1
|
Taniguchi E, Satoh K, Ohkubo M, Ue S, Matsuhira H, Kuroda Y, Kubo T, Kitazaki K. Nuclear DNA segments homologous to mitochondrial DNA are obstacles for detecting heteroplasmy in sugar beet (Beta vulgaris L.). PLoS One 2023; 18:e0285430. [PMID: 37552681 PMCID: PMC10409277 DOI: 10.1371/journal.pone.0285430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/21/2023] [Indexed: 08/10/2023] Open
Abstract
Heteroplasmy, the coexistence of multiple mitochondrial DNA (mtDNA) sequences in a cell, is well documented in plants. Next-generation sequencing technology (NGS) has made it feasible to sequence entire genomes. Thus, NGS has the potential to detect heteroplasmy; however, the methods and pitfalls in heteroplasmy detection have not been fully investigated and identified. One obstacle for heteroplasmy detection is the sequence homology between mitochondrial-, plastid-, and nuclear DNA, of which the influence of nuclear DNA segments homologous to mtDNA (numt) need to be minimized. To detect heteroplasmy, we first excluded nuclear DNA sequences of sugar beet (Beta vulgaris) line EL10 from the sugar beet mtDNA sequence. NGS reads were obtained from single plants of sugar beet lines NK-195BRmm-O and NK-291BRmm-O and mapped to the unexcluded mtDNA regions. More than 1000 sites exhibited intra-individual polymorphism as detected by genome browsing analysis. We focused on a 309-bp region where 12 intra-individual polymorphic sites were closely linked to each other. Although the existence of DNA molecules having variant alleles at the 12 sites was confirmed by PCR amplification from NK-195BRmm-O and NK-291BRmm-O, these variants were not always called by six variant-calling programs, suggesting that these programs are inappropriate for intra-individual polymorphism detection. When we changed the nuclear DNA reference, a numt absent from EL10 was found to include the 309-bp region. Genetic segregation of an F2 population from NK-195BRmm-O x NK-291BRmm-O supported the numt origin of the variant alleles. Using four references, we found that numt detection exhibited reference dependency, and extreme polymorphism of numts exists among sugar beet lines. One of the identified numts absent from EL10 is also associated with another intra-individual polymorphic site in NK-195mm-O. Our data suggest that polymorphism among numts is unexpectedly high within sugar beets, leading to confusion about the true degree of heteroplasmy.
Collapse
Affiliation(s)
- Eigo Taniguchi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kosuke Satoh
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Megumi Ohkubo
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sachiyo Ue
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroaki Matsuhira
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Hokkaido, Japan
| | - Yosuke Kuroda
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Hokkaido, Japan
| | - Tomohiko Kubo
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Kawanishi Y, Shinada H, Matsunaga M, Masaki Y, Mikami T, Kubo T. A new source of cytoplasmic male sterility found in wild beet and its relationship to other CMS types. Genome 2010; 53:251-6. [PMID: 20616856 DOI: 10.1139/g10-003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We found a number of male-sterile plants in a wild beet (Beta vulgaris L. subsp. maritima) accession line, FR4-31. The inheritance study of the male sterility indicated the trait to be of the cytoplasmic type. The mitochondrial genome of FR4-31 proved to lack the male-sterility-associated genes preSatp6 and orf129, which are characteristic of the Owen CMS and I-12CMS(3) cytoplasms of beets, respectively. Instead, the truncated cox2 gene involved in G CMS originating from wild beets was present in the FR4-31 mitochondrial genome. In Southern hybridization using four mitochondrial gene probes, the FR4-31 cytoplasm showed patterns similar to those typical of the G cytoplasm. It is thus likely that the FR4-31 cytoplasm has a different CMS mechanism from both Owen CMS and I-12CMS(3), and that the FR4-31 and G cytoplasms resemble each other closely. A restriction map of the FR4-31 mitochondrial DNA was generated and aligned with those published for the Owen and normal fertile cytoplasms. The FR4-31 mitochondrial genome was revealed to differ extensively in arrangement from the Owen and normal genomes, and the male-sterile Owen and FR4-31 genomes seem to be derived independently from an ancestral genome.
Collapse
Affiliation(s)
- Yuki Kawanishi
- Laboratory of Genetic Engineering, Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo 060-8589, Japan
| | | | | | | | | | | |
Collapse
|
3
|
Nishizawa S, Mikami T, Kubo T. Mitochondrial DNA phylogeny of cultivated and wild beets: relationships among cytoplasmic male-sterility-inducing and nonsterilizing cytoplasms. Genetics 2007; 177:1703-12. [PMID: 17720920 PMCID: PMC2147957 DOI: 10.1534/genetics.107.076380] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic male sterility (CMS), the maternally inherited failure to produce functional pollen, has been used in the breeding of sugar beet (Beta vulgaris ssp. vulgaris). At least three different sources of CMS can be distinguished from one another as well as from normal fertile cytoplasm by polymorphisms in their mitochondrial genomes. Here we analyzed 50 accessions of cultivated and wild beets to investigate the phylogenetic relationships among male-sterility-inducing and normal cytoplasms. The haplotypes were characterized by the nucleotide sequence of the mitochondrial cox2-cox1 spacer region and mitochondrial minisatellite loci. The results indicated that (1) a normal cytoplasm line, cv. TK81-O, was situated at the major core node of the haplotype network, and (2) the three sterilizing cytoplasms in question derived independently from the core haplotype. The evolutionary pathway was investigated by physical mapping study of the mitochondrial genome of a wild beet (B. vulgaris ssp. orientalis) accession BGRC56777 which shared the same mitochondrial haplotype with TK81-O, but was not identical to TK81-O for the RFLP profiles of mitochondrial DNA. Interestingly, three sets of inverted repeated sequences appeared to have been involved in a series of recombination events during the course of evolution between the BGRC56777 and the TK81-O mitochondrial genomes.
Collapse
Affiliation(s)
- Satsuki Nishizawa
- Laboratory of Genetic Engineering, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | |
Collapse
|
4
|
Ivanov MK, Dymshits GM. Cytoplasmic male sterility and restoration of pollen fertility in higher plants. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407040023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Huang JC, Wang WK, Peng CI, Chiang TY. Phylogeography and conservation genetics of Hygrophila pogonocalyx (Acanthaceae) based on atpB-rbcL noncoding spacer cpDNA. JOURNAL OF PLANT RESEARCH 2005; 118:1-11. [PMID: 15647887 DOI: 10.1007/s10265-004-0185-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 11/02/2004] [Indexed: 05/24/2023]
Abstract
Genetic variation in the atpB-rbcL intergenic spacer region of chloroplast DNA (cpDNA) was investigated in Hygrophila pogonocalyx Hayata (Acanthaceae), an endangered and endemic species in Taiwan. In this aquatic species, seed dispersal from capsules via elasticity is constrained by gravity and is thereby confined within populations, resulting in limited gene flow between populations. In this study, a total of 849 bp of the cpDNA atpB-rbcL spacer were sequenced from eight populations of H. pogonocalyx. Nucleotide diversity in the cpDNA is low (theta = 0.00343+/-0.00041). The distribution of genetic variation among populations agrees with an "isolation-by-distance" model. Two geographically correlated groups, the western and eastern regions, were identified in a neighbor-joining tree and a minimum-spanning network. Phylogeographical analyses based on the cpDNA network suggest that the present-day differentiation between western and eastern groups of H. pogonocalyx resulted from past fragmentation. The differentiation between eastern and western populations may be ascribed to isolation since the formation of the Central Mountain Range about 5 million years ago, which is consistent with the rate estimates based on a molecular clock of cpDNA.
Collapse
Affiliation(s)
- Jao-Ching Huang
- Division of Botany, Taiwan Endemic Species Research Institute, Chi-Chi, Taiwan, 551
| | | | | | | |
Collapse
|
6
|
Huang S, Chiang YC, Schaal BA, Chou CH, Chiang TY. Organelle DNA phylogeography of Cycas taitungensis, a relict species in Taiwan. Mol Ecol 2001; 10:2669-81. [PMID: 11883881 DOI: 10.1046/j.0962-1083.2001.01395.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The phylogegraphic pattern of Cycas taitungensis, an endemic species with two remaining populations in Taiwan, was investigated based on genetic variability and phylogeny of the atpB-rbcL noncoding spacer of chloroplast DNA (cpDNA) and the ribosomal DNA (rDNA) internal transcribed spacer (ITS) of mitochondrial DNA (mtDNA). High levels of genetic variation at both organelle loci, due to frequent intramolecular recombination, and low levels of genetic differentiation were detected in the relict gymnosperm. The apportionment of genetic variation within and between populations agreed with a migrant-pool model, which describes a migratory pattern with colonists recruited from a random sample of earlier existing populations. Phylogenies obtained from cpDNA and mtDNA were discordant according to neighbour-joining analyses. In total four chlorotypes (clades I-IV) and five mitotypes (clades A-E) were identified based on minimum spanning networks of each locus. Significant linkage disequilibrium in mitotype-chlorotype associations excluded the possibility of the recurrent homoplasious mutations as the major force causing phylogenetic inconsistency. The most abundant chlorotype I was associated with all mitotypes and the most abundant mitotype C with all chlorotypes; no combinations of rare mitotypes with rare chlorotypes were found. According to nested clade analyses, such nonrandom associations may be ascribed to relative ages among alleles associated with the geological history through which cycads evolved. Nested in networks as interior nodes coupled with wide geographical distribution, the most dominant cytotypes of CI and EI may represent ancestral haplotypes of C. taitungensis with a possible long existence prior to the Pleistocene glacial maximum. In contrast, rare chlorotypes and mitotypes with restricted and patchy distribution may have relatively recent origins. Newly evolved genetic elements of mtDNA, with a low frequency, were likely to be associated with the dominant chlorotype, and vice versa, resulting in the nonrandom mitotype-chlorotype associations. Paraphyly of CI and EI cytotypes, leading to the low level of genetic differentiation between cycad populations, indicated a short period for isolation, which allowed low possibilities of the attainment of coalescence at polymorphic ancestral alleles.
Collapse
Affiliation(s)
- S Huang
- Department of Biology, National Taiwan Normal University, Taipei
| | | | | | | | | |
Collapse
|
7
|
Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A, Mikami T. The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucleic Acids Res 2000; 28:2571-6. [PMID: 10871408 PMCID: PMC102699 DOI: 10.1093/nar/28.13.2571] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We determined the complete nucleotide sequence of the mitochondrial genome of an angiosperm, sugar beet (Beta vulgaris cv TK81-O). The 368 799 bp genome contains 29 protein, five rRNA and 25 tRNA genes, most of which are also shared by the mitochondrial genome of Arabidopsis thaliana, the only other completely sequenced angiosperm mitochondrial genome. However, four genes identified here (namely rps13, trnF-GAA, ccb577 and trnC2-GCA) are missing in Arabidopsis mitochondria. In addition, four genes found in Arabidopsis (ccb228, rpl2, rpl16 and trnY2-GUA) are entirely absent in sugar beet or present only in severely truncated form. Introns, duplicated sequences, additional reading frames and inserted foreign sequences (chloroplast, nuclear and plasmid DNA sequences) contribute significantly to the overall size of the sugar beet mitochondrial genome. Nevertheless, 55.6% of the genome has no obvious features of information. We identified a novel tRNA(Cys) gene (trnC2-GCA) which shows no sequence homology with any tRNA(Cys) genes reported so far in higher plants. Intriguingly, this tRNA gene is actually transcribed into a mature tRNA, whereas the native tRNA(Cys) gene (trnC1-GCA) is most likely a pseudogene.
Collapse
MESH Headings
- Arabidopsis/genetics
- Base Sequence
- Chenopodiaceae/cytology
- Chenopodiaceae/genetics
- Conserved Sequence/genetics
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- Genes, Plant/genetics
- Genes, rRNA/genetics
- Genome
- Introns/genetics
- Mitochondria/genetics
- Mutation/genetics
- Nucleic Acid Conformation
- Open Reading Frames/genetics
- Physical Chromosome Mapping
- Pseudogenes/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Transfer, Cys/chemistry
- RNA, Transfer, Cys/genetics
- Repetitive Sequences, Nucleic Acid/genetics
Collapse
Affiliation(s)
- T Kubo
- Laboratory of Genetic Engineering, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Desplanque B, Viard F, Bernard J, Forcioli D, Saumitou-Laprade P, Cuguen J, Van Dijk H. The linkage disequilibrium between chloroplast DNA and mitochondrial DNA haplotypes in Beta vulgaris ssp. maritima (L.): the usefulness of both genomes for population genetic studies. Mol Ecol 2000; 9:141-54. [PMID: 10672158 DOI: 10.1046/j.1365-294x.2000.00843.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The structure and evolution of the plant mitochondrial genome may allow recurrent appearance of the same mitochondrial variants in different populations. Whether the same mitochondrial variant is distributed by migration or appears recurrently by mutation (creating homoplasy) in different populations is an important question with regard to the use of these markers for population genetic analyses. The genetic association observed between chloroplasts and mitochondria (i.e. two maternally inherited cytoplasmic genomes) may indicate whether or not homoplasy occurs in the mitochondrial genome. Four-hundred and fourteen individuals sampled in wild populations of beets from France and Spain were screened for their mitochondrial and chloroplast polymorphisms. Mitochondrial DNA (mtDNA) polymorphism was investigated with restriction fragment length polymorphism (RFLP) and chloroplast DNA (cpDNA) polymorphism was investigated with polymerase chain reaction PCR-RFLP, using universal primers for the amplification. Twenty and 13 variants for mtDNA and cpDNA were observed, respectively. Most exhibited a widespread geographical distribution. As a very strong linkage disequilibrium was estimated between mtDNA and cpDNA haplotypes, a high rate of recurrent mutation was excluded for the mitochondrial genome of beets. Identical mitochondrial variants found in populations of different regions probably occurred as a result of migration. We concluded from this study that mtDNA is a tool as valuable as cpDNA when a maternal marker is needed for population genetics analyses in beet on a large regional scale.
Collapse
Affiliation(s)
- B Desplanque
- Laboratoire de Génétique et Evolution des Populations Végétales, UPRESA CNRS 8016 FR CNRS 1818, Bât. SN2, Université de Lille 1, F-59655 Villeneuve d'Ascq cedex, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Senda M, Onodera Y, Mikami T. Cytoplasmic diversity in leaf beet cultivars as revealed by mitochondrial DNA analysis. Hereditas 1998; 128:127-32. [PMID: 9652232 DOI: 10.1111/j.1601-5223.1998.00127.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mitochondrial (mt) DNA restriction fragment length polymorphisms are convenient markers for identifying cytoplasmic variation among plant cultivars. In an attempt to detect new cytoplasmic genotypes useful for sugarbeet breeding, we have compared the hybridization patterns of mtDNA from three groups of cultivated beets, viz. leaf beet, garden beet, and fodder beet. Utilized as probes were the two sugarbeet mtDNA clones that were capable of distinguishing normal fertile and different sources of male-sterile cytoplasms from one another. The analysis allowed the identification of four chondriome types among 14 leaf beet cultivars examined. Two out of the four chondriome types were found to be different from the previously described fertile or male-sterile chondriome type. Our results thus indicate that leaf beet cultivars and landraces make up the primary cytoplasmic gene pool of the sugarbeet.
Collapse
Affiliation(s)
- M Senda
- Gene Research Center, Hirosaki University, Japan
| | | | | |
Collapse
|
10
|
Yamasaki S, Konno N, Kishitani S. An alteration in transcription patterns of mitochondrial genes in alloplasmic lines of Brassica rapa. Genes Genet Syst 1998. [DOI: 10.1266/ggs.73.167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Seiji Yamasaki
- Laboratory of Plant Breeding and Genetics, Department of Applied Plant Science, Graduate School of Agricultural Science, Tohoku University
| | - Noboru Konno
- Laboratory of Plant Breeding and Genetics, Department of Applied Plant Science, Graduate School of Agricultural Science, Tohoku University
| | - Sachie Kishitani
- Laboratory of Plant Breeding and Genetics, Department of Applied Plant Science, Graduate School of Agricultural Science, Tohoku University
| |
Collapse
|