1
|
Huber K, Franke A, Brühl B, Krispin S, Ernsberger U, Schober A, von Bohlen und Halbach O, Rohrer H, Kalcheim C, Unsicker K. Persistent expression of BMP-4 in embryonic chick adrenal cortical cells and its role in chromaffin cell development. Neural Dev 2008; 3:28. [PMID: 18945349 PMCID: PMC2582231 DOI: 10.1186/1749-8104-3-28] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Accepted: 10/22/2008] [Indexed: 11/29/2022] Open
Abstract
Background Adrenal chromaffin cells and sympathetic neurons both originate from the neural crest, yet signals that trigger chromaffin development remain elusive. Bone morphogenetic proteins (BMPs) emanating from the dorsal aorta are important signals for the induction of a sympathoadrenal catecholaminergic cell fate. Results We report here that BMP-4 is also expressed by adrenal cortical cells throughout chick embryonic development, suggesting a putative role in chromaffin cell development. Moreover, bone morphogenetic protein receptor IA is expressed by both cortical and chromaffin cells. Inhibiting BMP-4 with noggin prevents the increase in the number of tyrosine hydroxylase positive cells in adrenal explants without affecting cell proliferation. Hence, adrenal BMP-4 is likely to induce tyrosine hydroxylase in sympathoadrenal progenitors. To investigate whether persistent BMP-4 exposure is able to induce chromaffin traits in sympathetic ganglia, we locally grafted BMP-4 overexpressing cells next to sympathetic ganglia. Embryonic day 8 chick sympathetic ganglia, in addition to principal neurons, contain about 25% chromaffin-like cells. Ectopic BMP-4 did not increase this proportion, yet numbers and sizes of 'chromaffin' granules were significantly increased. Conclusion BMP-4 may serve to promote specific chromaffin traits, but is not sufficient to convert sympathetic neurons into a chromaffin phenotype.
Collapse
Affiliation(s)
- Katrin Huber
- Neuroanatomy, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Ernsberger U. The development of postganglionic sympathetic neurons: coordinating neuronal differentiation and diversification. Auton Neurosci 2001; 94:1-13. [PMID: 11775697 DOI: 10.1016/s1566-0702(01)00336-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The fine-tuned operation of the nervous system is accomplished by a diverse set of neurons which differ in their morphology, biochemistry and, consequently, their functional properties. The accurate interconnection between different neuron populations and their target tissues is the prerequisite for physiologically appropriate information processing. This is exemplified by the regulatory action of the autonomic nervous system in vertebrates to sustain homeostasis under changing physiological demands. For this purpose, the coordination of divergent regulatory responses is required in a multitude of tissues spread over the entire body. To meet this task, diverse neuronal populations interact at different levels. In the sympathetic system. chemical relations between preganglionic and postganglionic neurons appear to differ along the rostrocaudal axis. In addition, postganglionic neurons innervating different target tissues at a segmental level have distinct properties. Differences in their preganglionic innervation and their integrative membrane properties result in diverse activation patterns upon reflex stimulation. Moreover, postganglionic neurons differ in the transmitter molecules they employ to convey information to the target tissues. The segregation of noradrenaline and acetylcholine to different populations of postganglionic sympathetic neurons is well established. A combination of cellular and molecular approaches has begun to uncover how such a complex system may be generated during development. Growth and transcription factors involved in noradrenergic and cholinergic differentiation are characterised. Interestingly, they can also promote the expression of proteins involved in transmitter secretion. As the proteins participating in the vesicle cycle are expressed in many neuron populations, whereas the enzymes of transmitter biosynthesis are restricted to subpopulations of neurons, the findings suggest that early in neuronal development subpopulation-specific and more widely expressed neuronal properties can be commonly induced. Still, many details concerning the signals involved in the induction of the neurotransmitter synthesis and release machinery remain to be worked out. Likewise, the regulatory processes resulting in differences of electrophysiological membrane properties and the specific recognition between pre- and postganglionic neurons have to be determined. Ultimately, this will lead to an understanding at the molecular level of the development of a nervous system with diverse neuronal populations that are specifically interconnected to distinct input neurons and target tissues as required for the performance of a complex regulatory function.
Collapse
Affiliation(s)
- U Ernsberger
- Interdisziplinäres Zentrum für Neurowissenschaften, Institut für Anatomie und Zellbiologie III, Heidelberg, Germany.
| |
Collapse
|
3
|
Roudenok V, Kühnel W. Distribution of vasoactive intestinal polypeptide-, calcitonin gene-related peptide-, somatostatin- and neurofilament-immunoreactivities in sympathetic ganglia of human fetuses and premature neonates. Ann Anat 2001; 183:213-6. [PMID: 11396789 DOI: 10.1016/s0940-9602(01)80219-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The distribution patterns of vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP), somatostatin (SOM) and neurofilament (NF) immunoreactivities (IR) were studied in the stellate ganglia of human fetuses and neonates at 24-26 weeks gestation. Sizeable populations with some quantitative variations of VIP-, CGRP- and SOM immunoreactive nerve cells were detected in all ganglia studied. In marked contrast, neurofilament expression was down-regulated. The upregulation of VIP, CGRP and SOM expression suggested their inductor effect on growth and differentiation neurons as well as on the development of their neurotransmitter properties. The main neuropeptides-inducing factor of sympathetic ganglia in human prenatal ontogenesis may be considered as a relative hypoxia.
Collapse
Affiliation(s)
- V Roudenok
- Department of Human Anatomy, Minsk State Medical University, Belarus.
| | | |
Collapse
|
4
|
Salvi EP, Vaccaro R, Renda TG. Ontogeny of galanin-immunoreactive elements in chicken embryo autonomic nervous system. THE ANATOMICAL RECORD 2001; 262:266-78. [PMID: 11241195 DOI: 10.1002/1097-0185(20010301)262:3<266::aid-ar1039>3.0.co;2-p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To elucidate the main ontogenetic steps of galanin immunoreactivity within the extrinsic nerve supply of the alimentary tract, we undertook an immunohistochemical study of chicken embryo specimens. Fluorescence and streptavidin-biotin-peroxidase protocols were combined, using a galanin polyclonal antiserum, on transverse serial sections obtained from chicken embryos from embryonic Day 3 (E3) to hatching, and from 9-day-old newborn chicks. Galanin-immunoreactive cells were first detected at E3.5 within the pharyngeal pouch region, the nodose ganglion, the primary sympathetic chain, primitive splanchnic branches and the caudal portion of the Remak ganglion. At E5.5 galanin-immunoreactive cells and fibers appeared in the secondary (paravertebral) sympathetic chain, splanchnic nerves, peri- and preaortic plexuses, adrenal gland anlage and visceral nerves. Galanin-immunoreactive cells also lay scattered along the vagus nerve, and in the intermediate zone of the thoracolumbar spinal cord. At E18, galanin-immunoreactive cells and fibers were found along the entire Remak ganglion and around the gastrointestinal blood vessels. In post-hatching-9-day old chicks, the para- and prevertebral ganglia, but not the intermediate zone of the spinal cord, contained galanin-immunoreactive cells. Data indicate the presence of a consistent "galaninergic" nerve system supplying the chick embryonal gut wall. Whether this system has growth or differentiating role remains to be demonstrated. Its presence and distribution pattern in the later stages clearly support its well known role as a visceral neuromodulator of gut function.
Collapse
Affiliation(s)
- E P Salvi
- Institute of Human Anatomy, University "La Sapienza", Rome, Italy
| | | | | |
Collapse
|
5
|
Ernsberger U. Evidence for an evolutionary conserved role of bone morphogenetic protein growth factors and phox2 transcription factors during noradrenergic differentiation of sympathetic neurons. Induction of a putative synexpression group of neurotransmitter-synthesizing enzymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6976-81. [PMID: 11106406 DOI: 10.1046/j.1432-1327.2000.01827.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The noradrenergic transmitter phenotype in postganglionic sympathetic neurons is induced early during embryonic development in avian and mammalian primary sympathetic ganglia. The simultaneous expression of tyrosine hydroxylase and dopamine beta-hydroxylase, enzymes of the noradrenaline biosynthesis pathway, indicates that different genes contributing to the noradrenergic transmitter phenotype are regulated as a synexpression group. This conclusion is supported by the demonstration of bone morphogenetic protein (BMP) growth factors and Phox2 transcription factors being necessary for the expression of both tyrosine hydroxylase and dopamine beta-hydroxylase in differentiating sympathetic neurons. The close similarity in the expression patterns of the relevant genes as well as in the function of BMPs and Phox2s between avian and mammalian embryos strongly suggests that noradrenergic induction occurs along a conserved signalling pathway in these vertebrate classes.
Collapse
Affiliation(s)
- U Ernsberger
- Institut für Neuroanatomie, Anatomie und Zellbiologie, Interdisziplinäres Zentrum für Neurowissenschaften, Heidelberg, Germany.
| |
Collapse
|
6
|
Roudenok V. Changes in the expression of neuropeptide Y (NPY) during maturation of human sympathetic ganglionic neurons: correlations with tyrosine hydroxylase immunoreactivity. Ann Anat 2000; 182:515-9. [PMID: 11125800 DOI: 10.1016/s0940-9602(00)80093-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Developmental patterns of neuropeptide Y (NPY) and tyrosine hydroxylase (TH)-immunoreactivities (IR) were investigated using the method of indirect immunohistochemistry in the stellate and thoracic sympathetic ganglia of human neonates ranging in gestational age from 24 to 27 weeks (premature group) and from 38 to 41 weeks (mature group). In the paravertebral ganglia of premature neonates a small (up to 7%) population of NPY-IR nerve cells was revealed. With the gestational age increase (a mature group), a marked elevation of the number of NPY-IR ganglionic neurons (up to 41%) was noted. In contrast, in the sympathetic ganglia of premature neonates almost all the neurons were tyrosine hydroxylase immunoreactive and any change in pattern during maturation was insignificant. The results demonstrate an age-related increase of neuropeptide Y-immunoreactivity in human paravertebral ganglia during maturation, and suggest that peptidergic co-transmission arises later in development than do the classical autonomic messengers. Adaptability of the fetus to a new external environment at birth demands a qualitatively new activity level of the autonomic nervous system, and this is provided side by side with the classical messengers noradrenaline and acetylcholine by the co-transmitter and modulating role of the neuropeptides. The appearance of neuropeptide Y in the principal sympathetic ganglionic neurons defines not only a qualitatively new level in the functional regulation of target organs at birth, but serves as an index of neonatal maturity.
Collapse
Affiliation(s)
- V Roudenok
- Department of Human Anatomy, Minsk State Medical Institute, Belarus
| |
Collapse
|
7
|
Ernsberger U, Patzke H, Rohrer H. The developmental expression of choline acetyltransferase (ChAT) and the neuropeptide VIP in chick sympathetic neurons: evidence for different regulatory events in cholinergic differentiation. Mech Dev 1997; 68:115-26. [PMID: 9431809 DOI: 10.1016/s0925-4773(97)00135-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cholinergic properties in chick sympathetic neurons are detectable early during development of paravertebral ganglia and mature after target contact. The cholinergic marker choline acetyltransferase (ChAT) is first detectable at embryonic day 6 and its expression partly overlaps with that of the noradrenergic marker tyrosine hydroxylase (TH). At late embryonic stages, when sympathetic neurons have established target contact, ganglia consist of two major neuronal populations, TH-positive noradrenergic neurons and cholinergic neurons that at this stage express vasoactive intestinal peptide (VIP) in addition to ChAT. The maturation of sympathetic neurons is paralleled by changes in their response to the neurokine ciliary neurotrophic factor (CNTF). These findings suggest that expression of neurotransmitter properties is controlled differentially before and during target innervation.
Collapse
Affiliation(s)
- U Ernsberger
- Max-Planck-Institut für Hirnforschung, Frankfurt, Germany
| | | | | |
Collapse
|
8
|
Ernsberger U, Rohrer H. The development of the noradrenergic transmitter phenotype in postganglionic sympathetic neurons. Neurochem Res 1996; 21:823-9. [PMID: 8873087 DOI: 10.1007/bf02532306] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Here we review recent data on molecular aspects of the differentiation of the noradrenergic neurotransmitter phenotype in postganglionic sympathetic neurons during avian and mammalian embryogenesis. By experimental manipulation of the chick embryo, it has been shown that neural tube and notochord are important for noradrenergic differentiation which occurs when migrating neural crest cells, the precursors of sympathetic ganglion cells, reach the dorsal aorta. Bone morphogenetic proteins expressed in the dorsal aorta before and during the time of noradrenergic differentiation are likely candidates for growth factors involved in induction of noradrenergic differentiation, in vivo. To analyze noradrenergic differentiation, enzymes of the noradrenaline bio-synthesis pathway and catecholamine stores have been used as differentiation markers. The molecules involved in neurotransmitter release which are as important for a functional noradrenergic neuron as those required for transmitter synthesis and storage are only recently being studied in this context. For a comprehensive view of the embryonic development of the noradrenergic neurotransmitter phenotype, it will be necessary to understand how the systems for synthesis, storage and release of noradrenaline are assembled during neuronal differentiation.
Collapse
Affiliation(s)
- U Ernsberger
- Max-Planck-Institut für Hirnforschung, Frankfurt, Germany
| | | |
Collapse
|
9
|
Ross S, Fischer A, Unsicker K. Sympathoadrenal progenitors in embryonic chick sympathetic ganglia show distinct responses to glucocorticoid hormones. JOURNAL OF NEUROCYTOLOGY 1995; 24:247-56. [PMID: 7643131 DOI: 10.1007/bf01186537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The sympathoadrenal cell lineage originates from the neural crest and comprises the neurons of sympathetic ganglia, adrenal and extra-adrenal chromaffin cells, and the so-called small intensely fluorescent cells. In vitro studies using mammalian immature chromaffin cells, adrenal or sympathetic ganglionic progenitors, or ganglionic small intensely fluorescent cells, have suggested that glucocorticoid hormones are essential for inhibiting neuronal differentiation of sympathoadrenal progenitors and promoting the chromaffin cell phenotype. In avian systems, however, the distinct cellular phenotypes in this lineage and the molecular cues underlying their differentiation have not been fully explored. In the chick embryo, early sympathetic ganglion anlagen are populated by granule-containing cells that morphologically resemble small intensely fluorescent cells and chromaffin cell progenitors. These cells subsequently disappear from the ganglia, by death and by transition into fully differentiated sympathetic neurons, as indicated by the appearance of cells that are ultrastructurally intermediate between granule-containing cells and fully differentiated neurons (granule-containing cells in transition). In the present study, we show that treatment of cultured sympathetic cells dissociated from embryonic day (E) 7, 9, or 11 lumbar sympathetic ganglia with the glucocorticoid hormones hydrocortisone or corticosterone has neither an inhibitory nor an inductive effect on phenotypes of granule-containing cells or granule-containing cells in transition. In cell cultures of E15 ganglia, however, glucocorticoid treatment induces a granule-containing cell resembling the granule-containing phenotype. These results suggest that the early granule-containing cells and granule-containing cells in transition in chick sympathetic ganglia are not the counterparts of glucocorticoid-responsive mammalian small intensely fluorescent or chromaffin progenitor cells, despite their morphological similarity. However, E15 sympathetic ganglia apparently contain a glucocorticoid-responsive progenitor population that can differentiate into chromaffin-like cells. These progenitors seem to require a systemic or intraganglionic developmental signal or undergo a temporal switch that renders them susceptible to glucocorticoids.
Collapse
Affiliation(s)
- S Ross
- Department of Anatomy and Cell Biology, University of Heidelberg, Germany
| | | | | |
Collapse
|
10
|
Saltis J, Rush RA. The development of normal and peripherally deprived sympathetic neurons in the chick. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1995; 51:117-27. [PMID: 7738285 DOI: 10.1016/0165-1838(94)00122-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sympathetic neuron numbers in four brachial paravertebral ganglia (segments 13-16) were quantified during normal development and following wing bud removal. In ganglia with an intact peripheral field, different developmental profiles were observed. In particular, a period of increasing neuron numbers was seen in some, but not all ganglia from embryonic day 10. Similarly, a period of declining neuron numbers was present only in two ganglia, and this occurred at a time when sympathetic nerve fibres were detectable in the wing. Peak pyknotic activity occurred well before nerve fibres entered the wing. Thus, the bulk of the cell death is unrelated to peripheral innervation. Wing bud removal at embryonic day 3 reduced neuron number by as much as 69% at embryonic day 20 compared to the number in the corresponding ganglia on the intact side. The most obvious effect was the failure to generate the full complement of neurons. This could be explained by a shift in pyknotic activity to a period of 1-2 days earlier than seen on the intact side. We therefore conclude that the developing wing influences the size of the sympathetic population both before and during the period of peripheral innervation.
Collapse
Affiliation(s)
- J Saltis
- Department of Physiology, Flinders University, Bedford Park, South Australia
| | | |
Collapse
|
11
|
Smith J, Vyas S, Garcia-Arraras JE. Selective modulation of cholinergic properties in cultures of avian embryonic sympathetic ganglia. J Neurosci Res 1993; 34:346-56. [PMID: 8455211 DOI: 10.1002/jnr.490340312] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have studied the expression of catecholaminergic and cholinergic phenotypes in sympathetic ganglia removed from 7- to 10-day-old quail embryos and grown in vitro under different conditions. Quantitative data were obtained by measuring the conversion of (3H) tyrosine and (3H) choline to catecholamines (CA) and acetylcholine (ACh), respectively. In explant cultures, large amounts of both neurotransmitters were synthesized from the onset, but CA generally predominated, the molar ratios of CA:ACh being, on average, of the order of 2:1. If the ganglia were dissociated before plating, there was a selective increase in ACh synthesis (three- to fivefold) such that the CA:ACh ratio fell strikingly. The early expression of the cholinergic phenotype appears to be species-specific in that, under identical conditions, dissociated cell cultures of newborn mouse superior cervical ganglia were overwhelmingly catecholaminergic (CA:ACh ratio of approximately 40:1) and ACh synthesis was only just detectable. Addition of veratridine (1.5 microM) either to explant or to dissociated cell cultures of embryonic quail sympathetic ganglia barely altered CA-synthesizing ability; in contrast, ACh synthesis and accumulation were stimulated about threefold. This effect, which we found to correspond to a quantitatively similar increase in the activity of choline acetyltransferase (ChAT), was completely blocked by tetrodotoxin, indicating that it was due to Na(+)-dependent depolarization. A preferential stimulation of ACh production was also observed when the concentration of K+ was raised to 20 mM. Veratridine treatment of cultures of presumptive sympathoblasts, in the form of sclerotome-associated neural crest cells, had identical effects. Our results reveal the quantitative importance of ACh-related properties in avian sympathetic ganglia from the earliest stages of their development and suggest that depolarization may be one of the factors selectively enhancing expression of the cholinergic phenotype during ontogeny. In these respects, the neurochemical differentiation of sympathetic neurons unfolds according to dissimilar scenarios in birds and mammals.
Collapse
Affiliation(s)
- J Smith
- Institut d'Embryologie Cellulaire et Moléculaire du Centre National de la Recherche Scientifique et du Collège de France, Nogent-sur-Marne, France
| | | | | |
Collapse
|
12
|
Barbu M, Pourquié O, Vaigot P, Gateau G, Smith J. Phenotypic plasticity of avian embryonic sympathetic neurons grown in a chemically defined medium: direct evidence for noradrenergic and cholinergic properties in the same neurons. J Neurosci Res 1992; 32:350-62. [PMID: 1359159 DOI: 10.1002/jnr.490320307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Avian embryonic sympathetic ganglia possess both catecholaminergic and cholinergic features and can synthesize noradrenaline (NAd) and acetylcholine (ACh) simultaneously. In the present study we sought to determine (1) whether or not this coproduction of NAd and ACh corresponds to the existence of two non-overlapping populations, and (2) to what extent the levels of synthesis are influenced by non-neuronal ganglion cells. We have focused on the correlation between the immunocytochemically demonstrable presence of the noradrenergic and cholinergic enzymes tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT), respectively, and the synthesis of the corresponding neurotransmitters in embryonic quail sympathetic neuronal and non-neuronal cells purified by fluorescence-activated cell sorting. We show that (1) freshly sorted neurons synthesize both NAd and ACh, whereas non-neuronal cells produce neither; (2) the overwhelming majority of the sympathetic neurons display TH immunoreactivity; (3) about half of the TH-positive neurons are recognized by an anti-ChAT antibody in an artificial medium that selectively enhances synthesis and/or accumulation of ACh; (4) the non-neuronal cells are important for survival of the neurons and potentiate their synthesis of ACh in this medium, and (5) finally, we present evidence that expression of TH in noradrenergic neurons and in small intensely fluorescent cells of sympathetic ganglia is differentially regulated.
Collapse
Affiliation(s)
- M Barbu
- Institut d'Embryologie du CNRS, Collège de France, Nogent-sur-Marne
| | | | | | | | | |
Collapse
|
13
|
Luebke JI, Wright LL. Characterization of superior cervical ganglion neurons that project to the submandibular glands, the eyes, and the pineal gland in rats. Brain Res 1992; 589:1-14. [PMID: 1358399 DOI: 10.1016/0006-8993(92)91155-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
These studies sought to determine whether the cell bodies of rat superior cervical ganglion neurons projecting to three very different target organs differ in terms of their size, number, location within the ganglion and/or neuropeptide content, and whether these features are altered in response to neonatal deafferentiation of the ganglion. A series of retrograde tracer, immunocytochemical, and double-labeling studies revealed differences in the size, number, location and neuropeptide content of superior cervical ganglion neurons that project to the submandibular salivary glands, eyes, or pineal gland. The mean areas of the cell bodies of neurons projecting to the submandibular gland are largest, those projecting to the eye are smallest, and those projecting to the pineal are intermediate in size. Submandibular gland projecting neurons are found throughout the ganglion, while the eye and pineal projecting populations are localized to the rostral quadrants. The different subpopulations of target organ specific superior cervical ganglion neurons are heterogeneous in their content of vasoactive intestinal peptide-, neuropeptide Y- and somatostatin-like immunoreactivity. A greater percentage of submandibular gland than of pineal projecting neurons display vasoactive intestinal peptide-like immunoreactivity, but there are no differences in the percentage of neurons displaying neuropeptide Y- or somatostatin-like immunoreactivity between the target organ specific groups. Neonatal deafferentiation does not result in changes in the size, number or distribution of target organ specific neurons, or in the percentage of immunoreactive neurons in these populations. In conclusion, these studies provide evidence that the size and distribution of neurons and percentage of peptide-containing neurons in the superior cervical ganglion is related to the target organ innervated, but provides no evidence of exclusive target organ-peptide relationships.
Collapse
Affiliation(s)
- J I Luebke
- Department of Anatomy and Neurobiology, Boston University School of Medicine, MA 02118
| | | |
Collapse
|
14
|
García-Arrarás JE, Lugo-Chinchilla AM, Chévere-Colón I. The expression of neuropeptide Y immunoreactivity in the avian sympathoadrenal system conforms with two models of coexpression development for neurons and chromaffin cells. Development 1992; 115:617-27. [PMID: 1358595 DOI: 10.1242/dev.115.2.617] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have studied the expression and development of neuropeptide Y-like immunoreactivity (NPY-LI) in the sympathoadrenal system of the chicken using single and double immunocytochemical techniques and radioimmunoassay. NPY-LI is expressed by neurons of the paravertebral sympathetic ganglia and by chromaffin cells of the adrenal gland in embryonic and adult chickens. The peptide is coexpressed with catecholaminergic properties in neurons. In chromaffin cells, it is also expressed with immunoreactivity to somatostatin and serotonin. We have used the expression of NPY-LI to analyze how cells that coexpress two or more neuroactive substances arrive at their final phenotype. Our results suggest that the ontogeny of coexpression in neurons of the avian paravertebral sympathetic ganglia occurs in a sequential pattern, where the expression of the peptide follows the initial expression of the “classical neurotransmitter”. In contrast, in chromaffin cells, expression of the peptides occurs concomitantly with expression of catecholaminergic properties or soon after. Initially, coexpression of several neuroactive substances occurs, but this is followed by further specialization where the expression of one peptide prevails over the other. We believe that the two models of coexpression shown by our results can be used to describe the ontogeny of coexpression in other cells of the nervous system.
Collapse
|
15
|
García-Arrarás JE. Modulation of neuropeptide expression in avian embryonic sympathetic cultures. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1991; 60:19-27. [PMID: 1680580 DOI: 10.1016/0165-3806(91)90151-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two distinct neuropeptide-related phenotypes are found in avian paravertebral sympathetic ganglia, corresponding to somatostatin- (SS) and vasoactive intestinal polypeptide- (VIP) expressing cells. We have detected the same cell phenotypes in cultures of embryonic quail sympathetic ganglia and have used this system to study the modulation of their expression by the environment. The cell phenotypes were identified using immunocytochemistry and induced catecholamine fluorescence and quantitative data were obtained by radioimmunoassay. Dissociation of the ganglia caused a profound increase in the expression of VIP but had no effect on SS levels. Addition of corticosterone (10(-6) M) increased the expression of SS without modifying VIP levels. In contrast, depolarization of the cells induced changes in levels of both neuropeptides. The modulation of VIP correlates with the modulation of cholinergic properties. The regulation of neuropeptide expression in the avian system shows both similarities and differences to what has been found in the mammalian system.
Collapse
|