli G, Warburton PE, Earnshaw WC, Zuffardi O. Transmission of a fully functional human neocentromere through three generations. Am J Hum Genet 1999; 64:1440-4. [PMID: 10205277 PMCID: PMC1377882 DOI: 10.1086/302380] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
An unusual Y chromosome with a primary constriction inside the long-arm heterochromatin was found in the amniocytes of a 38-year-old woman. The same Y chromosome was found in her husband and brother-in-law, thus proving that it was already present in the father. FISH with alphoid DNA showed hybridization signals at the usual position of the Y centromere but not at the primary constriction. Centromere proteins (CENP)-A, CENP-C, and CENP-E could not be detected at the site of the canonic centromere but were present at the new constriction, whereas CENP-B was not detected on this Y chromosome. Experiments with 82 Y-specific loci distributed throughout the chromosome confirmed that no gross deletion or rearrangement had taken place, and that the Y chromosome belonged to a haplogroup whose members have a mean alphoid array of 770 kb (range 430-1,600 kb), whereas that of this case was approximately 250 kb. Thus, this Y chromosome appeared to be deleted for part of the alphoid DNA. It seems likely that this deletion was responsible for the silencing of the normal centromere and that the activation of the neocentromere prevented the loss of this chromosome. Alternatively, neocentromere activation could have occurred first and stimulated inactivation of the normal centromere by partial deletion. Whatever the mechanism, the presence of this chromosome in three generations demonstrates that it functions sufficiently well in mitosis for male sex determination and fertility and that neocentromeres can be transmitted normally at meiosis.
Collapse
Affiliation(s)
- C Tyler-Smith
- CRC Chromosome Molecular Biology Group, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Raderschall E, Golub EI, Haaf T. Nuclear foci of mammalian recombination proteins are located at single-stranded DNA regions formed after DNA damage. Proc Natl Acad Sci U S A 1999; 96:1921-6. [PMID: 10051570 PMCID: PMC26712 DOI: 10.1073/pnas.96.5.1921] [Citation(s) in RCA: 276] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/1998] [Indexed: 11/18/2022] Open
Abstract
A sensitive and rapid in situ method was developed to visualize sites of single-stranded (ss) DNA in cultured cells and in experimental test animals. Anti-bromodeoxyuridine antibody recognizes the halogenated base analog incorporated into chromosomal DNA only when substituted DNA is in the single strand form. After treatment of cells with DNA-damaging agents or gamma irradiation, ssDNA molecules form nuclear foci in a dose-dependent manner within 60 min. The mammalian recombination protein Rad51 and the replication protein A then accumulate at sites of ssDNA and form foci, suggesting that these are sites of recombinational DNA repair.
Collapse
Affiliation(s)
- E Raderschall
- Max Planck Institute of Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | | | | |
Collapse
|
23
|
Nagele RG, Freeman T, McMorrow L, Thomson Z, Kitson-Wind K, Lee HY. Chromosomes exhibit preferential positioning in nuclei of quiescent human cells. J Cell Sci 1999; 112 ( Pt 4):525-35. [PMID: 9914164 DOI: 10.1242/jcs.112.4.525] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The relative spatial positioning of chromosomes 7, 8, 16, X and Y was examined in nuclei of quiescent (noncycling) diploid and triploid human fibroblasts using fluorescence in situ hybridization (FISH) with chromosome-specific DNA probes and digital imaging. In quiescent diploid cells, interhomolog distances and chromosome homolog position maps revealed a nonrandom, preferential topology for chromosomes 7, 8 and 16, whereas chromosome X approximated a more random distribution. Variations in the orientation of nuclei on the culture substratum tended to hinder detection of an ordered chromosome topology at interphase by biasing homolog position maps towards random distributions. Using two chromosome X homologs as reference points in triploid cells (karyotype = 69, XXY), the intranuclear location of chromosome Y was found to be predictable within remarkably narrow spatial limits. Dual-FISH with various combinations of chromosome-specific DNA probes and contrasting fluorochromes was used to identify adjacent chromosomes in mitotic rosettes and test whether they are similarly positioned in interphase nuclei. From among the combinations tested, chromosomes 8 and 11 were found to be closely apposed in most mitotic rosettes and interphase nuclei. Overall, results suggest the existence of an ordered interphase chromosome topology in quiescent human cells in which at least some chromosome homologs exhibit a preferred relative intranuclear location that may correspond to the observed spatial order of chromosomes in rosettes of mitotic cells.
Collapse
Affiliation(s)
- R G Nagele
- Department of Molecular Biology, University of Medicine and Dentistry of New Jersey/SOM, Stratford, New Jersey 08084, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Haaf T, Raderschall E, Reddy G, Ward DC, Radding CM, Golub EI. Sequestration of mammalian Rad51-recombination protein into micronuclei. J Cell Biol 1999; 144:11-20. [PMID: 9885240 PMCID: PMC2148121 DOI: 10.1083/jcb.144.1.11] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The mammalian Rad51 protein is involved in homologous recombination and in DNA damage repair. Its nuclear distribution after DNA damage is highly dynamic, and distinct foci of Rad51 protein, distributed throughout the nuclear volume, are induced within a few hours after gamma irradiation; these foci then coalesce into larger clusters. Rad51-positive cells do not undergo DNA replication. Rad51 foci colocalize with both replication protein A and sites of unscheduled DNA repair synthesis and may represent a nuclear domain for recombinational DNA repair. By 24 h postirradiation, most foci are sequestered into micronuclei or assembled into Rad51-coated DNA fibers. These micronuclei and DNA fibers display genome fragmentation typical of apoptotic cell death. Other repair proteins, such as Rad52 and Gadd45, are not eliminated from the nucleus. DNA double strand breaks in repair-deficient cells or induced by the clastogen etoposide are also accompanied by the sequestering of Rad51 protein before cell death. The spindle poison colcemid causes cell cycle arrest and Rad51-foci formation without directly damaging DNA. Collectively, these observations suggest that mammalian Rad51 protein associates with damaged DNA and/or with DNA that is temporarily or irreversibly unable to replicate and these foci may subsequently be eliminated from the nucleus.
Collapse
Affiliation(s)
- T Haaf
- Max-Planck-Institute of Molecular Genetics, 14195 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Itoh N, Shimizu N. DNA replication-dependent intranuclear relocation of double minute chromatin. J Cell Sci 1998; 111 ( Pt 22):3275-85. [PMID: 9788870 DOI: 10.1242/jcs.111.22.3275] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Double minutes (DMs) seen in a substantial fraction of human tumors are the cytogenetic manifestation of gene amplification which renders the tumor cells advantageous for growth and survival. DMs are acentric and atelomeric chromatin composed of circular DNA. In this study, we found they showed a remarkable relocation inside the nucleus which was spatially and temporally coupled to DNA replication. Using the human COLO 320DM tumor line, we detected DMs by fluorescence in situ hybridization followed by confocal examination. The location of multi-copy DMs was evaluated statistically by an easy method developed in this study. By examination of a synchronized culture, we found that DMs preferentially located at the nuclear periphery during G1-phase of the cell cycle, which is consistent with the location at M-phase. The peripheral DMs were in contact with the nuclear lamina which was shown by the simultaneous detection of DMs and lamin protein. The peripheral location persisted until the cells reached the G1/S-boundary, then the DMs relocated promptly to inward once the DNA replication started. The relocation was obvious using two different probes that detect DMs, or using two different methods for the cell fixation. Furthermore, the simultaneous detection of DMs and the site of DNA replication suggested that the inward relocation of peripheral DMs initiated just prior to the onset of DNA replication at the periphery. On the other hand, if the same amplified sequences were placed in a chromosome as an homogeneously staining region, they did not show any significant relocation during S-phase. From these and reported results, there may exist a generalized inward motion of some kind of chromatin that precedes the replication of their DNA. DMs might magnify the motion by their acentric, atelomeric or small circular nature.
Collapse
Affiliation(s)
- N Itoh
- Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-hiroshima, Japan
| | | |
Collapse
|
26
|
Wako T, Fukuda M, Furushima-Shimogawara R, Belyaev ND, Turner BM, Fukui K. Comparative analysis of topographic distribution of acetylated histone H4 by using confocal microscopy and a deconvolution system. Anal Chim Acta 1998. [DOI: 10.1016/s0003-2670(97)00619-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Jin Q, Trelles-Sticken E, Scherthan H, Loidl J. Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase. J Cell Biol 1998; 141:21-9. [PMID: 9531545 PMCID: PMC2132713 DOI: 10.1083/jcb.141.1.21] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/1997] [Revised: 02/04/1998] [Indexed: 02/07/2023] Open
Abstract
Chromosome arrangement in spread nuclei of the budding yeast, Saccharomyces cerevisiae was studied by fluorescence in situ hybridization with probes to centromeres and telomeric chromosome regions. We found that during interphase centromeres are tightly clustered in a peripheral region of the nucleus, whereas telomeres tend to occupy the area outside the centromeric domain. In vigorously growing cultures, centromere clustering occurred in approximately 90% of cells and it appeared to be maintained throughout interphase. It was reduced when cells were kept under stationary conditions for an extended period. In meiosis, centromere clusters disintegrated before the emergence of the earliest precursors of the synaptonemal complex. Evidence for the contribution of centromere clustering to other aspects of suprachromosomal nuclear order, in particular the vegetative association of homologous chromosomes, is provided, and a possible supporting role in meiotic homology searching is discussed.
Collapse
Affiliation(s)
- Q Jin
- Institute of Botany, University of Vienna, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
28
|
Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 1997; 91:845-54. [PMID: 9413993 DOI: 10.1016/s0092-8674(00)80472-9] [Citation(s) in RCA: 607] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ikaros proteins are required for normal T, B, and NK cell development and are postulated to activate lymphocyte-specific gene expression. Here we examined Ikaros distribution in the nucleus of B lymphocytes using confocal microscopy and a novel immunofluorescence in situ hybridization (immuno-FISH) approach. Unexpectedly, Ikaros localized to discrete heterochromatin-containing foci in interphase nuclei, which comprise clusters of centromeric DNA as defined by gamma-satellite sequences and the abundance of heterochromatin protein-1 (HP-1). Using locus-specific probes for CD2, CD4, CD8alpha, CD19, CD45, and lambda5 genes, we show that transcriptionally inactive but not transcriptionally active genes associate with Ikaros-heterochromatin foci. These findings support a model of organization of the nucleus in which repressed genes are selectively recruited into centromeric domains.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/genetics
- B-Lymphocytes/physiology
- Cell Line
- Cell Nucleus/physiology
- Cell Nucleus/ultrastructure
- Centromere/physiology
- Centromere/ultrastructure
- DNA-Binding Proteins
- Gene Expression Regulation
- Heterochromatin/physiology
- Heterochromatin/ultrastructure
- Ikaros Transcription Factor
- Lymphoma
- Mice
- Mice, Transgenic
- Models, Genetic
- Polymerase Chain Reaction
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin-7
- Transcription Factors/analysis
- Transcription Factors/metabolism
- Transcription, Genetic
- Zinc Fingers
Collapse
Affiliation(s)
- K E Brown
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
29
|
Abend M, Gilbertz KP, Rhein A, Beuningen DV. Early and late G2arrest of cells undergoing radiation-induced apoptosis or micronucleation. Cell Prolif 1996. [DOI: 10.1111/j.1365-2184.1996.tb00098.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
He D, Zeng C, Brinkley BR. Nuclear matrix proteins as structural and functional components of the mitotic apparatus. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162B:1-74. [PMID: 8557485 DOI: 10.1016/s0074-7696(08)62614-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The eukaryotic nucleus is a membrane-enclosed compartment containing the genome and associated organelles supported by a complex matrix of nonhistone proteins. Identified as the nuclear matrix, this component maintains spatial order and provides the structural framework needed for DNA replication, RNA synthesis and processing, nuclear transport, and steroid hormone action. During mitosis, the nucleoskeleton and associated chromatin is efficiently dismantled, packaged, partitioned, and subsequently reassembled into daughter nuclei. The dramatic dissolution of the nucleus is accompanied by the assembly of a mitotic apparatus required to facilitate the complex events associated with nuclear division. Until recently, little was known about the fate or disposition of nuclear matrix proteins during mitosis. The availability of specific molecular probes and imaging techniques, including confocal microscopy and improved immunoelectron microscopy using resinless sections and related procedures, has enabled investigators to identify and map the distribution of nuclear matrix proteins throughout the cell cycle. This chapter will review the structure, function, and distribution of the protein NuMA (nuclear matrix mitotic apparatus) and other nuclear matrix proteins that depart the nucleus during the interphase/mitosis transition to become structural and functional components within specific domains of the mitotic apparatus.
Collapse
Affiliation(s)
- D He
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
31
|
Nagele R, Freeman T, McMorrow L, Lee HY. Precise spatial positioning of chromosomes during prometaphase: evidence for chromosomal order. Science 1995; 270:1831-5. [PMID: 8525379 DOI: 10.1126/science.270.5243.1831] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The relative locations of several chromosomes within wheel-shaped prometaphase chromosome rosettes of human fibroblasts and HeLa cells were determined with fluorescence hybridization. Homologs were consistently positioned on opposite sides of the rosette, which suggests that chromosomes are separated into two haploid sets, each derived from one parent. The relative locations of chromosomes on the rosette were mapped by dual hybridizations. The data suggest that the chromosome orders within the two haploid sets are antiparallel. This chromosome arrangement in human cells appears to be both independent of cell type- and species-specific and may influence chromosome topology throughout the cell cycle.
Collapse
Affiliation(s)
- R Nagele
- Department of Molecular Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, Stratford 08084, USA
| | | | | | | |
Collapse
|
32
|
Williams BJ, Jones E, Brothman AR. Homologous centromere association of chromosomes 9 and 17 in prostate cancer. CANCER GENETICS AND CYTOGENETICS 1995; 85:143-51. [PMID: 8548739 DOI: 10.1016/0165-4608(95)00150-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chromosomal loss in cancer cells has been observed by nonisotopic in situ hybridization using pericentromeric probes. Accurate determination of this loss depends upon efficient hybridization and visualization of all probe signals in a two-dimensional field. Close association of homologous centromeres, reported in various normal and tumor tissues, can complicate evaluation and interpretation, resulting in the overestimation of actual chromosome loss. Using pericentromeric FISH probes for chromosomes 9 (classical and beta-satellite) and 17 (alpha-satellite), as well as 17q-specific phage probes, we tested the frequency of homologous centromere association in normal and malignant prostate tissues and lymphoblastoid cells. We found that the pericentromeric region of both chromosome 9 and 17 associated in prostate tissues, but only chromosome 9 demonstrated association in the lymphoblastoid cells. The association observed for chromosome 9 in both cell types appeared to be limited to the classical satellite III-type of heterochromatic, pericentromeric DNA. Using a single-copy probe along with the chromosome 17-specific pericentromeric probe, we determined that the association did not extend to the chromosome arms, but was limited to the pericentromeric region of chromosome 17. To accurately determine chromosome loss, we advocate the use of single-copy probes in addition to, or in place of, pericentromeric probes.
Collapse
Affiliation(s)
- B J Williams
- Department of Pediatrics, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
33
|
Qumsiyeh MB. Impact of rearrangements on function and position of chromosomes in the interphase nucleus and on human genetic disorders. Chromosome Res 1995; 3:455-65. [PMID: 8581297 DOI: 10.1007/bf00713959] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A synthesis of numerous published data and my own observations reveal that chromatin structure in interphase is functional, dynamic and complex. I hypothesize that: (1) chromosome regions organize nuclear structures and thus their own environment (address themselves in sites and condensation patterns most appropriate for their functional state in the particular cell); (2) chromosome rearrangement could alter nuclear architecture and thus function; and (3) these ideas can explain the contribution of chromosome rearrangements, even in a balanced form, to human pathologic conditions.
Collapse
Affiliation(s)
- M B Qumsiyeh
- Duke University Medical Center, Cytogenetics Laboratory, Durham, NC 27710, USA
| |
Collapse
|
34
|
Pahlplatz MM, de Wilde PC, Poddighe P, van Dekken H, Vooijs GP, Hanselaar AG. A model for evaluation of in situ hybridization spot-count distributions in tissue sections. CYTOMETRY 1995; 20:193-202. [PMID: 7587704 DOI: 10.1002/cyto.990200302] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The interpretation of in situ hybridization (ISH) spot-count distributions, obtained from evaluation of ISH signals in tissue sections, is complicated by the unknown impact of nuclear truncation and of the localization of ISH spots within the nuclei. In this study, a mathematical model was developed to investigate the effects of nuclear truncation and of the distribution of ISH spots within the nucleus on the ISH spot-count distribution in tissue sections. In this model, it was assumed that nuclei are spherical and of constant diameter and that ISH spots have negligible size and are distributed randomly within the nucleus ("volume model") or along the nuclear membrane ("surface model"). A minimal nuclear profile diameter was introduced in order to study the effect of rejecting small nuclear fragments for spot-count evaluation. Given the section thickness, the nuclear size, the minimal nuclear profile diameter, and the true number of ISH spots per nucleus and their spatial distribution within the nucleus, the model predicts the proportion of nuclei observable in the section with a specific number of ISH spots. A program that performs the model calculations was developed for PC and is available upon request. For section thickness greater than 50% of the nuclear diameter, the main effect of increasing section thickness on spot-count distributions was the increase of the proportion of nuclei with the true chromosome copy number of spots. For lower section thickness, the total distribution shifted towards lower spot frequencies. The influence of the minimal profile diameter was most notable for values close to the nuclear diameter. The effect of the localization of ISH spots within the nucleus was shown to be prominent, especially for sections with thickness smaller than the nuclear diameter. Good correspondence between model-predicted distributions and measured distributions was obtained using the volume model and taking into account only large nuclear profiles.
Collapse
Affiliation(s)
- M M Pahlplatz
- Institute of Pathology, University Hospital Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Abend M, Blakely WF, van Beuningen D. Simplified and optimized kinetochore detection: cytogenetic marker for late-G2 cells. Mutat Res 1995; 334:39-47. [PMID: 7528337 DOI: 10.1016/0165-1161(95)90029-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cytogenetic detection of kinetochore proteins using the CREST antibody coupled with secondary antibodies labeled with different fluorescent probes has been optimized for several in vitro mammalian cell lines. This study investigated selected parameters including the influence of common fixatives (methanol, ethanol, methanol:acetic acid (3:1)), detergents (Triton-X100, Tween), fluorescent probes (CY3, BODIPY, FITC), washing protocols, and an antifading agent (paraphenylenediamine) on the detection of kinetochore proteins in control and X-ray (240 kVp)-irradiated cells. Utilizing an optimized fixation and staining protocol, a brilliant visualization of kinetochores in interphase cells was obtained in control as well as X-ray-irradiated interhase cells. Application of this improved kinetochore staining methodology readily permits discriminating cells containing either single or paired kinetochores, the latter of which are characteristic of late-G2 phase and prophase cells.
Collapse
Affiliation(s)
- M Abend
- Federal Armed Forces Medical Academy, Institute of Radiobiology, Munich, Germany
| | | | | |
Collapse
|
36
|
Léger I, Guillaud M, Krief B, Brugal G. Interactive computer-assisted analysis of chromosome 1 colocalization with nucleoli. CYTOMETRY 1994; 16:313-23. [PMID: 7988293 DOI: 10.1002/cyto.990160405] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The applications of DNA cloning and fluorescent in situ hybridization (FISH) techniques have strengthened the hypothesis of an ordered chromatin structure in interphase nuclei, strongly suspected to vary with functional state. The nonrandom distribution of the centromeres and their dynamic rearrangement during the cell cycle have been well documented. A close proximity of specific centromeres to nucleoli has also been reported, but the functional meaning of this association is still unknown. In order to investigate whether the chromosome 1 centromere region to nucleolus association depends on the cell cycle and chromosome status, we combined FISH of probes specific for the 1q12 region with Ki-67 nucleolar antigen fluorescent immunocytochemical (FICC) detection on the MCF-7 human breast cancer cell line and on the MRC-5 normal fibroblastic cell line. Both FISH and FICC signals were interactively localized in a one-step fluorescent microscopic observation and further analyzed using the Highly Optimized Microscope Environment (HOME) graphics microscope workstation, which provided computerized interactive marking of 1q12 to nucleolus associations (1q12-nu) at the individual nucleus and nucleolus levels. This study confirms that centromeric regions, other than those adjacent to the major ribosomal cistrons, contribute to the perinucleolar chromatin and demonstrate that, during the cell cycle, the heterochromatic band 1q12 is dynamically rearranged with regard to both the nuclear volume and the nucleoli. A relationship between the association of the chromosome 1 pericentromeric region with nucleoli and the nucleolar transcriptional activity is also strongly suggested.
Collapse
Affiliation(s)
- I Léger
- Equipe de Reconnaissance des Formes et Microscopie Quantitative, Université Joseph Fourier, Grenoble, France
| | | | | | | |
Collapse
|
37
|
Leitch AR, Brown JK, Mosgöller W, Schwarzacher T, Heslop-Harrison JS. The spatial localization of homologous chromosomes in human fibroblasts at mitosis. Hum Genet 1994; 93:275-80. [PMID: 8125477 DOI: 10.1007/bf00212022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chromosomes from ten human male fibroblast metaphases were completely reconstructed from electron micrographs of serially sectioned material. Chromosome centromere positions were determined by finding the three-dimensional coordinates of the centromere midpoint. The data set showed the identity of nine chromosome types (chromosomes 1, 2, 3, 6, 9, 16, 17, 18 and the Y chromosome) preserved as they are positioned in vivo. The results indicate that there is (1) no significant association of the homologous chromosomes examined, (2) a significant tendency for a central location of the Y chromosome and of chromosome 18, (3) a significant tendency for a peripheral location of chromosome 6, (4) no significant tendency for homologous chromosomes to reorganize as metaphase advances and (5) no significant differential condensation across the metaphase plate. Therefore, the only organization pattern observed for the centromeres of the homologous chromosomes studied is some sorting by size across the metaphase plate. These results may be typical of dividing cell types. Different chromosome arrangements are found in some non-dividing cell types (e.g. mammalian brain cells). The different distributions of chromosomes in different cell types can be considered as forms of "nuclear differentiation". It is postulated that nuclear differentiation may be related to cell differentiation.
Collapse
|
38
|
Affiliation(s)
- U De Boni
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
39
|
Rivera H, Domínguez MG, Vásquez AI, Ramos AL, Fragoso R. Centromeric association of a microchromosome in a Turner syndrome patient with a pseudodicentric Y. Hum Genet 1993; 92:522-4. [PMID: 8244347 DOI: 10.1007/bf00216464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A 12-year-old patient with Turner syndrome was found to have a complex mosaicism for a microchromosome (MC) and a psu dic(Y)(q11). The MC was smaller than Yp, appeared pale in G, C and late replicating bands, had a pair of small centromeric dots, was associated with other chromosomes in most metaphases, and was rather stable both in size and during mitosis. The psu dic(Y) was Cd-positive only at the active centromere, had two pericentromeric heterochromatic regions, and lacked the Yq12 band. No cells with both abnormal chromosomes were found. To evaluate the association of the MC with all ordinary chromosomes, 857 G-banded cells with the marker were screened. The MC was considered as "associated" whenever the distance between it and other chromosome(s) was equal to, or smaller than, 18p. Out of 848 associations registered, 489 (57.7%) were centromeric, 202 (23.8%) telomeric, and 157 (18.5%) interstitial; i.e., centromeric associations were overrepresented (P < 0.001) and showed a random distribution, except for an excessive involvement of chromosome 8. This association pattern, also exhibited by two similar MCs in human beings, the minute Y of a marsupial and certain B chromosomes in plants, probably reflects the Rabl orientation of chromosomes in interphase.
Collapse
Affiliation(s)
- H Rivera
- División de Genética, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | | | | | | | | |
Collapse
|
40
|
Billia F, Baskys A, Carlen PL, De Boni U. Rearrangement of centromeric satellite DNA in hippocampal neurons exhibiting long-term potentiation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1992; 14:101-8. [PMID: 1323006 DOI: 10.1016/0169-328x(92)90016-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In situ hybridization in conjunction with three-dimensional reconstruction was used to examine the topology of satellite DNA (sDNA) sequences in hippocampal CA1 neurons. In slices fixed immediately after preparation, 4-5 signals/nucleus were detected in CA1, CA3 and dentate neurons. 70-80% of 154 neurons examined in these 3 areas displayed all signals at the nuclear periphery. In the remaining fraction of neurons, sDNA signals were divided between the nucleolus and the nuclear periphery. sDNA signals were consistently localized to the nuclear midplane. Slices left to equilibrate in artificial cerebral spinal fluid for 1 h, in the absence of potentiation, exhibited a significant increase in the total number of signals/nucleus in CA1 and dentate neurons. This increase in the number of signals occurred in both nucleolar and peripheral compartments, with the number of the nucleolar compartment nearly doubling. The total number of signals/nucleus was found to be consistently reduced in tetanized CA1 neurons (4.89 +/- 0.09 signals/nucleus, n = 195, P less than 0.05) as compared to neurons from unpotentiated slices (5.27 +/- 0.10 signals/nucleus, n = 81). A similar decrease in the total number of signals/nucleus was also observed in CA1 neurons exposed to N-methyl-D-aspartate (NMDA), from 5.27 +/- 0.10 signals/nucleus (n = 81) to 5.00 +/- 0.08 signals/nucleus (n = 215, P less than 0.05). In contrast, dentate neurons, employed as internal controls, did not exhibit any change in number and compartmentalization of sDNA signals.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F Billia
- Department of Physiology, Faculty of Medicine, University of Toronto, Ont. Canada
| | | | | | | |
Collapse
|
41
|
Abstract
Because of their importance as target antigens in scleroderma and since all other major autoantigens in scleroderma can be localized to the interphase nucleolus, we were interested in a further investigation of the potential relationship between interphase centromeres and the nucleolus. Using human anticentromere autoantibodies (ACA) from patients with the CREST form of scleroderma as probes in indirect immunofluorescence microscopy, we observed nonrandom interphase "clumping" of centromeres in a distribution suggestive of nucleoli. By double-label immunofluorescence comparing the localization of centromeres to nucleolar proteins Ki-67, fibrillarin, or protein B23 (nucleophosmin), interphase centromeres appeared to be localized around and within nucleoli. A number of different ACA sera were tested on HEp-2, HeLa, PtK2, Indian muntjac, 3T3, and NRK cells, all with identical results indicating colocalization between centromeres and nucleoli. Immunoelectron microscopy revealed that interphase centromeres were distributed free in the nucleoplasm, in contact with the nuclear envelope, in contact with and on the periphery of nucleoli, and totally embedded within the confines of the nucleolus itself. Interestingly, actinomycin D treatment dissociated centromeres from localization within the segregated nucleolus. To determine if interphase centromeres were integral components of nucleoli, nucleoli were isolated according to classical methods. By double-label immunofluorescence, immunoelectron microscopy, and Western blotting, it was demonstrated that centromere autoantigens copurified with isolated nucleoli. These studies offer proof that some interphase centromeres can be associated with, and may even be considered part of, the interphase nucleolus. Furthermore, all of the major autoantigens in scleroderma can now be localized to the nucleolus.
Collapse
Affiliation(s)
- R L Ochs
- W. M. Keck Autoimmune Disease Center, Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
42
|
O'Keefe RT, Henderson SC, Spector DL. Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific alpha-satellite DNA sequences. J Biophys Biochem Cytol 1992; 116:1095-110. [PMID: 1740468 PMCID: PMC2289349 DOI: 10.1083/jcb.116.5.1095] [Citation(s) in RCA: 377] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Five distinct patterns of DNA replication have been identified during S-phase in asynchronous and synchronous cultures of mammalian cells by conventional fluorescence microscopy, confocal laser scanning microscopy, and immunoelectron microscopy. During early S-phase, replicating DNA (as identified by 5-bromodeoxyuridine incorporation) appears to be distributed at sites throughout the nucleoplasm, excluding the nucleolus. In CHO cells, this pattern of replication peaks at 30 min into S-phase and is consistent with the localization of euchromatin. As S-phase continues, replication of euchromatin decreases and the peripheral regions of heterochromatin begin to replicate. This pattern of replication peaks at 2 h into S-phase. At 5 h, perinucleolar chromatin as well as peripheral areas of heterochromatin peak in replication. 7 h into S-phase interconnecting patches of electron-dense chromatin replicate. At the end of S-phase (9 h), replication occurs at a few large regions of electron-dense chromatin. Similar or identical patterns have been identified in a variety of mammalian cell types. The replication of specific chromosomal regions within the context of the BrdU-labeling patterns has been examined on an hourly basis in synchronized HeLa cells. Double labeling of DNA replication sites and chromosome-specific alpha-satellite DNA sequences indicates that the alpha-satellite DNA replicates during mid S-phase (characterized by the third pattern of replication) in a variety of human cell types. Our data demonstrates that specific DNA sequences replicate at spatially and temporally defined points during the cell cycle and supports a spatially dynamic model of DNA replication.
Collapse
Affiliation(s)
- R T O'Keefe
- Cold Spring Harbor Laboratory, New York 11724-2217
| | | | | |
Collapse
|
43
|
Zinkowski RP, Meyne J, Brinkley BR. The centromere-kinetochore complex: a repeat subunit model. J Biophys Biochem Cytol 1991; 113:1091-110. [PMID: 1828250 PMCID: PMC2289018 DOI: 10.1083/jcb.113.5.1091] [Citation(s) in RCA: 219] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The three-dimensional structure of the kinetochore and the DNA/protein composition of the centromere-kinetochore region was investigated using two novel techniques, caffeine-induced detachment of unreplicated kinetochores and stretching of kinetochores by hypotonic and/or shear forces generated in a cytocentrifuge. Kinetochore detachment was confirmed by EM and immunostaining with CREST autoantibodies. Electron microscopic analyses of serial sections demonstrated that detached kinetochores represented fragments derived from whole kinetochores. This was especially evident for the seven large kinetochores in the male Indian muntjac that gave rise to 80-100 fragments upon detachment. The kinetochore fragments, all of which interacted with spindle microtubules and progressed through the entire repertoire of mitotic movements, provide evidence for a subunit organization within the kinetochore. Further support for a repeat subunit model was obtained by stretching or uncoiling the metaphase centromere-kinetochore complex by hypotonic treatments. When immunostained with CREST autoantibodies and subsequently processed for in situ hybridization using synthetic centromere probes, stretched kinetochores displayed a linear array of fluorescent subunits arranged in a repetitive pattern along a centromeric DNA fiber. In addition to CREST antigens, each repetitive subunit was found to bind tubulin and contain cytoplasmic dynein, a microtubule motor localized in the zone of the corona. Collectively, the data suggest that the kinetochore, a plate-like structure seen by EM on many eukaryotic chromosomes is formed by the folding of a linear DNA fiber consisting of tandemly repeated subunits interspersed by DNA linkers. This model, unlike any previously proposed, can account for the structural and evolutional diversity of the kinetochore and its relationship to the centromere of eukaryotic chromosomes of many species.
Collapse
Affiliation(s)
- R P Zinkowski
- Department of Cell Biology, University of Alabama, Birmingham 35294
| | | | | |
Collapse
|
44
|
Abstract
Since 1968, when Comings published the pioneering paper on "the rationale for an ordered arrangement of chromatin in the interphase nucleus," technical methods have progressed tremendously and improved our understanding of interphase organization. The existence of highly ordered organizational patterns of the cell nucleus appears to be beyond any doubt and it is difficult to escape the conclusion that interphase chromosome topology is important for the complex regulation of the many varied and interrelated nuclear processes. However, it is worth emphasizing that a universally valid principle of chromosome arrangement does not exist and, therefore, any generalization of interphase patterns can be misleading. The factors of order according to which the chromosomes are arranged inside the nucleus are manifold: (1) Individual chromosomes remain in spatially separated domains throughout interphase, preventing an intermingling of the decondensed euchromatin. (2) Chromosome regions that contain constitutive heterochromatin associate into larger chromocenters. (3) In most cell types direct associations between interphase domains of homologous chromosomes are not observed. In others homologous heterochromatic regions tend to be paired preferentially. (4) Interphase chromosomes do not float freely in the nucleoplasm; they are associated to varying degrees with the nuclear membrane and other components of the nuclear scaffold. The number of attachment sites for each chromosome to the nuclear membrane is relatively low. (5) The positions of centromeres (and pericentromeric heterochromatin) are nonrandom and characteristic of each cell type. Specific centromere movements occur during the cell cycle, during differentiation, and under certain pathophysiological conditions. (6) The telomeric chromosome ends are particularly prone to associate in certain somatic cell types and in meiotic prophase cells. (7) The arrangement of repetitive DNA families appears to determine a structural framework of the interphase nucleus. Different cell types of one organism can exhibit marked differences in their repetitive DNA framework, whereas cells that are in an identical differentiated state or an identical phase of the cell cycle often show comparable interphase patterns even in evolutionarily distant species. (8) The various steps of ribosome biogenesis take place in a precise fashion within a separate nuclear domain, the nucleolus. The topologically well-defined nucleolar substructures are required for rDNA transcription and pre-rRNA processing. (9) A compartmentalization of transcriptional and processing events is also evident in the rest of the nucleus. However, it is not yet known if the in situ sites of transcription and RNA processing for a particular (nonribosomal) gene or gene family are actually adjacent. (10) DNA replication is precisely spatiotemporally regulated within the nucleus. The replication domains are immobilized on the nuclear matrix.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
45
|
Haaf T, Steinlein C, Schmid M. Nucleolar transcriptional activity in mouse Sertoli cells is dependent on centromere arrangement. Exp Cell Res 1990; 191:157-60. [PMID: 2226647 DOI: 10.1016/0014-4827(90)90051-b] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Experimental evidence suggests that centromere arrangement is relevant to the expression of ribosomal genes in murine Sertoli cells. Nuclei endowed with a nucleolus inactive in rRNA synthesis presented several clusters, each containing a bunch of individual centromeres. RNA polymerase I was not cytochemically detected in the nucleolar structure, which contained only small amounts of fibrillarin. In the course of nucleolar activation, the centromeres within the separate clusters became fused into larger centromeric bodies. Synthesis of precursor rRNAs and their processing were visualized by strong nucleolar fluorescence signals using antibodies to RNA polymerase I and fibrillarin.
Collapse
Affiliation(s)
- T Haaf
- Department of Human Genetics, University of Würzburg, Federal Republic of Germany
| | | | | |
Collapse
|
46
|
Maraschio P, Zuffardi O, Caiulo A, Dainotti E, Piantanida M, Rivera H, Tupler R. Deletion of specific sequences or modification of centromeric chromatin are responsible for Y chromosome centromere inactivation. Hum Genet 1990; 85:491-4. [PMID: 2227932 DOI: 10.1007/bf00194222] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stable dicentric chromosomes behave as monocentrics because one of the centromeres is inactive. The cause of centromere inactivation is unknown; changes in centromere chromatin conformation and loss of centromeric DNA elements have been proposed as possible mechanisms. We studied the phenomenon of inactivation in two Y centromeres, having as a control genetically identical active Y centromeres. The two cases have the following karyotypes: 45, X/46,X,i(Y)(q12) and 46,XY/47,XY,+t(X;Y) (p22.3;p11.3). The analysis of the behavior of the active and inactive Y chromosome centromeres after Da-Dapi staining, CREST immunofluorescence, and in situ hybridization with centromeric probes leads us to conclude that, in the case of the isochromosome, a true deletion of centromeric chromatin is responsible for its stability, whereas in the second case, stability for its stability, whereas in the second case, stability of the dicentric (X;Y) is the result of centromere chromatin modification.
Collapse
Affiliation(s)
- P Maraschio
- Biologia Generale e Genetica Medica, Università di Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
van Dekken H, van Rotterdam A, Jonker R, van der Voort HT, Brakenhoff GJ, Bauman JG. Confocal microscopy as a tool for the study of the intranuclear topography of chromosomes. J Microsc 1990; 158:207-14. [PMID: 2370652 DOI: 10.1111/j.1365-2818.1990.tb02994.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A scanning confocal microscope was used to investigate the spatial positions of specific regions within blood cell nuclei. These centromeric regions were fluorescently labelled by in-situ hybridization to suspended nuclei with a centromere-1-specific DNA probe. The 3-D image data sets, obtained by optical sectioning of the cells, were used to determine the spatial position of the centromeric regions in the nuclei by means of specially developed software. The centromeres were found to be localized near the nuclear boundary. This spatial pattern was tested against a random distribution model by means of the Kolmogorov-Smirnov test. The difference between the two patterns was at a P less than 0.01 significance level.
Collapse
Affiliation(s)
- H van Dekken
- Radiobiological Institute TNO, Rijswijk, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Indirect immunofluorescence staining with human anti-kinetochore antibodies was used to study the position of centromeres during vertebrate spermiogenesis. Many species of Amphibia have a low chromosome number and very large spermatids and spermatozoa. The number of kinetochore dots correlates exactly with the haploid chromosome number. This implies that kinetochore duplication occurs in the interval between meiosis I and meiosis II. The nonhomologous centromeres are arranged in tandem during the entire course of spermiogenesis and in mature spermatozoa. A higher order centromere arrangement was found in spermiogenic cells of Anura and Urodela. In mammals, immunofluorescence analysis is complicated by the extreme condensation of chromatin during spermiogenesis and the high chromosome numbers. Nevertheless, centromere-centromere associations were observed in mammalian round spermatids and sporadically in testicular spermatozoa. This indicates that pair-wise association of centromeres is a universal principle of centromere arrangement at the postmeiotic stage.
Collapse
|
49
|
van Dekken H, van Rotterdam A, Jonker RR, van der Voort HT, Brakenhoff GJ, Bauman JG. Spatial topography of a pericentromeric region (1q12) in hemopoietic cells studied by in situ hybridization and confocal microscopy. CYTOMETRY 1990; 11:570-8. [PMID: 2379447 DOI: 10.1002/cyto.990110503] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A fluorescent in situ hybridization procedure with a chromosome 1-specific (1q12) repetitive satellite DNA probe was used to label the 1q12 regions of the chromosomes 1 in spherical and polymorphic hemopoietic cell nuclei. The entire procedure was performed in suspension to preserve nuclear morphology. The result was studied by three-dimensional analysis, as provided by a scanning laser confocal microscope. The 1q12 regions of chromosome 1 were measured to be closely associated with the nuclear envelope in isolated nuclei of unstimulated diploid human lymphocytes. The relative positions to each other in the periphery of these spherical nuclei could not be distinguished from a random distribution pattern. In the diploid and tetraploid polymorphic nuclei of cells of the promyelocytic leukemia cell line HL60 these pericentromeric sequences were also associated with the nuclear surface.
Collapse
Affiliation(s)
- H van Dekken
- Radiobiological Institute TNO, Rijswijk, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Disteche CM, Adler DA. Localization of a mouse centromeric DNA repeat in interphase nuclei. CYTOMETRY 1990; 11:119-25. [PMID: 2307052 DOI: 10.1002/cyto.990110114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The position of a mouse DNA repeat located near the centromere of mouse chromosomes X, 11, 13, and 17 was examined in interphase nuclei of bone marrow and fibroblast cells by in situ hybridization of 3H- or biotin-labeled DNA probe 70-38. In most laboratory mouse strains this probe recognizes a single repeat cluster (DXWas70) close to the centromere of the mouse X chromosome. In a few mouse strains, a second locus (D11Was70, D13Was70, or D17Was70, depending on the mouse strain) is located near the centromere of an autosome. In interphase nuclei from mouse strains with the X-linked locus only, two distinct sites of hybridization were found in female mice and one in male mice. These two sites remained separated during the different phases of the cell cycle (G1, early S, late S, and G2) as demonstrated by in situ hybridization of the probe to flow-sorted nuclei. In interphase nuclei from mouse strains with both the X-linked locus and an autosomal locus, four distinct sites of hybridization were found in female mice and three in male mice. Further analysis of loci DXWas70 and D17Was70 showed that these loci were often located in the outer region of nuclei from bone marrow and fibroblast cells.
Collapse
Affiliation(s)
- C M Disteche
- Department of Pathology, University of Washington, Seattle 98195
| | | |
Collapse
|