1
|
Bellini G, D'Antongiovanni V, Palermo G, Antonioli L, Fornai M, Ceravolo R, Bernardini N, Derkinderen P, Pellegrini C. α-Synuclein in Parkinson's Disease: From Bench to Bedside. Med Res Rev 2025; 45:909-946. [PMID: 39704040 PMCID: PMC11976381 DOI: 10.1002/med.22091] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/24/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024]
Abstract
α-Synuclein (α-syn), a pathological hallmark of PD, is emerging as a bridging element at the crossroads between neuro/immune-inflammatory responses and neurodegeneration in PD. Several evidence show that pathological α-syn accumulates in neuronal and non-neuronal cells (i.e., neurons, microglia, macrophages, skin cells, and intestinal cells) in central and peripheral tissues since the prodromal phase of the disease, contributing to brain pathology. Indeed, pathological α-syn deposition can promote neurogenic/immune-inflammatory responses that contribute to systemic and central neuroinflammation associated with PD. After providing an overview of the structure and functions of physiological α-syn as well as its pathological forms, we review current studies about the role of neuronal and non-neuronal α-syn at the crossroads between neuroinflammation and neurodegeneration in PD. In addition, we provide an overview of the correlation between the accumulation of α-syn in central and peripheral tissues and PD, related symptoms, and neuroinflammation. Special attention was paid to discussing whether targeting α-syn can represent a suitable therapeutical approach for PD.
Collapse
Affiliation(s)
- Gabriele Bellini
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Department of NeurologyThe Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, NYU Langone HealthNew York CityNew YorkUSA
| | - Vanessa D'Antongiovanni
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Giovanni Palermo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Roberto Ceravolo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Nunzia Bernardini
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Pascal Derkinderen
- Department of NeurologyNantes Université, CHU Nantes, INSERMNantesFrance
| | - Carolina Pellegrini
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| |
Collapse
|
2
|
Chu HY, Smith Y, Lytton WW, Grafton S, Villalba R, Masilamoni G, Wichmann T. Dysfunction of motor cortices in Parkinson's disease. Cereb Cortex 2024; 34:bhae294. [PMID: 39066504 PMCID: PMC11281850 DOI: 10.1093/cercor/bhae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/26/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The cerebral cortex has long been thought to be involved in the pathophysiology of motor symptoms of Parkinson's disease. The impaired cortical function is believed to be a direct and immediate effect of pathologically patterned basal ganglia output, mediated to the cerebral cortex by way of the ventral motor thalamus. However, recent studies in humans with Parkinson's disease and in animal models of the disease have provided strong evidence suggesting that the involvement of the cerebral cortex is much broader than merely serving as a passive conduit for subcortical disturbances. In the present review, we discuss Parkinson's disease-related changes in frontal cortical motor regions, focusing on neuropathology, plasticity, changes in neurotransmission, and altered network interactions. We will also examine recent studies exploring the cortical circuits as potential targets for neuromodulation to treat Parkinson's disease.
Collapse
Affiliation(s)
- Hong-Yuan Chu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Rd N.W., Washington D.C. 20007, United States
| | - Yoland Smith
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - William W Lytton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Physiology & Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States
- Department of Neurology, Kings County Hospital, 451 Clarkson Avenue,Brooklyn, NY 11203, United States
| | - Scott Grafton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Psychological and Brain Sciences, University of California, 551 UCEN Road, Santa Barbara, CA 93106, United States
| | - Rosa Villalba
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Gunasingh Masilamoni
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Thomas Wichmann
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| |
Collapse
|
3
|
Zeng Q, Liu S, Cui M. Structure-Activity Relationships of Cyano-substituted Indole Derivatives as Ligands for α-Synuclein Aggregates. ACS Med Chem Lett 2023; 14:1467-1471. [PMID: 37849556 PMCID: PMC10577886 DOI: 10.1021/acsmedchemlett.3c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
α-Synuclein (α-syn) is an essential biomarker for synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). The development of α-syn imaging probes is of great importance for understanding the pathogenesis mechanism and developing new therapies. In this study, we designed and synthesized a series of cyano-substituted indole derivatives and evaluated their potency to bind to α-syn fibrils by in vitro fibril binding assays. We carried out systematic structure-activity relationship (SAR) studies and obtained a promising candidate 51. The results showed that 51 bound to α-syn fibrils with the affinity of 17.4 ± 5.6 nM, and the biodistribution experiments in normal mice showed [125I]51 exhibited a moderate brain uptake of 3.57 ± 0.28% ID/g at 2 min after injection. In conclusion, the indole derivative [125I]51 showed initial potential as α-syn imaging probes, which needed further development.
Collapse
Affiliation(s)
- Qi Zeng
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Sen Liu
- Beijing
Seven Dimension Neuroscience Research Center, Beijing Seven Dimension
Biotechnology Inc., Beijing 101500, China
| | - Mengchao Cui
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
- Center
for Advanced Materials Research, Beijing
Normal University at Zhuhai, Zhuhai 519087, China
| |
Collapse
|
4
|
Praschberger R, Kuenen S, Schoovaerts N, Kaempf N, Singh J, Janssens J, Swerts J, Nachman E, Calatayud C, Aerts S, Poovathingal S, Verstreken P. Neuronal identity defines α-synuclein and tau toxicity. Neuron 2023; 111:1577-1590.e11. [PMID: 36948206 DOI: 10.1016/j.neuron.2023.02.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/22/2022] [Accepted: 02/23/2023] [Indexed: 03/24/2023]
Abstract
Pathogenic α-synuclein and tau are critical drivers of neurodegeneration, and their mutations cause neuronal loss in patients. Whether the underlying preferential neuronal vulnerability is a cell-type-intrinsic property or a consequence of increased expression levels remains elusive. Here, we explore cell-type-specific α-synuclein and tau expression in human brain datasets and use deep phenotyping as well as brain-wide single-cell RNA sequencing of >200 live neuron types in fruit flies to determine which cellular environments react most to α-synuclein or tau toxicity. We detect phenotypic and transcriptomic evidence of differential neuronal vulnerability independent of α-synuclein or tau expression levels. Comparing vulnerable with resilient neurons in Drosophila enabled us to predict numerous human neuron subtypes with increased intrinsic susceptibility to pathogenic α-synuclein or tau. By uncovering synapse- and Ca2+ homeostasis-related genes as tau toxicity modifiers, our work paves the way to leverage neuronal identity to uncover modifiers of neurodegeneration-associated toxic proteins.
Collapse
Affiliation(s)
- Roman Praschberger
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| | - Sabine Kuenen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Natalie Kaempf
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Jeevanjot Singh
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Jasper Janssens
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Human Genetics, 3000 Leuven, Belgium
| | - Jef Swerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Eliana Nachman
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Carles Calatayud
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Stein Aerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Human Genetics, 3000 Leuven, Belgium
| | | | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
5
|
Kulkarni AS, Burns MR, Brundin P, Wesson DW. Linking α-synuclein-induced synaptopathy and neural network dysfunction in early Parkinson's disease. Brain Commun 2022; 4:fcac165. [PMID: 35822101 PMCID: PMC9272065 DOI: 10.1093/braincomms/fcac165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
The prodromal phase of Parkinson's disease is characterized by aggregation of the misfolded pathogenic protein α-synuclein in select neural centres, co-occurring with non-motor symptoms including sensory and cognitive loss, and emotional disturbances. It is unclear whether neuronal loss is significant during the prodrome. Underlying these symptoms are synaptic impairments and aberrant neural network activity. However, the relationships between synaptic defects and network-level perturbations are not established. In experimental models, pathological α-synuclein not only impacts neurotransmission at the synaptic level, but also leads to changes in brain network-level oscillatory dynamics-both of which likely contribute to non-motor deficits observed in Parkinson's disease. Here we draw upon research from both human subjects and experimental models to propose a 'synapse to network prodrome cascade' wherein before overt cell death, pathological α-synuclein induces synaptic loss and contributes to aberrant network activity, which then gives rise to prodromal symptomology. As the disease progresses, abnormal patterns of neural activity ultimately lead to neuronal loss and clinical progression of disease. Finally, we outline goals and research needed to unravel the basis of functional impairments in Parkinson's disease and other α-synucleinopathies.
Collapse
Affiliation(s)
- Aishwarya S Kulkarni
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Matthew R Burns
- Department of Neurology, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Patrik Brundin
- Pharma Research and Early Development (pRED), F. Hoffman-La Roche, Little Falls, NJ, USA
| | - Daniel W Wesson
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Simon C, Soga T, Okano HJ, Parhar I. α-Synuclein-mediated neurodegeneration in Dementia with Lewy bodies: the pathobiology of a paradox. Cell Biosci 2021; 11:196. [PMID: 34798911 PMCID: PMC8605528 DOI: 10.1186/s13578-021-00709-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is epitomized by the pathognomonic manifestation of α-synuclein-laden Lewy bodies within selectively vulnerable neurons in the brain. By virtue of prion-like inheritance, the α-synuclein protein inexorably undergoes extensive conformational metamorphoses and culminate in the form of fibrillar polymorphs, instigating calamitous damage to the brain's neuropsychological networks. This epiphenomenon is nebulous, however, by lingering uncertainty over the quasi "pathogenic" behavior of α-synuclein conformers in DLB pathobiology. Despite numerous attempts, a monolithic "α-synuclein" paradigm that is able to untangle the enigma enshrouding the clinicopathological spectrum of DLB has failed to emanate. In this article, we review conceptual frameworks of α-synuclein dependent cell-autonomous and non-autonomous mechanisms that are likely to facilitate the transneuronal spread of degeneration through the neuraxis. In particular, we describe how the progressive demise of susceptible neurons may evolve from cellular derangements perpetrated by α-synuclein misfolding and aggregation. Where pertinent, we show how these bona fide mechanisms may mutually accentuate α-synuclein-mediated neurodegeneration in the DLB brain.
Collapse
Affiliation(s)
- Christopher Simon
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Tomoko Soga
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Hirotaka James Okano
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Ishwar Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
7
|
Manzanza NDO, Sedlackova L, Kalaria RN. Alpha-Synuclein Post-translational Modifications: Implications for Pathogenesis of Lewy Body Disorders. Front Aging Neurosci 2021; 13:690293. [PMID: 34248606 PMCID: PMC8267936 DOI: 10.3389/fnagi.2021.690293] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Lewy Body Disorders (LBDs) lie within the spectrum of age-related neurodegenerative diseases now frequently categorized as the synucleinopathies. LBDs are considered to be among the second most common form of neurodegenerative dementias after Alzheimer's disease. They are progressive conditions with variable clinical symptoms embodied within specific cognitive and behavioral disorders. There are currently no effective treatments for LBDs. LBDs are histopathologically characterized by the presence of abnormal neuronal inclusions commonly known as Lewy Bodies (LBs) and extracellular Lewy Neurites (LNs). The inclusions predominantly comprise aggregates of alpha-synuclein (aSyn). It has been proposed that post-translational modifications (PTMs) such as aSyn phosphorylation, ubiquitination SUMOylation, Nitration, o-GlcNacylation, and Truncation play important roles in the formation of toxic forms of the protein, which consequently facilitates the formation of these inclusions. This review focuses on the role of different PTMs in aSyn in the pathogenesis of LBDs. We highlight how these PTMs interact with aSyn to promote misfolding and aggregation and interplay with cell membranes leading to the potential functional and pathogenic consequences detected so far, and their involvement in the development of LBDs.
Collapse
Affiliation(s)
- Nelson de Oliveira Manzanza
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lucia Sedlackova
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Raj N. Kalaria
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
Ray B, Mahalakshmi AM, Tuladhar S, Bhat A, Srinivasan A, Pellegrino C, Kannan A, Bolla SR, Chidambaram SB, Sakharkar MK. "Janus-Faced" α-Synuclein: Role in Parkinson's Disease. Front Cell Dev Biol 2021; 9:673395. [PMID: 34124057 PMCID: PMC8194081 DOI: 10.3389/fcell.2021.673395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/15/2021] [Indexed: 01/03/2023] Open
Abstract
Parkinson's disease (PD) is a pathological condition characterized by the aggregation and the resultant presence of intraneuronal inclusions termed Lewy bodies (LBs) and Lewy neurites which are mainly composed of fibrillar α-synuclein (α-syn) protein. Pathogenic aggregation of α-syn is identified as the major cause of LBs deposition. Several mutations in α-syn showing varied aggregation kinetics in comparison to the wild type (WT) α-syn are reported in PD (A30P, E46K, H 50Q, G51D, A53E, and A53T). Also, the cell-to-cell spread of pathological α-syn plays a significant role in PD development. Interestingly, it has also been suggested that the pathology of PD may begin in the gastrointestinal tract and spread via the vagus nerve (VN) to brain proposing the gut-brain axis of α-syn pathology in PD. Despite multiple efforts, the behavior and functions of this protein in normal and pathological states (specifically in PD) is far from understood. Furthermore, the etiological factors responsible for triggering aggregation of this protein remain elusive. This review is an attempt to collate and present latest information on α-syn in relation to its structure, biochemistry and biophysics of aggregation in PD. Current advances in therapeutic efforts toward clearing the pathogenic α-syn via autophagy/lysosomal flux are also reviewed and reported.
Collapse
Affiliation(s)
- Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Asha Srinivasan
- Division of Nanoscience & Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, India
| | - Christophe Pellegrino
- Institut National de la Santé et de la Recherche Médicale, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Anbarasu Kannan
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Srinivasa Rao Bolla
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan City, Kazakhstan
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- Special Interest Group – Brain, Behaviour, and Cognitive Neurosciences Research, JSS Academy of Higher Education & Research, Mysuru, India
| | | |
Collapse
|
9
|
Wakabayashi K. Where and how alpha-synuclein pathology spreads in Parkinson's disease. Neuropathology 2020; 40:415-425. [PMID: 32750743 DOI: 10.1111/neup.12691] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
In Parkinson's disease (PD), neuronal alpha-synuclein aggregates are distributed throughout the nervous system, including the brain, spinal cord, sympathetic ganglia, submandibular gland, enteric nervous system, cardiac and pelvic plexuses, adrenal medulla, and skin. Thus, PD is a progressive multiorgan disease clinically associated with various motor and nonmotor symptoms. The earliest PD-related lesions appear to develop in the olfactory bulb, dorsal vagal nucleus, and possibly also the peripheral autonomic nervous system. The brain is closely connected with the enteric nervous system via axons of the efferent fibers of the dorsal nucleus of vagal nerve. Anatomical connections also exist between the olfactory bulb and brainstem. Accumulating evidence from experimental studies indicates that transneuronal propagation of misfolded alpha-synuclein is involved in the progression of PD. However, it cannot be ruled out that alpha-synuclein pathology in PD is multicentric in origin. Based on pathological findings from studies on human materials, the present review will update the progression pattern of alpha-synuclein pathology in PD.
Collapse
Affiliation(s)
- Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
10
|
Initiation and propagation of α-synuclein aggregation in the nervous system. Mol Neurodegener 2020; 15:19. [PMID: 32143659 PMCID: PMC7060612 DOI: 10.1186/s13024-020-00368-6] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
The two main pathological hallmarks of Parkinson’s disease are loss of dopamine neurons in the substantia nigra pars compacta and proteinaceous amyloid fibrils composed mostly of α-synuclein, called Lewy pathology. Levodopa to enhance dopaminergic transmission remains one of the most effective treatment for alleviating the motor symptoms of Parkinson’s disease (Olanow, Mov Disord 34:812–815, 2019). In addition, deep brain stimulation (Bronstein et al., Arch Neurol 68:165, 2011) to modulate basal ganglia circuit activity successfully alleviates some motor symptoms. MRI guided focused ultrasound in the subthalamic nucleus is a promising therapeutic strategy as well (Martinez-Fernandez et al., Lancet Neurol 17:54–63, 2018). However, to date, there exists no treatment that stops the progression of this disease. The findings that α-synuclein can be released from neurons and inherited through interconnected neural networks opened the door for discovering novel treatment strategies to prevent the formation and spread of Lewy pathology with the goal of halting PD in its tracks. This hypothesis is based on discoveries that pathologic aggregates of α-synuclein induce the endogenous α-synuclein protein to adopt a similar pathologic conformation, and is thus self-propagating. Phase I clinical trials are currently ongoing to test treatments such as immunotherapy to prevent the neuron to neuron spread of extracellular aggregates. Although tremendous progress has been made in understanding how Lewy pathology forms and spreads throughout the brain, cell intrinsic factors also play a critical role in the formation of pathologic α-synuclein, such as mechanisms that increase endogenous α-synuclein levels, selective expression profiles in distinct neuron subtypes, mutations and altered function of proteins involved in α-synuclein synthesis and degradation, and oxidative stress. Strategies that prevent the formation of pathologic α-synuclein should consider extracellular release and propagation, as well as neuron intrinsic mechanisms.
Collapse
|
11
|
Brás IC, Dominguez-Meijide A, Gerhardt E, Koss D, Lázaro DF, Santos PI, Vasili E, Xylaki M, Outeiro TF. Synucleinopathies: Where we are and where we need to go. J Neurochem 2020; 153:433-454. [PMID: 31957016 DOI: 10.1111/jnc.14965] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/24/2022]
Abstract
Synucleinopathies are a group of disorders characterized by the accumulation of inclusions rich in the a-synuclein (aSyn) protein. This group of disorders includes Parkinson's disease, dementia with Lewy bodies (DLB), multiple systems atrophy, and pure autonomic failure (PAF). In addition, genetic alterations (point mutations and multiplications) in the gene encoding for aSyn (SNCA) are associated with familial forms of Parkinson's disease, the most common synucleinopathy. The Synuclein Meetings are a series that has been taking place every 2 years for about 12 years. The Synuclein Meetings bring together leading experts in the field of Synuclein and related human conditions with the goal of discussing and advancing the research. In 2019, the Synuclein meeting took place in Ofir, a city in the outskirts of Porto, Portugal. The meeting, entitled "Synuclein Meeting 2019: Where we are and where we need to go", brought together >300 scientists studying both clinical and molecular aspects of synucleinopathies. The meeting covered a many of the open questions in the field, in a format that prompted open discussions between the participants, and underscored the need for additional research that, hopefully, will lead to future therapies for a group of as of yet incurable disorders. Here, we provide a summary of the topics discussed in each session and highlight what we know, what we do not know, and what progress needs to be made in order to enable the field to continue to advance. We are confident this systematic assessment of where we stand will be useful to steer the field and contribute to filling knowledge gaps that may form the foundations for future therapeutic strategies, which is where we need to go.
Collapse
Affiliation(s)
- Inês Caldeira Brás
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - David Koss
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Diana F Lázaro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Patrícia I Santos
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Mary Xylaki
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
12
|
Evans T, Kok WL, Cowan K, Hefford M, Anichtchik O. Accumulation of beta-synuclein in cortical neurons is associated with autophagy attenuation in the brains of dementia with Lewy body patients. Brain Res 2018; 1681:1-13. [DOI: 10.1016/j.brainres.2017.12.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 01/17/2023]
|
13
|
Parkinson's Disease Is Not Simply a Prion Disorder. J Neurosci 2017; 37:9799-9807. [PMID: 29021297 DOI: 10.1523/jneurosci.1787-16.2017] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/09/2017] [Accepted: 06/17/2017] [Indexed: 12/31/2022] Open
Abstract
The notion that prion-like spreading of misfolded α-synuclein (α-SYN) causes Parkinson's disease (PD) has received a great deal of attention. Although attractive in its simplicity, the hypothesis is difficult to reconcile with postmortem analysis of human brains and connectome-mapping studies. An alternative hypothesis is that PD pathology is governed by regional or cell-autonomous factors. Although these factors provide an explanation for the pattern of neuronal loss in PD, they do not readily explain the apparently staged distribution of Lewy pathology in many PD brains, the feature of the disease that initially motivated the spreading hypothesis by Braak and colleagues. While each hypothesis alone has its shortcomings, a synthesis of the two can explain much of what we know about the etiopathology of PD.Dual Perspectives Companion Paper: Prying into the Prion Hypothesis for Parkinson's Disease, by Patrik Brundin and Ronald Melki.
Collapse
|
14
|
Soares D, Goldrick I, Lemon RN, Kraskov A, Greensmith L, Kalmar B. Expression of Kv3.1b potassium channel is widespread in macaque motor cortex pyramidal cells: A histological comparison between rat and macaque. J Comp Neurol 2017; 525:2164-2174. [PMID: 28213922 PMCID: PMC5413836 DOI: 10.1002/cne.24192] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/20/2016] [Accepted: 01/26/2017] [Indexed: 12/11/2022]
Abstract
There are substantial differences across species in the organization and function of the motor pathways. These differences extend to basic electrophysiological properties. Thus, in rat motor cortex, pyramidal cells have long duration action potentials, while in the macaque, some pyramidal neurons exhibit short duration “thin” spikes. These differences may be related to the expression of the fast potassium channel Kv3.1b, which in rat interneurons is associated with generation of thin spikes. Rat pyramidal cells typically lack these channels, while there are reports that they are present in macaque pyramids. Here we made a systematic, quantitative comparison of the Kv3.1b expression in sections from macaque and rat motor cortex, using two different antibodies (NeuroMab, Millipore). As our standard reference, we examined, in the same sections, Kv3.1b staining in parvalbumin‐positive interneurons, which show strong Kv3.1b immunoreactivity. In macaque motor cortex, a large sample of pyramidal neurons were nearly all found to express Kv3.1b in their soma membranes. These labeled neurons were identified as pyramidal based either by expression of SMI32 (a pyramidal marker), or by their shape and size, and lack of expression of parvalbumin (a marker for some classes of interneuron). Large (Betz cells), medium, and small pyramidal neurons all expressed Kv3.1b. In rat motor cortex, SMI32‐postive pyramidal neurons expressing Kv3.1b were very rare and weakly stained. Thus, there is a marked species difference in the immunoreactivity of Kv3.1b in pyramidal neurons, and this may be one of the factors explaining the pronounced electrophysiological differences between rat and macaque pyramidal neurons.
Collapse
Affiliation(s)
- David Soares
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
| | - Isabelle Goldrick
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
| | - Roger N Lemon
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
| | - Alexander Kraskov
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
| | - Bernadett Kalmar
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
| |
Collapse
|
15
|
Hippocampal α-Synuclein in Dementia with Lewy Bodies Contributes to Memory Impairment and Is Consistent with Spread of Pathology. J Neurosci 2016; 37:1675-1684. [PMID: 28039370 DOI: 10.1523/jneurosci.3047-16.2016] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/07/2016] [Accepted: 12/11/2016] [Indexed: 11/21/2022] Open
Abstract
Despite considerable research to uncover them, the anatomic and neuropathologic correlates of memory impairment in dementia with Lewy bodies (DLB) remain unclear. While some studies have implicated Lewy bodies in the neocortex, others have pointed to α-synuclein pathology in the hippocampus. We systematically examined hippocampal Lewy pathology and its distribution in hippocampal subfields in 95 clinically and neuropathologically characterized human cases of DLB, finding that α-synuclein pathology was highest in two hippocampal-related subregions: the CA2 subfield and the entorhinal cortex (EC). While the EC had numerous classic somatic Lewy bodies, CA2 contained mainly Lewy neurites in presumed axon terminals, suggesting the involvement of the EC → CA2 circuitry in the pathogenesis of DLB symptoms. Clinicopathological correlations with measures of verbal and visual memory supported a role for EC Lewy pathology, but not CA2, in causing these memory deficits. Lewy pathology in CA1-the main output region for CA2-correlated best with results from memory testing despite a milder pathology. This result indicates that CA1 may be more functionally relevant than CA2 in the context of memory impairment in DLB. These correlations remained significant after controlling for several factors, including concurrent Alzheimer's pathology (neuritic plaques and neurofibrillary tangles) and the interval between time of testing and time of death. Our data suggest that although hippocampal Lewy pathology in DLB is predominant in CA2 and EC, memory performance correlates most strongly with CA1 burden.SIGNIFICANCE STATEMENT This study provides a detailed neuropathologic analysis of hippocampal Lewy pathology in human patients with autopsy-confirmed dementia with Lewy bodies. The approach-informed by regional molecular markers, concurrent Alzheimer's pathology analysis, and relevant clinical data-helps tease out the relative contribution of Lewy pathology to memory dysfunction in the disease. Levels of Lewy pathology were found to be highest in the hippocampal CA2 subregion and entorhinal cortex, implicating a potentially overlooked circuit in disease pathogenesis. However, correlation with memory performance was strongest with CA1. This unexpected finding suggests that Lewy pathology must reach a critical burden across hippocampal circuitry to contribute to memory dysfunction beyond that related to other factors, notably coexisting Alzheimer's disease tau pathology.
Collapse
|
16
|
Del Tredici K, Braak H. Review: Sporadic Parkinson's disease: development and distribution of α-synuclein pathology. Neuropathol Appl Neurobiol 2016; 42:33-50. [PMID: 26662475 DOI: 10.1111/nan.12298] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/04/2015] [Accepted: 12/13/2015] [Indexed: 12/17/2022]
Abstract
The development of α-synuclein immunoreactive aggregates in selectively vulnerable neuronal types of the human central, peripheral, and enteric nervous systems is crucial for the pathogenesis of sporadic Parkinson's disease. The presence of these lesions persists into the end phase of the disease, a process that is not subject to remission. The initial induction of α-synuclein misfolding and subsequent aggregation probably occurs in the olfactory bulb and/or the enteric nervous system. Each of these sites is exposed to potentially hostile environmental factors. Once formed, the aggregates appear to be capable of propagating trans-synaptically from nerve cell to nerve cell in a virtually self-promoting pathological process. A regional distribution pattern of aggregated α-synuclein emerges that entails the involvement of only a few types of susceptible and axonally interconnected projection neurons within the human nervous system. One major route of disease progression may originate in the enteric nervous system and retrogradely reach the dorsal motor nucleus of the vagal nerve in the lower brainstem. From there, the disease process proceeds chiefly in a caudo-rostral direction through visceromotor and somatomotor brainstem centres to the midbrain, forebrain, and cerebral cortex. Spinal cord centres may become involved by means of descending projections from involved lower brainstem nuclei as well as by sympathetic projections connecting the enteric nervous system with postganglionic peripheral ganglia and preganglionic nuclei of the spinal cord. The development of experimental cellular and animal models is helping to explain the mechanisms of how abnormal α-synuclein can undergo aggregation and how transmission along axonal connectivities can occur, thereby encouraging the initiation of potential disease-modifying therapeutic strategies for sporadic Parkinson's disease.
Collapse
Affiliation(s)
- K Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - H Braak
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| |
Collapse
|
17
|
Braak H, Del Tredici K. Potential Pathways of Abnormal Tau and α-Synuclein Dissemination in Sporadic Alzheimer's and Parkinson's Diseases. Cold Spring Harb Perspect Biol 2016; 8:a023630. [PMID: 27580631 PMCID: PMC5088528 DOI: 10.1101/cshperspect.a023630] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experimental data indicate that transneuronal propagation of abnormal protein aggregates in neurodegenerative proteinopathies, such as sporadic Alzheimer's disease (AD) and Parkinson's disease (PD), is capable of a self-propagating process that leads to a progression of neurodegeneration and accumulation of prion-like particles. The mechanisms by which misfolded tau and α-synuclein possibly spread from one involved nerve cell to the next in the neuronal chain to induce abnormal aggregation are still unknown. Based on findings from studies of human autopsy cases, we review potential pathways and mechanisms related to axonal and transneuronal dissemination of tau (sporadic AD) and α-synuclein (sporadic PD) aggregates between anatomically interconnected regions.
Collapse
Affiliation(s)
- Heiko Braak
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| |
Collapse
|
18
|
Abstract
Parkinson's disease psychosis (PDP) is theoretically a serotonin-dopamine imbalance syndrome due to disruption of the normal balance between the serotonergic and dopaminergic neurotransmitter systems in key brain circuits.
Collapse
|
19
|
Gomez-Tortosa E, Newell K, Irizarry M, Hyman BT. Clinical and neuropathological features of dementia with Lewy bodies. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/153331759801300603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Dementia with Lewy bodies (DLB) is an increasingly recognized entity which overlaps in clinical, pathological and genetic features with Alzheimer's (AD) and Parkinson's disease (PD). Clinically, it is characterized by progressive cognitive impairment with significant fluctuations in alertness, parkinsonism, and psychosis with recurrent hallucinations. The neuropathological hallmarks are the intracytoplasmic inclusions in substantia nigra typical of PD, known as Lewy bodies (LB), but widely distributed throughout paralimbic and neocortical regions. Most of the cases also coexist with a plaque predominant AD. The evidence of alpha-synuclein in LB and related neurites as well as of a synuclein fragment in AD plaques opens new links among these neurodegenerative diseases. This article will review briefly the clinical and pathologicalfeatures that DLB shares with AD and PD, as well as those that support the idea that it is a distinct disorder.
Collapse
Affiliation(s)
| | | | | | - Bradley T. Hyman
- Alzheimer's Disease Research Unit, Massachusetts General Hospital East, Charlestown, Massachusetts
| |
Collapse
|
20
|
Gebremedhin KG, Rademacher DJ. Histone H3 acetylation in the postmortem Parkinson's disease primary motor cortex. Neurosci Lett 2016; 627:121-5. [PMID: 27241718 DOI: 10.1016/j.neulet.2016.05.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 01/23/2023]
Abstract
Although the role of epigenetics in Parkinson's disease (PD) has not been extensively studied, α-synuclein, the main component of Lewy bodies, decreased histone H3 acetylation. Here, we determined if there were histone acetylation changes in the primary motor cortex which, according to the Braak model, is one of the last brain regions affected in PD. Net histone H3 acetylation, histone H3 lysine 9 (H3K9), histone H3 lysine 14 (H3K14), histone H3 lysine 18 (H3K18), and histone H3 lysine 23 (H3K23) acetylation was assessed in the primary motor cortex of those affected and unaffected by PD. There was net increase in histone H3 acetylation due to increased H3K14 and H3K18 acetylation. There was a decrease in H3K9 acetylation. No between-groups difference was detected in H3K23 acetylation. Relationships between Unified Lewy Body Staging scores and histone H3 acetylation and substantia nigra depigmentation scores and histone H3 acetylation were observed. No relationships were detected between postmortem interval and histone H3 acetylation and expired age and histone H3 acetylation. These correlational data support the notion that the histone H3 acetylation changes observed here are not due to the postmortem interval or aging. Instead, they are due to PD and/or factors that covary with PD. The data suggest enhanced gene transcription in the primary motor cortex of the PD brain due to increase H3K14 and H3K18 acetylation. This effect is partially offset by a decreased H3K9 acetylation, which might repress gene transcription.
Collapse
Affiliation(s)
- Kibrom G Gebremedhin
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - David J Rademacher
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA; Department of Psychological Science, Carthage College, Kenosha, WI, USA.
| |
Collapse
|
21
|
Miki Y, Tanji K, Mori F, Sakamoto N, Wakabayashi K. An autopsy case of refractory epilepsy due to unilateral polymicrogyria in a 65-year-old man: Histogenesis of four-layered polymicrogyric cortex. Neuropathology 2015; 35:569-74. [DOI: 10.1111/neup.12219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/20/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Yasuo Miki
- Departments of Neuropathology; Hirosaki University Graduate School of Medicine
| | - Kunikazu Tanji
- Departments of Neuropathology; Hirosaki University Graduate School of Medicine
| | - Fumiaki Mori
- Departments of Neuropathology; Hirosaki University Graduate School of Medicine
| | - Namiko Sakamoto
- Forensic Medicine; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Koichi Wakabayashi
- Departments of Neuropathology; Hirosaki University Graduate School of Medicine
| |
Collapse
|
22
|
Wakabayashi K, Tanji K, Odagiri S, Miki Y, Mori F, Takahashi H. The Lewy body in Parkinson's disease and related neurodegenerative disorders. Mol Neurobiol 2012; 47:495-508. [PMID: 22622968 DOI: 10.1007/s12035-012-8280-y] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/10/2012] [Indexed: 12/20/2022]
Abstract
The histopathological hallmark of Parkinson's disease (PD) is the presence of fibrillar aggregates referred to as Lewy bodies (LBs), in which α-synuclein is a major constituent. Pale bodies, the precursors of LBs, may serve the material for that LBs continue to expand. LBs consist of a heterogeneous mixture of more than 90 molecules, including PD-linked gene products (α-synuclein, DJ-1, LRRK2, parkin, and PINK-1), mitochondria-related proteins, and molecules implicated in the ubiquitin-proteasome system, autophagy, and aggresome formation. LB formation has been considered to be a marker for neuronal degeneration because neuronal loss is found in the predilection sites for LBs. However, recent studies have indicated that nonfibrillar α-synuclein is cytotoxic and that fibrillar aggregates of α-synuclein (LBs and pale bodies) may represent a cytoprotective mechanism in PD.
Collapse
Affiliation(s)
- Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Bernstein HG, Johnson M, Perry RH, LeBeau FEN, Dobrowolny H, Bogerts B, Perry EK. Partial loss of parvalbumin-containing hippocampal interneurons in dementia with Lewy bodies. Neuropathology 2011; 31:1-10. [PMID: 20487308 DOI: 10.1111/j.1440-1789.2010.01117.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementia. Among many other neuropathological changes in DLB, brain region-specific cellular deficits have been reported. They include decreases in motor neuron and pyramidal cell densities, while neocortical parvalbumin (parv)-containing neurons are thought to be free of Lewy bodies and spared in DLB. However, elevated parv levels are found in the cerebrospinal fluid of patients suffering from dementia with Lewy bodies. We performed an immunohistochemical analysis of hippocampal parv-immunoreactive neurons in well-characterised DLB cases and from controls using a specific antibody against the calcium binding protein. In addition, an analysis of the regional and cellular distribution of alpha-synuclein was carried out. Subfield and laminar distribution of parv-immunoreactive (ir) neurons on the hippocampus in subjects with DLB and controls were present exclusively as non-granule cells of the dentate gyrus (DG)/hilus and non-pyramidal cells of CA1, CA2, CA3 and CA4 areas of the hippocampus. The distribution patterns did not differ qualitatively between DLB and controls. Quantitative estimation of parv-ir neuron density revealed significant decreases in the dentate (DG)/hilus region as well as in the CA1 subfield. Double immunolabelling experiments showed that only 2% of parv expressing interneurons were laden with alpha-synuclein immunoreactive material. No significant changes were found for the total neuron densities in DLB cases. Our results show a partial loss of parv-expressing hippocampal interneurons in DLB, which might be the result of long-lasting calcium overload in combination with a proposed impaired mitochondrial function. It remains to be elucidated if the numerical decrease of this particular subset of hippocampal interneurons has consequences for the gamma (20-80 Hz) frequency activity in DLB patients.
Collapse
|
24
|
Thangavel R, Sahu SK, Van Hoesen GW, Zaheer A. Loss of nonphosphorylated neurofilament immunoreactivity in temporal cortical areas in Alzheimer's disease. Neuroscience 2009; 160:427-33. [PMID: 19250962 PMCID: PMC2669695 DOI: 10.1016/j.neuroscience.2009.02.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/09/2009] [Accepted: 02/12/2009] [Indexed: 11/30/2022]
Abstract
The distribution of immunoreactive neurons with nonphosphorylated neurofilament protein (SMI32) was studied in temporal cortical areas in normal subjects and in patients with Alzheimer's disease (AD). SMI32 immunopositive neurons were localized mainly in cortical layers II, III, V and VI, and were medium to large-sized pyramidal neurons. Patients with AD had prominent degeneration of SMI32 positive neurons in layers III and V of Brodmann areas 38, 36, 35 and 20; in layers II and IV of the entorhinal cortex (Brodmann area 28); and hippocampal neurons. Neurofibrillary tangles (NFTs) were stained with Thioflavin-S and with an antibody (AT8) against hyperphosphorylated tau. The NFT distribution was compared to that of the neuronal cytoskeletal marker SMI32 in these temporal cortical regions. The results showed that the loss of SMI32 immunoreactivity in temporal cortical regions of AD brain is paralleled by an increase in NFTs and AT8 immunoreactivity in neurons. The SMI32 immunoreactivity was drastically reduced in the cortical layers where tangle-bearing neurons are localized. A strong SMI32 immunoreactivity was observed in numerous neurons containing NFTs by double-immunolabeling with SMI32 and AT8. However, few neurons were labeled by AT8 and SMI32. These results suggest that the development of NFTs in some neurons results from some alteration in SMI32 expression, but does not account for all, particularly, early NFT-related changes. Also, there is a clear correlation of NFTs with selective population of pyramidal neurons in the temporal cortical areas and these pyramidal cells are specifically prone to formation of paired helical filaments. Furthermore, these pyramidal neurons might represent a significant portion of the neurons of origin of long corticocortical connection, and consequently contribute to the destruction of memory-related input to the hippocampal formation.
Collapse
Affiliation(s)
- Ramasamy Thangavel
- Department of Neurology, University of Iowa College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Shailendra K. Sahu
- Department of Neurology, University of Iowa College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
- Department of Neurosurgery, University of Iowa College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Gary W. Van Hoesen
- Department of Neurology, University of Iowa College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, University of Iowa College of Medicine, Bowen Science Building, 51 Newton Road, Iowa City, IA 52242, USA, University of Iowa, Iowa City, IA 52242, USA
| | - Asgar Zaheer
- Veterans Affairs Medical Center, Iowa City, IA 52242, USA
- Department of Neurology, University of Iowa College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
25
|
Wakabayashi K, Tanji K, Mori F, Takahashi H. The Lewy body in Parkinson's disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology 2008; 27:494-506. [PMID: 18018486 DOI: 10.1111/j.1440-1789.2007.00803.x] [Citation(s) in RCA: 347] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The histological hallmark of Parkinson's disease (PD) is the presence of fibrillar aggregates called Lewy bodies (LBs). LB formation has been considered to be a marker for neuronal degeneration, because neuronal loss is found in the predilection sites for LBs. To date, more than 70 molecules have been identified in LBs, in which alpha-synuclein is a major constituent of LB fibrils. Alpha-synuclein immunohistochemistry reveals that diffuse cytoplasmic staining develops into pale bodies via compaction, and that LBs arise from the peripheral portion of pale bodies. This alpha-synuclein abnormality is found in 10% of pigmented neurons in the substantia nigra and more than 50% of those in the locus ceruleus in PD. Recent studies have suggested that oligomers and protofibrils of alpha-synuclein are cytotoxic, and that LBs may represent a cytoprotective mechanism in PD.
Collapse
Affiliation(s)
- Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University School of Medicine, Hirosaki, Japan.
| | | | | | | |
Collapse
|
26
|
Braak H, Sastre M, Del Tredici K. Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson's disease. Acta Neuropathol 2007; 114:231-41. [PMID: 17576580 DOI: 10.1007/s00401-007-0244-3] [Citation(s) in RCA: 320] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 05/22/2007] [Accepted: 05/22/2007] [Indexed: 01/10/2023]
Abstract
Astrocytic alpha-synuclein-immunoreactive inclusions have recently been noted to develop in sporadic Parkinson's disease (PD). Here, the presence of immunoreactive astrocytes is reported in 14 autopsy cases with clinically diagnosed PD and a neuropathological stage of 4 or higher. The labeled astrocytes occur preferentially in prosencephalic regions (amygdala, thalamus, septum, striatum, claustrum, and cerebral cortex). They appear first in layers V-VI of the temporal mesocortex, then in the striatum and in thalamic nuclei that project to the cortex. The topographical distribution pattern of these astrocytes closely parallels that of the cortical intraneuronal Lewy neurites and Lewy bodies, which, from their foothold in the mesocortex, gradually encroach upon neocortical association areas and even the primary fields. Thus, labeling of astrocytes appears to accompany the formation of neuronal inclusion bodies. Relatively small immunoreactive cortical pyramidal neurons in layers V-VI probably project to nearby destinations, such as the striatum and thalamus. Inasmuch as the projection neurons of both the striatum and the dorsal thalamus do not develop Lewy bodies, it is suggested that the most likely cause of the astrocytic reaction may be a slightly altered alpha-synuclein molecule that escapes from terminal axons of affected cortico-striatal or cortico-thalamic neurons and is taken up by astrocytes. Other aggregated proteins known to co-occur with PD-associated intraneuronal lesions, e.g., Abeta protein or neurofibrillary changes of the Alzheimer type, do not appear to influence the development of the alpha-synuclein immunoreactive astrocytes.
Collapse
Affiliation(s)
- Heiko Braak
- Institute for Clinical Neuroanatomy, J.W. Goethe University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
27
|
Hubbard PS, Esiri MM, Reading M, McShane R, Nagy Z. Alpha-synuclein pathology in the olfactory pathways of dementia patients. J Anat 2007; 211:117-24. [PMID: 17553102 PMCID: PMC2375794 DOI: 10.1111/j.1469-7580.2007.00748.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Lewy-type pathology is a characteristic of a number of neurodegenerative disorders, including Parkinson's disease and dementia with Lewy bodies. Thus far, the definitive diagnosis of these dementias can only be confirmed at post-mortem. However, it is known that the loss of smell (anosmia) is an early symptom in patients who develop dementia, and the use of the smell test has been proposed as an early diagnostic procedure. The aim of this study was to understand further the extent of Lewy pathology in the olfactory system of patients with neurodegenerative disorders. Post-mortem tissue from 250 subjects was obtained from the OPTIMA brain bank. Five areas of the olfactory pathway were examined by immunolabelling for alpha-synuclein - a major component of Lewy pathology: the olfactory tract/bulb (n = 79), the anterior olfactory nucleus in the lateral olfactory gyrus (n = 193), the region of olfactory projection to the orbito-frontal cortex (n = 225), the hippocampus (n = 236) and the amygdala (n = 201). Results show that Lewy pathology affects different parts of the olfactory pathways differentially, suggesting a specific pattern of development of pathology. Clinical Parkinson's disease is most likely to be identified if the orbito-frontal cortex is affected, while the diagnosis is less likely if the pathology is restricted to the olfactory bulb or tract. These results suggest that pathology in the olfactory bulb and tract occurs prior to clinical signs of Parkinson's disease. Furthermore, the results presented here provide further evidence supporting the possible value of a smell test to aid the clinical diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Paul S Hubbard
- Division of Neuroscience, The Medical School, University of Birmingham, UK
| | | | | | | | | |
Collapse
|
28
|
Michel B, Becker H, Pellissier JF. Demenza a corpi di Lewy. Neurologia 2007. [DOI: 10.1016/s1634-7072(07)70550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
29
|
Bussière T, Giannakopoulos P, Bouras C, Perl DP, Morrison JH, Hof PR. Progressive degeneration of nonphosphorylated neurofilament protein-enriched pyramidal neurons predicts cognitive impairment in Alzheimer's disease: stereologic analysis of prefrontal cortex area 9. J Comp Neurol 2003; 463:281-302. [PMID: 12820162 DOI: 10.1002/cne.10760] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We performed a stereologic analysis of a subset of pyramidal neurons known to be vulnerable in Alzheimer's disease (AD) and characterized by particularly high somatodendritic levels of nonphosphorylated neurofilament protein. In the neocortex, these large pyramidal neurons reside in the deep part of layer III (layer IIIc) and the superficial part of layer V (layer Va). We focused on prefrontal cortex area 9 in elderly control cases in comparison to cases with different degrees of cognitive dysfunction. The results confirmed that these neurons are preferentially vulnerable in AD, as their numbers decrease dramatically in cases with definite dementia, correlating strongly with the severity of the disease, to a nearly complete loss (>90%) in the endstages of AD. Furthermore, a triple-labeling experimental paradigm revealed that these particular neurons are far more likely to develop neurofibrillary tangles (NFT) and do so at a faster rate than other pyramidal cells. Nonphosphorylated neurofilament protein-rich neurons also shrink considerably during formation of NFT and the largest among them are preferentially affected. Laminar differences in the severity of these effects were observed, layer Va being more severely affected, possibly correlating with the involvement of specific cortical projections. These data reveal that different populations of neurons prone to NFT formation are lost at different rates in AD, and that nonphosphorylated neurofilament protein-enriched neurons emerge as a strikingly vulnerable subpopulation of neurons. Their preferential involvement suggests that neurons providing specific corticocortical connections between association areas are at high risk for degeneration in AD.
Collapse
Affiliation(s)
- Thierry Bussière
- Kastor Neurobiology of Aging Laboratories and Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, New York 10029
| | | | | | | | | | | |
Collapse
|
30
|
Colosimo C, Hughes AJ, Kilford L, Lees AJ. Lewy body cortical involvement may not always predict dementia in Parkinson's disease. J Neurol Neurosurg Psychiatry 2003; 74:852-6. [PMID: 12810766 PMCID: PMC1738521 DOI: 10.1136/jnnp.74.7.852] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The presence of Lewy bodies (LB) in the neocortex and limbic system in patients with Parkinson's disease (PD) is commonly thought to be linked with cognitive impairment. The authors present here a series of patients with diagnosis of PD in life and no significant cognitive impairment who, at necropsy, satisfied the current neuropathological criteria for dementia with Lewy bodies (DLB). METHODS Two hundred and seventy six brains with PD pathology were examined at the Queen Square Brain Bank in London between 1993 and 1999. The neuropathological diagnosis was PD, but 117 patients also had sufficient LB involvement above the brain stem to satisfy the current neuropathological criteria for DLB (50 patients had a neuropathological picture consistent with the limbic category of DLB and 67 with neocortical DLB). Forty eight cases were excluded who developed early cognitive impairment together with motor features of parkinsonism, 12 cases for lack of detailed clinical history, and 19 cases with coexistent features of advanced Alzheimer's disease changes. Thirty eight patients (13.8% of the total with PD pathology and 32.5 % of the total with DLB pathology) were found where there was no or very late cognitive impairment reported in the clinical records. RESULTS Selected cases were 24 men and 14 women, with a mean (SD) age at onset of parkinsonian symptoms of 60.1 (10.1) years and a mean disease duration of 15.3 (5.5) years. At some time during the evolution of the disease 21 patients developed different degrees of cognitive impairment (after a mean disease duration of 12.2 (4.8) years). Clinical diagnosis at death was PD in 10 cases and PD with dementia in 11. In the remaining 17 patients no history of cognitive impairment was ever recorded in life and all of them had a clinical diagnosis of PD at death; in this subgroup, nine patients later revealed a neuropathological picture consistent with limbic (or transitional) category of DLB and eight with neocortical DLB. Interestingly, in all these patients the parkinsonian features including the response to dopaminergic drugs were indistinguishable from classic brain stem PD. CONCLUSIONS The authors demonstrate that the classic pathology of DLB can commonly be seen outside the generally accepted clinical spectrum for DLB and that important factors other than the absolute number of LB in the neocortex and limbic system influence the development of cognitive impairment in PD. Furthermore, the pathology of PD may be indistinguishable from that reported in DLB, suggesting that the two clinicopathological syndromes may be attributable to the same biological abnormality.
Collapse
Affiliation(s)
- C Colosimo
- Queen Square Brain Bank for Neurological Disorders, Institute of Neurology, London, UK
| | | | | | | |
Collapse
|
31
|
Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 2003; 24:197-211. [PMID: 12498954 DOI: 10.1016/s0197-4580(02)00065-9] [Citation(s) in RCA: 7215] [Impact Index Per Article: 328.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sporadic Parkinson's disease involves multiple neuronal systems and results from changes developing in a few susceptible types of nerve cells. Essential for neuropathological diagnosis are alpha-synuclein-immunopositive Lewy neurites and Lewy bodies. The pathological process targets specific induction sites: lesions initially occur in the dorsal motor nucleus of the glossopharyngeal and vagal nerves and anterior olfactory nucleus. Thereafter, less vulnerable nuclear grays and cortical areas gradually become affected. The disease process in the brain stem pursues an ascending course with little interindividual variation. The pathology in the anterior olfactory nucleus makes fewer incursions into related areas than that developing in the brain stem. Cortical involvement ensues, beginning with the anteromedial temporal mesocortex. From there, the neocortex succumbs, commencing with high order sensory association and prefrontal areas. First order sensory association/premotor areas and primary sensory/motor fields then follow suit. This study traces the course of the pathology in incidental and symptomatic Parkinson cases proposing a staging procedure based upon the readily recognizable topographical extent of the lesions.
Collapse
Affiliation(s)
- Heiko Braak
- Department of Clinical Neuroanatomy, J.W. Goethe University, Theodor Stern Kai 7, D-60590 Frankfurt/Main, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Masliah E, Hansen LA, Rockenstein E, Hashimoto M. Progress in the development of new treatments for combined Alzheimer's and Parkinson's diseases. Drug Dev Res 2002. [DOI: 10.1002/ddr.10082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I, Masliah E. Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 2002; 68:568-78. [PMID: 12111846 DOI: 10.1002/jnr.10231] [Citation(s) in RCA: 402] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Accumulation of alpha-synuclein has been associated with neurodegenerative disorders, such as Lewy body disease and multiple system atrophy. We previously showed that expression of wild-type human alpha-synuclein in transgenic mice results in motor and dopaminergic deficits associated with inclusion formation. To determine whether different levels of human alpha-synuclein expression from distinct promoters might result in neuropathology mimicking other synucleopathies, we compared patterns of human alpha-synuclein accumulation in the brains of transgenic mice expressing this molecule from the murine Thy-1 and platelet-derived growth factor (PDGF) promoters. In murine Thy-1-human alpha-synuclein transgenic mice, this protein accumulated in synapses and neurons throughout the brain, including the thalamus, basal ganglia, substantia nigra, and brainstem. Expression of human alpha-synuclein from the PDGF promoter resulted in accumulation in synapses of the neocortex, limbic system, and olfactory regions as well as formation of inclusion bodies in neurons in deeper layers of the neocortex. Furthermore, one of the intermediate expressor lines (line M) displayed human alpha-synuclein expression in glial cells mimicking some features of multiple system atrophy. These results show a more widespread accumulation of human alpha-synuclein in transgenic mouse brains. Taken together, these studies support the contention that human alpha-synuclein expression in transgenic mice might mimic some neuropathological alterations observed in Lewy body disease and other synucleopathies, such as multiple system atrophy.
Collapse
Affiliation(s)
- Edward Rockenstein
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093-0624, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Shepherd CE, McCann H, Thiel E, Halliday GM. Neurofilament-immunoreactive neurons in Alzheimer's disease and dementia with Lewy bodies. Neurobiol Dis 2002; 9:249-57. [PMID: 11895376 DOI: 10.1006/nbdi.2001.0469] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cortical neurons thought to be selectively affected in dementia with Lewy bodies (DLB) are those containing nonphosphorylated 200-kDa neurofilament (NF) protein. As these neurons are largely spared in Alzheimer's disease (AD), DLB and AD may impact on different cortical neuronal populations. The present study quantifies the NF-containing neurons in frontal and temporal cortex of 8 AD, 8 DLB, and 8 control cases. Formalin-fixed paraffin-embedded tissue was immunohistochemically stained with antibodies against nonphosphorylated and phosphorylated NF. Immunoreactive neurons were quantified by areal fraction analysis and corrected for cortical volume. As expected, nonphosphorylated and phosphorylated NF accumulated in the pathological hallmarks of AD and DLB. However, rather than a decrease in NF-containing neurons, a doubling of this population was observed in DLB, compared with AD and controls. This increased number of cortical NF-containing neurons reveal novel widespread cortical changes, beyond those explained by Lewy body formation, that are specific for DLB.
Collapse
Affiliation(s)
- Claire E Shepherd
- Prince of Wales Medical Research Institute, University of New South Wales, Barker Street, Randwick, Sydney 2031, Australia
| | | | | | | |
Collapse
|
35
|
Wirdefeldt K, Bogdanovic N, Westerberg L, Payami H, Schalling M, Murdoch G. Expression of alpha-synuclein in the human brain: relation to Lewy body disease. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 92:58-65. [PMID: 11483242 DOI: 10.1016/s0169-328x(01)00150-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alpha-synuclein is mutated in some hereditary cases of Parkinson's disease and the protein precipitates in Lewy bodies, the pathological hallmark of both Parkinson's disease and Lewy body disease. Transgenic mice overexpressing human wild-type alpha-synuclein develop alpha-synuclein-immunoreactive inclusions in brain regions typically affected with Lewy body disease. We used in situ hybridization to characterize alpha-synuclein expression and examine mRNA levels in patients affected with Lewy body disease and controls. Substantia nigra was avoided because of the extensive neuronal loss and cingulate gyrus was chosen as it is one of the diagnostic regions in Lewy body disease where Lewy bodies most frequently are demonstrated. beta-tubulin was used to control for neuronal degeneration. The alpha-synuclein probe showed intense labeling of pyramidal cells in lamina III and V in both patients and controls. We found no difference in alpha-synuclein mRNA levels and beta-tubulin mRNA was not significantly altered (P=0.06) in patient brains. There was no difference in the ratio of alpha-synuclein and beta-tubulin mRNA levels between patients and controls. Further, we found no relationship between alpha-synuclein mRNA levels and Lewy bodies. Great variability in alpha-synuclein mRNA levels among patients indicates that Lewy body disease may be a heterogeneous disorder with regard to alpha-synuclein involvement.
Collapse
Affiliation(s)
- K Wirdefeldt
- Department of Molecular Medicine, Karolinska Institutet, Karolinska Hospital L8:00, 171 76 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
36
|
Gómez-Tortosa E, Irizarry MC, Gómez-Isla T, Hyman BT. Clinical and neuropathological correlates of dementia with Lewy bodies. Ann N Y Acad Sci 2001; 920:9-15. [PMID: 11193181 DOI: 10.1111/j.1749-6632.2000.tb06899.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dementia with Lewy bodies (DLB) is characterized pathologically by widespread Lewy body (LB) neuronal inclusions in the brain, but the contribution of LBs to the clinical syndrome of dementia and parkinsonism is unclear. In a clinical-pathological study of 25 cases with DLB, we examined the regional neuroanatomical distribution of Lewy-related pathology using alpha-synuclein immunostaining to evaluate the relationship between LBs, neuronal loss, Alzheimer-type changes, and the clinical phenotype. Compared to traditional ubiquitin immunostaining, alpha-synuclein immunohistochemistry was more specific and slightly more sensitive, staining about 5% more intracytoplasmic structures. There was a consistent pattern of vulnerability to LB formation across subcortical, paralimbic, limbic, and neocortical structures, which was independent of concomitant Alzheimer-type changes. There were no significant differences in regional LB densities among patients with or without cognitive fluctuations, visual hallucinations, delusions, recurrent falls or parkinsonism. Duration of disease correlated weakly with LB density. There was no neuronal loss in superior temporal sulcus or entorhinal cortex in pure DLB cases compared to nondemented controls. Thus, DLB is characterized by a specific neuroanatomical vulnerability to LB pathology, distinct from AD pathology, with a complicated relationship to clinical symptoms.
Collapse
Affiliation(s)
- E Gómez-Tortosa
- Alzheimer Disease Research Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
37
|
Campbell BC, Li QX, Culvenor JG, Jäkälä P, Cappai R, Beyreuther K, Masters CL, McLean CA. Accumulation of insoluble alpha-synuclein in dementia with Lewy bodies. Neurobiol Dis 2000; 7:192-200. [PMID: 10860784 DOI: 10.1006/nbdi.2000.0286] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The alpha-synuclein (alpha SN) protein is thought to play a central role in the pathogenesis of neurodegenerative diseases where it aggregates to form intracellular inclusions. We have used Western blotting to examine the expression levels and solubility of alpha SN in brain homogenates from dementia with Lewy bodies (DLB), Parkinson's disease (PD), Alzheimer's disease (AD), and normal controls using samples from the parahippocampus/transentorhinal cortex. Compared to controls, DLB brains accumulate significantly greater amounts of sodium dodecyl sulfate (SDS)-soluble and SDS-insoluble alpha SN but levels of TBS-soluble alpha SN did not change. Levels of synaptophysin, a marker of synaptic integrity, were significantly lower in DLB cases than in normal aged controls regardless of whether concurrent changes of AD were present. This limbic synaptic dysfunction may contribute to cognitive impairment in DLB. Whether aggregated alpha SN is a cause or effect of the disease process in DLB and PD remains to be determined, but the presence of aggregated alpha SN is consistent with a pathogenesis similar to that associated with aggregates of Abeta amyloid in AD.
Collapse
Affiliation(s)
- B C Campbell
- Department of Pathology, The University of Melbourne, 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Abstract
In the last decade, a new degenerative dementia, probably the second most common after Alzheimer's disease (AD), has been increasingly recognized under the consensus name of dementia with Lewy bodies (DLB). This article reviews current clinical, genetic, and pathological DLB data and indicates directions for future research. DLB overlaps in clinical, pathological, and genetic features with AD and Parkinson's disease (PD). Clinically, it is characterized by progressive cognitive impairment with significant fluctuations in alertness, parkinsonism, and psychosis with recurrent hallucinations. The neuropathological hallmarks are the intracytoplasmic inclusions in substantia nigra typical of PD, known as Lewy bodies (LB) but distributed widely throughout paralimbic and neocortical regions. Most of the cases also coexist with a plaque predominant AD. It is probably the unique and differential distribution of the lesions throughout cortical and subcortical structures in each of these disorders that supports a specific clinical syndrome and may ultimately prove most useful in understanding their different etiologies. Several genes have recently been implicated in LB formation. Special interest arises from mutations in the alpha-synuclein gene, which appears to be responsible for autosomal dominant PD in several kindreds. This gene encodes a presynaptic protein, a fragment of which is present in AD plaques. Recent studies show intense and quite specific alpha-synuclein immunoreactivity in LB and related neurites, suggesting a potential role of this protein in the aggregation or precipitation of LB inclusions.
Collapse
Affiliation(s)
- E Gómez-Tortosa
- Alzheimer's Disease Research Unit, Massachusetts General Hospital East, Charlestown 02119, USA
| | | | | | | |
Collapse
|
40
|
Kosaka K, Iseki E. Recent advances in dementia research in Japan: non-Alzheimer-type degenerative dementias. Psychiatry Clin Neurosci 1998; 52:367-73. [PMID: 9766683 DOI: 10.1046/j.1440-1819.1998.00402.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this article, we review recent reports by Japanese researchers on non-Alzheimer-type degenerative dementias. These dementias can be classified into the following subtypes: dementias with Lewy bodies, including diffuse Lewy body disease, dementias with neurofibrillary tangles, dementias with glial tangles, including progressive supranuclear palsy and corticobasal degeneration, argyrophilic grain dementia, frontotemporal dementias including Pick's disease; dementias with degeneration of subcortical nuclei, including Huntington's disease and, last, unclassified dementias. Recently, these various forms of dementia have received much attention in Japan, as elsewhere.
Collapse
Affiliation(s)
- K Kosaka
- Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| | | |
Collapse
|
41
|
Harding AJ, Halliday GM. Simplified neuropathological diagnosis of dementia with Lewy bodies. Neuropathol Appl Neurobiol 1998; 24:195-201. [PMID: 9717184 DOI: 10.1046/j.1365-2990.1998.00115.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pathological criteria have recently been developed to differentiate those cases where Lewy bodies contribute to the dementing process. We applied consensus criteria to 20 cases with a pathological diagnosis of Alzheimer's disease (all demented) and/or Parkinson's disease (three without dementia) and eight controls. In addition, we applied the criteria to the different cortical layers to determine whether the site of the semiquantification affected the diagnosis. In the parietal lobe, few Lewy bodies were observed, and this region could be excluded. Rare Lewy bodies present in the frontal association cortex in a number of Parkinson's disease cases resulted in their classification as limbic or transitional cases with Lewy bodies. Exclusion of this non-limbic association cortex resulted in many of these cases with rare cortical Lewy bodies being re-classified as having brain stem predominant Lewy bodies, thus improving the diagnostic accuracy of the criteria. Most of these cases were non-demented. No other case was re-classified by excluding these cortical regions from the analysis. Few Lewy bodies were present in cortical layers I and II, and these layers could be excluded from the semiquantitative procedure without change to the overall classification of cases. The occasional presence of possible Lewy bodies in cases with Alzheimer's disease and controls incorrectly classified these cases as having brain stem predominant Lewy body disease, although these cases had no brain stem Lewy bodies. These modifications to the consensus criteria for assessing Lewy body disease (i.e. exclude parietal and frontal lobe, cortical layers I and II, and cases without brain stem Lewy bodies), provide significant time and cost savings for neuropathologists and researchers using this criteria to diagnose and study dementia with Lewy bodies.
Collapse
Affiliation(s)
- A J Harding
- Prince of Wales Medical Research Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | | |
Collapse
|
42
|
Abstract
Lewy body formation is central to the pathological phenotype of a spectrum of disorders. The most familiar of these is the extrapyramidal syndrome of idiopathic Lewy-body Parkinson's disease (PD). Studies of dementia in the elderly suggest that another manifestation of Lewy body pathology is equally or more common than Parkinson's disease. This syndrome of Dementia with Lewy bodies (DLB) has been given a number of diagnostic labels and is characterised by dementia, relatively mild parkinsonism, visual hallucinations, and fluctuations in conscious level. Although many of these features can arise in Parkinson's disease, the patients with DLB tend to have early neuropsychiatric features which predominate the clinical picture, and the diagnosis of the syndrome in practice is more concerned with the differential diagnosis of Alzheimer's disease (AD). Distinction from AD has clinical importance because of potentially differing therapeutic implications. Diagnostic guidelines for the clinical diagnosis and pathological evaluation of DLB are reviewed. Research into the disorder has centered around characterising the clinical, neuropsychological, pathological, neurochemical and genetic relationships with Alzheimer's disease on the one hand, and Parkinson's disease on the other. Many cases of DLB have prominent pathological features of AD and there are some shared genetic risk factors. Differences from the pathology of PD are predominantly quantitative rather than qualitative and evidence is discussed which suggests that DLB represents a clinicopathological syndrome within the spectrum of Lewy body disorders. The possibility that the syndrome represents a chance association of PD and AD is not supported by published studies.
Collapse
Affiliation(s)
- P G Ince
- University of Newcastle upon Tyne, and Department of Neuropathology, Newcastle General Hospital, UK.
| | | | | |
Collapse
|
43
|
Galvin JE, Lee VM, Baba M, Mann DM, Dickson DW, Yamaguchi H, Schmidt ML, Iwatsubo T, Trojanowski JQ. Monoclonal antibodies to purified cortical Lewy bodies recognize the mid-size neurofilament subunit. Ann Neurol 1997; 42:595-603. [PMID: 9382471 DOI: 10.1002/ana.410420410] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lewy bodies (LBs) are filamentous intraneuronal inclusions that are hallmark lesions of Parkinson's disease, and LBs have been shown, by immunohistochemistry, to contain cytoskeletal as well as other cellular proteins. Similar LBs also occur in the cortical neurons of a subset of patients with Alzheimer's disease (AD), and cortical LBs are the predominant or sole lesions in the brains of patients with an AD-like dementia known as diffuse Lewy-body disease (DLBD). To gain insight into the biochemical composition of LBs, we generated monoclonal antibodies (mAbs) to LBs purified from the brains of patients with DLBD. Here, we describe three of these new mAbs (LB48, LB202, and LB204) that stained LBs by immunohistochemistry and recognized the medium molecular mass neurofilament (NF) protein in western blots. These results support the hypothesis that NF subunits are integral components of LBs. Continued efforts to clarify the composition of LBs are likely to lead to novel strategies for the antemortem diagnosis of LB disorders as well as to insight into the role LBs play in the degeneration of affected neurons in these disorders.
Collapse
Affiliation(s)
- J E Galvin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|