1
|
Zheng L, Yan Y, Li Q, Du J, Lu X, Xu L, Xie Q, Chen Y, Zhang A, Zhao B. Microbial Diversity, Co-Occurrence Patterns, and Functional Genes of Bacteria in Aged Coking Contaminated Soils by Polycyclic Aromatic Hydrocarbons: Implications to Soil Health and Bioremediation. Microorganisms 2025; 13:869. [PMID: 40284704 PMCID: PMC12029627 DOI: 10.3390/microorganisms13040869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/23/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
PAH contamination from coking plants have received widespread attention. However, the microbial diversity, co-occurrence patterns, and functional genes of bacteria in aged coking contaminated soils by PAHs are still not clear. In our study, we used a macro-genetic approach to detect PAH-contaminated soils from both a coking production area (CA group) and an office zone (OA group) in an abandoned coking plant, and analyzed the characteristic bacteria and function genes, microbial network interaction patterns, and soil P-cycling in long-term PAH-contaminated soils. The results revealed that Proteobacteria were significantly positively correlated with PAHs and Betaprobacteria bacterium rifcsplowo2 12 full 6514, candidatus Muproteobacteria bacterium RBG16609, and Sulfurifustis variabilis, which belong to Proteobacteria, were characteristic bacteria in PAH-contaminated soils. The phn, which is the PAH degradation gene, was abundantly expressed in the PAH-contaminated soil. The phn gene cluster genes (phnE, phnC, and phnD) were significantly expressed in the CA group of PAH-contaminated soils (p < 0.05). By integrating microbial diversity, network structure, and functional genes, it offers a comprehensive understanding of soil ecosystem response indicators to prolonged PAH stress. The results of this study will provide new ideas for constructing an assessment index system for soil health and screening biomarkers for PAH-contaminated soils.
Collapse
Affiliation(s)
- Liping Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (L.Z.); (L.X.); (Q.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (Y.Y.); (Q.L.); (J.D.); (X.L.)
| | - Yifan Yan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (Y.Y.); (Q.L.); (J.D.); (X.L.)
| | - Qun Li
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (Y.Y.); (Q.L.); (J.D.); (X.L.)
| | - Junyang Du
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (Y.Y.); (Q.L.); (J.D.); (X.L.)
| | - Xiaosong Lu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (Y.Y.); (Q.L.); (J.D.); (X.L.)
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (L.Z.); (L.X.); (Q.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China;
| | - Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (L.Z.); (L.X.); (Q.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China;
| | - Yangsheng Chen
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China;
| | - Aiguo Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (Y.Y.); (Q.L.); (J.D.); (X.L.)
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China;
| |
Collapse
|
2
|
Salvà-Serra F, Pérez-Pantoja D, Donoso RA, Jaén-Luchoro D, Fernández-Juárez V, Engström-Jakobsson H, Moore ERB, Lalucat J, Bennasar-Figueras A. Comparative genomics of Stutzerimonas balearica ( Pseudomonas balearica): diversity, habitats, and biodegradation of aromatic compounds. Front Microbiol 2023; 14:1159176. [PMID: 37275147 PMCID: PMC10234333 DOI: 10.3389/fmicb.2023.1159176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
Stutzerimonas balearica (Pseudomonas balearica) has been found principally in oil-polluted environments. The capability of S. balearica to thrive from the degradation of pollutant compounds makes it a species of interest for potential bioremediation applications. However, little has been reported about the diversity of S. balearica. In this study, genome sequences of S. balearica strains from different origins were analyzed, revealing that it is a diverse species with an open pan-genome that will continue revealing new genes and functionalities as the genomes of more strains are sequenced. The nucleotide signatures and intra- and inter-species variation of the 16S rRNA genes of S. balearica were reevaluated. A strategy of screening 16S rRNA gene sequences in public databases enabled the detection of 158 additional strains, of which only 23% were described as S. balearica. The species was detected from a wide range of environments, although mostly from aquatic and polluted environments, predominantly related to petroleum oil. Genomic and phenotypic analyses confirmed that S. balearica possesses varied inherent capabilities for aromatic compounds degradation. This study increases the knowledge of the biology and diversity of S. balearica and will serve as a basis for future work with the species.
Collapse
Affiliation(s)
- Francisco Salvà-Serra
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Raúl A. Donoso
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Víctor Fernández-Juárez
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Hedvig Engström-Jakobsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jorge Lalucat
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Antoni Bennasar-Figueras
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| |
Collapse
|
3
|
OUP accepted manuscript. FEMS Microbiol Ecol 2022; 98:6515943. [DOI: 10.1093/femsec/fiac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
|
4
|
Salicylate or Phthalate: The Main Intermediates in the Bacterial Degradation of Naphthalene. Processes (Basel) 2021. [DOI: 10.3390/pr9111862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely presented in the environment and pose a serious environmental threat due to their toxicity. Among PAHs, naphthalene is the simplest compound. Nevertheless, due to its high toxicity and presence in the waste of chemical and oil processing industries, naphthalene is one of the most critical pollutants. Similar to other PAHs, naphthalene is released into the environment via the incomplete combustion of organic compounds, pyrolysis, oil spills, oil processing, household waste disposal, and use of fumigants and deodorants. One of the main ways to detoxify such compounds in the natural environment is through their microbial degradation. For the first time, the pathway of naphthalene degradation was investigated in pseudomonades. The salicylate was found to be a key intermediate. For some time, this pathway was considered the main, if not the only one, in the bacterial destruction of naphthalene. However, later, data emerged which indicated that gram-positive bacteria in the overwhelming majority of cases are not capable of the formation/destruction of salicylate. The obtained data made it possible to reveal that protocatechoate, phthalate, and cinnamic acids are predominant intermediates in the destruction of naphthalene by rhodococci. Pathways of naphthalene degradation, the key enzymes, and genetic regulation are the main subjects of the present review, representing an attempt to summarize the current knowledge about the mechanism of the microbial degradation of PAHs. Modern molecular methods are also discussed in the context of the development of “omics” approaches, namely genomic, metabolomic, and proteomic, used as tools for studying the mechanisms of microbial biodegradation. Lastly, a comprehensive understanding of the mechanisms of the formation of specific ecosystems is also provided.
Collapse
|
5
|
Miyazawa D, Thanh LTH, Tani A, Shintani M, Loc NH, Hatta T, Kimbara K. Isolation and Characterization of Genes Responsible for Naphthalene Degradation from Thermophilic Naphthalene Degrader, Geobacillus sp. JF8. Microorganisms 2019; 8:microorganisms8010044. [PMID: 31878343 PMCID: PMC7023095 DOI: 10.3390/microorganisms8010044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 11/26/2022] Open
Abstract
Geobacillus sp. JF8 is a thermophilic biphenyl and naphthalene degrader. To identify the naphthalene degradation genes, cis-naphthalene dihydrodiol dehydrogenase was purified from naphthalene-grown cells, and its N-terminal amino acid sequence was determined. Using a DNA probe encoding the N-terminal region of the dehydrogenase, a 10-kb DNA fragment was isolated. Upstream of nahB, a gene for dehydrogenase, there were two open reading frames which were designated as nahAc and nahAd, respectively. The products of nahAc and nahAd were predicted to be alpha and beta subunit of ring-hydroxylating dioxygenases, respectively. Phylogenetic analysis of amino acid sequences of NahB indicated that it did not belong to the cis-dihydrodiol dehydrogenase group that includes those of classical naphthalene degradation pathways. Downstream of nahB, four open reading frames were found, and their products were predicted as meta-cleavage product hydrolase, monooxygenase, dehydrogenase, and gentisate 1,2-dioxygenase, respectively. A reverse transcriptase-PCR analysis showed that transcription of nahAcAd was induced by naphthalene. These findings indicate that we successfully identified genes involved in the upper pathway of naphthalene degradation from a thermophilic bacterium.
Collapse
Affiliation(s)
- Daisuke Miyazawa
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan; (D.M.); (A.T.)
| | - Le Thi Ha Thanh
- Department of Environment and Energy System, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan;
- Institute of Bioactive Compounds, University of Sciences, Hue University, Hue, Thua Thien Hue 530000, Vietnam;
| | - Akio Tani
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan; (D.M.); (A.T.)
| | - Masaki Shintani
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Shizuoka 422-8529, Japan
- Correspondence: (M.S.); (K.K.); Tel.: +81-53-478-1181 (M.S.); +81-53-478-1170 (K.K.)
| | - Nguyen Hoang Loc
- Institute of Bioactive Compounds, University of Sciences, Hue University, Hue, Thua Thien Hue 530000, Vietnam;
| | - Takashi Hatta
- Department of Biomedical Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 703-8232, Japan;
| | - Kazuhide Kimbara
- Department of Environment and Energy System, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan;
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
- Correspondence: (M.S.); (K.K.); Tel.: +81-53-478-1181 (M.S.); +81-53-478-1170 (K.K.)
| |
Collapse
|
6
|
Guimarães SL, Coitinho JB, Costa DMA, Araújo SS, Whitman CP, Nagem RAP. Crystal Structures of Apo and Liganded 4-Oxalocrotonate Decarboxylase Uncover a Structural Basis for the Metal-Assisted Decarboxylation of a Vinylogous β-Keto Acid. Biochemistry 2016; 55:2632-45. [PMID: 27082660 DOI: 10.1021/acs.biochem.6b00050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzymes in the catechol meta-fission pathway have been studied for more than 50 years in several species of bacteria capable of degrading a number of aromatic compounds. In a related pathway, naphthalene, a toxic polycyclic aromatic hydrocarbon, is fully degraded to intermediates of the tricarboxylic acid cycle by the soil bacteria Pseudomonas putida G7. In this organism, the 83 kb NAH7 plasmid carries several genes involved in this biotransformation process. One enzyme in this route, NahK, a 4-oxalocrotonate decarboxylase (4-OD), converts 2-oxo-3-hexenedioate to 2-hydroxy-2,4-pentadienoate using Mg(2+) as a cofactor. Efforts to study how 4-OD catalyzes this decarboxylation have been hampered because 4-OD is present in a complex with vinylpyruvate hydratase (VPH), which is the next enzyme in the same pathway. For the first time, a monomeric, stable, and active 4-OD has been expressed and purified in the absence of VPH. Crystal structures for NahK in the apo form and bonded with five substrate analogues were obtained using two distinct crystallization conditions. Analysis of the crystal structures implicates a lid domain in substrate binding and suggests roles for specific residues in a proposed reaction mechanism. In addition, we assign a possible function for the NahK N-terminal domain, which differs from most of the other members of the fumarylacetoacetate hydrolase superfamily. Although the structural basis for metal-dependent β-keto acid decarboxylases has been reported, this is the first structural report for that of a vinylogous β-keto acid decarboxylase and the first crystal structure of a 4-OD.
Collapse
Affiliation(s)
- Samuel L Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, 31270-901, Brazil
| | - Juliana B Coitinho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, 31270-901, Brazil
| | - Débora M A Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, 31270-901, Brazil
| | - Simara S Araújo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, 31270-901, Brazil
| | - Christian P Whitman
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin , Texas 78712-1071, United States
| | - Ronaldo A P Nagem
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, 31270-901, Brazil
| |
Collapse
|
7
|
Heterologous expression and characterization of two 1-hydroxy-2-naphthoic acid dioxygenases from Arthrobacter phenanthrenivorans. Appl Environ Microbiol 2011; 78:621-7. [PMID: 22101055 DOI: 10.1128/aem.07137-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A protein fraction exhibiting 1-hydroxy-2-naphthoic acid (1-H2NA) dioxygenase activity was purified via ion exchange, hydrophobic interactions, and gel filtration chromatography from Arthrobacter phenanthrenivorans sp. nov. strain Sphe3 isolated from a Greek creosote-oil-polluted site. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and tandem MS (MS-MS) analysis revealed that the amino acid sequences of oligopeptides of the major 45-kDa protein species, as analyzed by SDS-PAGE and silver staining, comprising 29% of the whole sequence, exhibited strong homology with 1-H2NA dioxygenase of Nocardioides sp. strain KP7. A BLAST search of the recently sequenced Sphe3 genome revealed two putative open reading frames, named diox1 and diox2, showing 90% nucleotide identity to each other and 85% identity at the amino acid level with the Nocardia sp. homologue. diox1 was found on an indigenous Sphe3 plasmid, whereas diox2 was located on the chromosome. Both genes were induced by the presence of phenanthrene used as a sole carbon and energy source, and as expected, both were subject to carbon catabolite repression. The relative RNA transcription level of the chromosomal (diox2) gene was significantly higher than that of its plasmid (diox1) homologue. Both diox1 and diox2 putative genes were PCR amplified, cloned, and overexpressed in Escherichia coli. Recombinant E. coli cells expressed 1-H2NA dioxygenase activity. Recombinant enzymes exhibited Michaelis-Menten kinetics with an apparent K(m) of 35 μM for Diox1 and 29 μM for Diox2, whereas they showed similar kinetic turnover characteristics with K(cat)/K(m) values of 11 × 10(6) M(-1) s(-1) and 12 × 10(6) M(-1) s(-1), respectively. Occurrence of two diox1 and diox2 homologues in the Sphe3 genome implies that a replicative transposition event has contributed to the evolution of 1-H2NA dioxygenase in A. phenanthrenivorans.
Collapse
|
8
|
Khomenkov VG, Shevelev AB, Zhukov VG, Zagustina NA, Bezborodov AM, Popov VO. Organization of metabolic pathways and molecular-genetic mechanisms of xenobiotic degradation in microorganisms: A review. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683808020014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Mercadal JPR, Isaac P, Siñeriz F, Ferrero MA. Indigo production by Pseudomonas sp. J26, a marine naphthalene-degrading strain. J Basic Microbiol 2010; 50:290-3. [DOI: 10.1002/jobm.200900276] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Cloning and nucleotide sequences of carbazole degradation genes from marine bacterium Neptuniibacter sp. strain CAR-SF. Curr Microbiol 2009; 61:50-6. [PMID: 20039169 DOI: 10.1007/s00284-009-9575-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
The marine bacterium Neptuniibacter sp. strain CAR-SF utilizes carbazole as its sole carbon and nitrogen sources. Two sets of clustered genes related to carbazole degradation, the upper and lower pathways, were obtained. The marine bacterium genes responsible for the upper carbazole degradation pathway, carAa, carBa, carBb, and carC, encode the terminal oxygenase component of carbazole 1,9a-dioxygenase, the small and large subunits of the meta-cleavage enzyme, and the meta-cleavage compound hydrolase, respectively. The genes involved in the lower degradation pathway encode the anthranilate dioxygenase large and small subunit AntA and AntB, anthranilate dioxygenase reductase AntC, 4-oxalocrotonate tautomerase, and catechol 2,3-dioxygenase. Reverse transcription-polymerase chain reaction confirmed the involvement of the isolated genes in carbazole degradation. Escherichia coli cells transformed with the CarAa of strain CAR-SF required ferredoxin and ferredoxin reductase for biotransformation of carbazole. Although carAc, which encodes the ferredoxin component of carbazole 1,9a-dioxygenase, was not found immediately downstream of carAaBaBbC, the carAc-like gene may be located elsewhere based on Southern hybridization. This is the first report of genes involved in carbazole degradation isolated from a marine bacterium.
Collapse
|
11
|
Piskonen R, Nyyssönen M, Itävaara M. Evaluating the biodegradation of aromatic hydrocarbons by monitoring of several functional genes. Biodegradation 2008; 19:883-95. [PMID: 18425625 DOI: 10.1007/s10532-008-9190-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
Various microbial activities determine the effectiveness of bioremediation processes. In this work, we evaluated the feasibility of gene array hybridization for monitoring the efficiency of biodegradation processes. Biodegradation of 14C-labelled naphthalene and toluene by the aromatic hydrocarbon-degrading Pseudomonas putida F1, P. putida mt-2 and P. putida G7 was followed in mixed liquid culture microcosm by a preliminary, nylon membrane-based gene array. In the beginning of the study, toluene was degraded rapidly and increased amount of toluene degradation genes was detected by the preliminary gene array developed for the study. After toluene was degraded, naphthalene mineralization started and the amount of naphthalene degradation genes increased as biodegradation proceeded. The amount of toluene degradation genes decreased towards the end of the study. The hybridization signal intensities determined by preliminary gene array were in good agreement with mineralization of naphthalene and toluene and with the amount of naphthalene dioxygenase and toluene dioxygenase genes quantified by dot blot hybridization. The clear correlation between the results obtained by the preliminary array and the biodegradation process suggests that gene array methods can be considered as a promising tool for monitoring the efficiency of biodegradation processes.
Collapse
Affiliation(s)
- Reetta Piskonen
- VTT Technical Research Centre of Finland, Tietotie 2, P. O. Box 1000, 02044 VTT, Espoo, Finland.
| | | | | |
Collapse
|
12
|
Kim SJ, Kweon O, Jones RC, Edmondson RD, Cerniglia CE. Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Biodegradation 2008; 19:859-81. [PMID: 18421421 DOI: 10.1007/s10532-008-9189-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 03/28/2008] [Indexed: 11/29/2022]
Abstract
Mycobacterium vanbaalenii PYR-1 is well known for its ability to degrade a wide range of high-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs). The genome of this bacterium has recently been sequenced, allowing us to gain insights into the molecular basis for the degradation of PAHs. The 6.5 Mb genome of PYR-1 contains 194 chromosomally encoded genes likely associated with degradation of aromatic compounds. The most distinctive feature of the genome is the presence of a 150 kb major catabolic region at positions 494 approximately 643 kb (region A), with an additional 31 kb region at positions 4,711 approximately 4,741 kb (region B), which is predicted to encode most enzymes for the degradation of PAHs. Region A has an atypical mosaic structure made of several gene clusters in which the genes for PAH degradation are complexly arranged and scattered around the clusters. Significant differences in the gene structure and organization as compared to other well-known aromatic hydrocarbon degraders including Pseudomonas and Burkholderia were revealed. Many identified genes were enriched with multiple paralogs showing a remarkable range of diversity, which could contribute to the wide variety of PAHs degraded by M. vanbaalenii PYR-1. The PYR-1 genome also revealed the presence of 28 genes involved in the TCA cycle. Based on the results, we proposed a pathway in which HMW PAHs are degraded into the beta-ketoadipate pathway through protocatechuate and then mineralized to CO2 via TCA cycle. We also identified 67 and 23 genes involved in PAH degradation and TCA cycle pathways, respectively, to be expressed as proteins.
Collapse
Affiliation(s)
- Seong-Jae Kim
- Division of Microbiology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | | | | | | | | |
Collapse
|
13
|
Sota M, Yano H, Ono A, Miyazaki R, Ishii H, Genka H, Top EM, Tsuda M. Genomic and functional analysis of the IncP-9 naphthalene-catabolic plasmid NAH7 and its transposon Tn4655 suggests catabolic gene spread by a tyrosine recombinase. J Bacteriol 2006; 188:4057-67. [PMID: 16707697 PMCID: PMC1482893 DOI: 10.1128/jb.00185-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The naphthalene-catabolic (nah) genes on the incompatibility group P-9 (IncP-9) self-transmissible plasmid NAH7 from Pseudomonas putida G7 are some of the most extensively characterized genetic determinants for bacterial aerobic catabolism of aromatic hydrocarbons. In contrast to the detailed studies of its catabolic cascade and enzymatic functions, the biological characteristics of plasmid NAH7 have remained unclear. Our sequence determination in this study together with the previously deposited sequences revealed the entire structure of NAH7 (82,232 bp). Comparison of NAH7 with two other completely sequenced IncP-9 catabolic plasmids, pDTG1 and pWW0, revealed that the three plasmids share very high nucleotide similarities in a 39-kb region encoding the basic plasmid functions (the IncP-9 backbone). The backbone of NAH7 is phylogenetically more related to that of pDTG1 than that of pWW0. These three plasmids carry their catabolic gene clusters at different positions on the IncP-9 backbone. All of the NAH7-specified nah genes are located on a class II transposon, Tn4655. Our analysis of the Tn4655-encoded site-specific recombination system revealed that (i) a novel tyrosine recombinase, TnpI, catalyzed both the intra- and intermolecular recombination between two copies of the attI site, (ii) the functional attI site was located within a 119-bp segment, and (iii) the site-specific strand exchange occurred within a 30-bp segment in the 41-bp CORE site. Our results and the sequence data of other naphthalene-catabolic plasmids, pDTG1 and pND6-1, suggest a potential role of the TnpI-attI recombination system in the establishment of these catabolic plasmids.
Collapse
Affiliation(s)
- Masahiro Sota
- Department of Environmental Simulation, Institute for Environmental Sciences, Rokkasho, Aomori 039-3212, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Molecular cloning of genenahH encoding extradiol-type dioxygenase from the NAH plasmid ofPseudomonas stutzeri NA1. ANN MICROBIOL 2006. [DOI: 10.1007/bf03174987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
15
|
Rhee SK, Liu X, Wu L, Chong SC, Wan X, Zhou J. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl Environ Microbiol 2004; 70:4303-17. [PMID: 15240314 PMCID: PMC444823 DOI: 10.1128/aem.70.7.4303-4317.2004] [Citation(s) in RCA: 259] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To effectively monitor biodegrading populations, a comprehensive 50-mer-based oligonucleotide microarray was developed based on most of the 2,402 known genes and pathways involved in biodegradation and metal resistance. This array contained 1,662 unique and group-specific probes with <85% similarity to their nontarget sequences. Based on artificial probes, our results showed that under hybridization conditions of 50 degrees C and 50% formamide, the 50-mer microarray hybridization can differentiate sequences having <88% similarity. Specificity tests with representative pure cultures indicated that the designed probes on the arrays appeared to be specific to their corresponding target genes. The detection limit was approximately 5 to 10 ng of genomic DNA in the absence of background DNA and 50 to 100 ng of pure-culture genomic DNA in the presence of background DNA or 1.3 x 10(7) cells in the presence of background RNA. Strong linear relationships between the signal intensity and the target DNA and RNA were observed (r(2) = 0.95 to 0.99). Application of this type of microarray to analyze naphthalene-amended enrichment and soil microcosms demonstrated that microflora changed differently depending on the incubation conditions. While the naphthalene-degrading genes from Rhodococcus-type microorganisms were dominant in naphthalene-degrading enrichments, the genes involved in naphthalene (and polyaromatic hydrocarbon and nitrotoluene) degradation from gram-negative microorganisms, such as Ralstonia, Comamonas, and Burkholderia, were most abundant in the soil microcosms. In contrast to general conceptions, naphthalene-degrading genes from Pseudomonas were not detected, although Pseudomonas is widely known as a model microorganism for studying naphthalene degradation. The real-time PCR analysis with four representative genes showed that the microarray-based quantification was very consistent with real-time PCR (r(2) = 0.74). In addition, application of the arrays to both polyaromatic-hydrocarbon- and benzene-toluene-ethylbenzene-xylene-contaminated and uncontaminated soils indicated that the developed microarrays appeared to be useful for profiling differences in microbial community structures. Our results indicate that this technology has potential as a specific, sensitive, and quantitative tool in revealing a comprehensive picture of the compositions of biodegradation genes and the microbial community in contaminated environments, although more work is needed to improve detection sensitivity.
Collapse
Affiliation(s)
- Sung-Keun Rhee
- Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA
| | | | | | | | | | | |
Collapse
|
16
|
Tsirogianni I, Aivaliotis M, Karas M, Tsiotis G. Mass spectrometric mapping of the enzymes involved in the phenol degradation of an indigenous soil pseudomonad. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1700:117-23. [PMID: 15210131 DOI: 10.1016/j.bbapap.2004.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 03/26/2004] [Accepted: 04/14/2004] [Indexed: 11/25/2022]
Abstract
The enzymes involved in the degradation of phenol by a new soil bacterium referred as Pseudomonas sp. strain phDV1 were characterized. The key enzyme catalyzing the second step in the phenol degradation meta-cleavage pathway, catechol 2,3-dioxygenase (C23O), was isolated using sucrose density centrifugation and anion exchange chromatography. The purified C23O was detected and identified by absorption spectroscopy and peptide mapping. Further, the Pseudomonas sp. strain phDV1 proteome was monitored under different growth substrate conditions, using glucose or phenol as sole carbon and energy source. Sucrose density centrifugation was used to collect and concentrate the cell fraction exhibiting C23O activity and to reduce the complexity of the total protein mixture. 1-DE Tricine PAGE electrophoresis separation in combination with MALDI-TOF MS was attempted for the identification of the proteins involved in the metabolic pathway. We found a different expression of 19 proteins depending on the growth substrate (phenol or glucose) and 10 were identified as enzymes involved in the phenol degradation.
Collapse
Affiliation(s)
- Irene Tsirogianni
- Division of Biochemistry, Department of Chemistry, University of Crete, Knossos Avenue, P.O. Box 1470, GR-714 09 Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
17
|
Okuta A, Ohnishi K, Harayama S. Construction of chimeric catechol 2,3-dioxygenase exhibiting improved activity against the suicide inhibitor 4-methylcatechol. Appl Environ Microbiol 2004; 70:1804-10. [PMID: 15006807 PMCID: PMC368311 DOI: 10.1128/aem.70.3.1804-1810.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Catechol 2,3-dioxygenase (C23O; EC 1.3.11.2), exemplified by XylE and NahH, catalyzes the ring cleavage of catechol and some substituted catechols. C23O is inactivated at an appreciable rate during the ring cleavage of 4-methylcatechol due to the oxidation of the Fe(II) cofactor to Fe(III). In this study, a C23O exhibiting improved activity against 4-methylcatechol was isolated. To isolate this C23O, diverse C23O gene sequences were PCR amplified from DNA which had been isolated from mixed cultures of phenol-degrading bacteria and subcloned in the middle of a known C23O gene sequence (xylE or nahH) to construct a library of chimeric C23O genes. These chimeric C23O genes were then introduced into Pseudomonas putida possessing some of the toluene catabolic genes (xylXYZLGFJQKJI). When a C23O gene (e.g., xylE) is introduced into this strain, the transformants cannot generally grow on p-toluate because 4-methylcatechol, a metabolite of p-toluate, is a substrate as well as a suicide inhibitor of C23O. However, a transformant of this strain capable of growing on p-toluate was isolated, and a chimeric C23O (named NY8) in this transformant was characterized. The rate of enzyme inactivation by 4-methylcatechol was lower in NY8 than in XylE. Furthermore, the rate of the reactivation of inactive C23O in a solution containing Fe(II) and ascorbic acid was higher in NY8 than in XylE. These properties of NY8 might allow the efficient metabolism of 4-methylcatechol and thus allow host cells to grow on p-toluate.
Collapse
Affiliation(s)
- Akiko Okuta
- Marine Biotechnology Institute, Heita, Kamaishi, Iwate 026-0001, Japan
| | | | | |
Collapse
|
18
|
Foght J. Chapter 5 Whole-cell bio-processing of aromatic compounds in crude oil and fuels. STUDIES IN SURFACE SCIENCE AND CATALYSIS 2004. [DOI: 10.1016/s0167-2991(04)80146-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
19
|
Watanabe T, Fujihara H, Furukawa K. Characterization of the second LysR-type regulator in the biphenyl-catabolic gene cluster of Pseudomonas pseudoalcaligenes KF707. J Bacteriol 2003; 185:3575-82. [PMID: 12775695 PMCID: PMC156218 DOI: 10.1128/jb.185.12.3575-3582.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas pseudoalcaligenes KF707 possesses a biphenyl-catabolic (bph) gene cluster consisting of bphR1A1A2-(orf3)-bphA3A4BCX0X1X2X3D. The bphR1 (formerly orf0) gene product, which belongs to the GntR family, is a positive regulator for itself and bphX0X1X2X3D. Further analysis in this study revealed that a second regulator belonging to the LysR family (designated bphR2) is involved in the regulation of the bph genes in KF707. The bphR2 gene was not located near the bph gene cluster, and its product (BphR2) exhibited a high level of similarity to NahR (the naphthalene- and salicylate-catabolic regulator belonging to the LysR family) in plasmid NAH7 of Pseudomonas putida. A strain containing a disrupted bphR2 gene failed to grow on biphenyl as a sole source of carbon, and the BphD (2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase) activity was significantly reduced compared to that of wild-type strain KF707. Furthermore, the same strain exhibited extremely low transcription of bphR1, bphA1, bphC, bphX0, and bphD. However, when the bphR2 gene was provided in trans to the bphR2-disrupted strain, the transcription level of these genes was restored. These results indicate that bphR2 regulates the bph genes positively as a second regulator together with BphR1.
Collapse
Affiliation(s)
- Takahito Watanabe
- Laboratory of Applied Microbiology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
20
|
Okuta A, Ohnishi K, Yagame S, Harayama S. Intersubunit interaction and catalytic activity of catechol 2,3-dioxygenases. Biochem J 2003; 371:557-64. [PMID: 12519074 PMCID: PMC1223286 DOI: 10.1042/bj20021657] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2002] [Revised: 01/02/2003] [Accepted: 01/09/2003] [Indexed: 11/17/2022]
Abstract
Catechol 2,3-dioxygenases (C23Os; EC 1.3.11.2) form a large protein family that is divided into several subgroups. Amino acid sequences of C23Os belonging to subgroup I.2.A and those belonging to I.2.B are found to be approx. 50% identical. When the central parts of the C23O sequences belonging to I.2.B were fused with the N-terminal and C-terminal sequences of I.2.A C23O, the hybrid enzymes were not active. To understand why these hybrid C23Os were inactive, hybrids between XylE(P) (C23O found in a Pseudomonas strain; subgroup I.2.A) and XylE(S) (C23O found in a Sphingomonas strain; subgroup I.2.B) were constructed. HB3-C23O consisted mostly of the XylE(S) sequence, except that its C-terminal end was derived from XylE(P). While HB3-C23O was not active, HB4-C23O, carrying shorter C-terminal XylE(P) sequences than HB3-C23O, was active. This observation indicated that certain amino acid residues at the C-terminus were crucial for C23O activity in the hybrid forms of enzymes between XylE(P) and XylE(S). According to the crystal structure of XylE(P), the C-terminal region is involved in the formation of a quaternary structure. Amino acid differences between HB3-C23O and HB4-C23O included the specific beta-strand for oligomerization. Thus the quaternary structures of active C23Os, XylE(S), XylE(P) and HB4-C23O, as well as that of inactive HB3-C23O, were examined. Active enzymes XylE(S), XylE(P) and HB4-C23O were homotetrameric, while HB3-C23O existed only as a monomer. We concluded that hybrids of subgroups I.2.A and I.2.B were often inactive because of a defect in their oligomerization.
Collapse
Affiliation(s)
- Akiko Okuta
- Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate 026-0001, Japan
| | | | | | | |
Collapse
|
21
|
Ambujom S. Studies on composition and stability of a large membered bacterial consortium degrading phenol. Microbiol Res 2002; 156:293-301. [PMID: 11770846 DOI: 10.1078/0944-5013-00091] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A ten member microbial consortium (AS) consisting of eight phenol-degrading and two non-phenol-degrading strains of bacteria was developed and maintained in a fed-batch reactor by feeding 500 mg l(-1) phenol for four years at 28 +/- 3 degrees C. The consortium could degrade 99% of 500 mg l(-1) phenol after 24 hours incubation with a biomass increase of 2.6 x 10(7) to 4 x 10(12) CFU ml(-1). Characterization of the members revealed that it consisted of 4 principal genera, Bacillus, Pseudomonas, Rhodococcus, Streptomyces and an unidentified bacterium. Phenol degradation by the mixed culture and Bacillus subtilis, an isolate from the consortium was compared using a range of phenol concentrations (400 to 700 mg l(-1)) and by mixing with either 160 mg l(-1) glucose or 50 mg l(-1) of 2,4-dichlorophenol in the medium. Simultaneous utilization of unrelated mixed substrates (glucose/2,4-dichlorophenol) by the consortium and Bacillus subtilis, indicated the diauxic growth pattern of the organisms. A unique characteristic of the members of the consortia was their ability to oxidize chloro aromatic compounds via meta pathway and methyl aromatic compounds via ortho cleavage pathway. The ability of a large membered microbial consortia to maintain its stability with respect to its composition and effectiveness in phenol degradation indicated its suitability for bioremediation applications.
Collapse
Affiliation(s)
- S Ambujom
- Regional Research Laboratory, Council of Scientific and Industrial Research, Trivandrum 695019, India.
| |
Collapse
|
22
|
Zhou NY, Al-Dulayymi J, Baird MS, Williams PA. Salicylate 5-hydroxylase from Ralstonia sp. strain U2: a monooxygenase with close relationships to and shared electron transport proteins with naphthalene dioxygenase. J Bacteriol 2002; 184:1547-55. [PMID: 11872705 PMCID: PMC134886 DOI: 10.1128/jb.184.6.1547-1555.2002] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes from the oxygenase cluster nagAaGHAbAcAd of naphthalene-degrading Ralstonia sp. strain U2 were cloned and overexpressed. Salicylate 5-hydroxylase (S5H) activity, converting salicylate to gentisate, was present in vitro only in the single extract of cells with overexpressed nagAaGHAb or in a mixture of three cell extracts containing, respectively, NagGH (the oxygenase components), NagAa (ferredoxin reductase), and NagAb (ferredoxin). Each of the three extracts required for S5H activity was rate limiting in the presence of excess of the others but, when in excess, did not affect the rate of catalysis. S5H catalyzed the 5-hydroxylation of the aromatic rings of 3- and 4-substituted salicylates. However, the methyl group of 5-methylsalicylate was hydroxylated to produce the 5-hydroxymethyl derivative and the 6-position on the ring of 5-chlorosalicylate was hydroxylated, producing 5-chloro-2,6-dihydroxybenzoate. In an assay for the nag naphthalene dioxygenase (NDO) based on the indole-linked oxidation of NADH, three extracts were essential for activity (NagAcAd, NagAa, and NagAb). NDO and S5H were assayed in the presence of all possible combinations of the nag proteins and the corresponding nah NDO proteins from the "classical" naphthalene degrader P. putida NCIMB9816. All three oxygenase components functioned with mixed combinations of the electron transport proteins from either strain. The S5H from strain U2 is a unique monooxygenase which shares sequence similarity with dioxygenases such as NDO but is also sufficiently similar in structure to interact with the same electron transport chain and probably does so in vivo during naphthalene catabolism in strain U2.
Collapse
Affiliation(s)
- Ning-Yi Zhou
- School of Biological Sciences, University of Wales, Bangor, Gwynedd LL57 2UW, Wales, United Kingdom
| | | | | | | |
Collapse
|
23
|
Ferrero M, Llobet-Brossa E, Lalucat J, García-Valdés E, Rosselló-Mora R, Bosch R. Coexistence of two distinct copies of naphthalene degradation genes in Pseudomonas strains isolated from the western Mediterranean region. Appl Environ Microbiol 2002; 68:957-62. [PMID: 11823244 PMCID: PMC126682 DOI: 10.1128/aem.68.2.957-962.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the occurrence of the naphthalene degradation upper-pathway (nah) genes in the western Mediterranean region. The amplification, restriction, and sequence analysis of internal fragments for several nah genes (nahAc, nahB, nahC, and nahE) from naphthalene-degrading strains isolated from this geographical area proved the coexistence of two distinct sets of nah genes.
Collapse
Affiliation(s)
- Marcela Ferrero
- Departament de Biologia, Microbiologia, Universitat de les Illes Balears, and Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Carretera Valldemossa, E-07071 Palma de Mallorca, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Nojiri H, Sekiguchi H, Maeda K, Urata M, Nakai S, Yoshida T, Habe H, Omori T. Genetic characterization and evolutionary implications of a car gene cluster in the carbazole degrader Pseudomonas sp. strain CA10. J Bacteriol 2001; 183:3663-79. [PMID: 11371531 PMCID: PMC95244 DOI: 10.1128/jb.183.12.3663-3679.2001] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequences of the 27,939-bp-long upstream and 9,448-bp-long downstream regions of the carAaAaBaBbCAc(ORF7)Ad genes of carbazole-degrading Pseudomonas sp. strain CA10 were determined. Thirty-two open reading frames (ORFs) were identified, and the car gene cluster was consequently revealed to consist of 10 genes (carAaAaBaBbCAcAdDFE) encoding the enzymes for the three-step conversion of carbazole to anthranilate and the degradation of 2-hydroxypenta-2,4-dienoate. The high identities (68 to 83%) with the enzymes involved in 3-(3-hydroxyphenyl)propionic acid degradation were observed only for CarFE. This observation, together with the fact that two ORFs are inserted between carD and carFE, makes it quite likely that the carFE genes were recruited from another locus. In the 21-kb region upstream from carAa, aromatic-ring-hydroxylating dioxygenase genes (ORF26, ORF27, and ORF28) were found. Inductive expression in carbazole-grown cells and the results of homology searching indicate that these genes encode the anthranilate 1,2-dioxygenase involved in carbazole degradation. Therefore, these ORFs were designated antABC. Four homologous insertion sequences, IS5car1 to IS5car4, were identified in the neighboring regions of car and ant genes. IS5car2 and IS5car3 constituted the putative composite transposon containing antABC. One-ended transposition of IS5car2 together with the 5' portion of antA into the region immediately upstream of carAa had resulted in the formation of IS5car1 and ORF9. In addition to the insertion sequence-dependent recombination, gene duplications and presumed gene fusion were observed. In conclusion, through the above gene rearrangement, the novel genetic structure of the car gene cluster has been constructed. In addition, it was also revealed that the car and ant gene clusters are located on the megaplasmid pCAR1.
Collapse
Affiliation(s)
- H Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sato H, Kudo S, Ohnishi K, Mizuguchi M, Goto E, Suzuki K. Nucleotide sequence analysis of 5'-flanking region of salicylate hydroxylase gene, and identification and purification of a LysR-type regulator, SalR. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2229-38. [PMID: 11298739 DOI: 10.1046/j.1432-1327.2001.02098.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sal gene comprised of 1266 nucleotides encoding salicylate hydroxylase was cloned from the chromosomal DNA of Pseudomonas putida S-1 and sequenced [Suzuki, K., Mizuguchi, M., Ohnishi, K. and Itagaki, E. (1996) Biochim. Biophys. Acta 1275, 154-156]. Here, we describe the nucleotide sequences of the regulatory region of the sal gene and an ORF (salR gene) divergently oriented from the sal gene, which encodes the protein SalR. This gene product positively controls sal gene expression at the transcriptional level. The salR gene consists of 930 base pairs starting from a GTG codon and encodes a protein of 309 amino acids with a molecular mass of 34 542 Da. The amino-acid sequence is homologous to LysR-family regulatory proteins such as CatR of P. putida RB1 and has helix-turn-helix DNA binding motif near its N-terminal. Transcription start sites of sal and salR genes were determined to lie 30- and 24-bp upstream of the respective initiation codons and separated from each other by 78 nucleotides. A Shine-Dalgarno sequence and the putative promoter sequences containing -10 and -35 sequences were seen in the sal and salR genes. Expression of the salR gene on a plasmid in Escherichia coli cells was confirmed by DNA mobility shift assay. For the overexpression of the salR gene, it was cloned to pET28a (pSAHR) which was transferred to E. coli BL21 (E. coli BL21/pSAHR), and expressed by an inducer, isopropyl thio-beta-D-galactoside. SalR was further purified to homogeneity from the cell-free extracts in yields of approximately 3 mg.L-1 culture volume. The molecular mass was determined to be 33 kDa and the N-terminal amino-acid sequence was the same as that deduced from the nucleotide sequence of salR gene. Native SalR was also purified to homogeneity from P. putida S-1 with very low contents. The properties of the protein were similar to those of SalR expressed in E. coli.
Collapse
Affiliation(s)
- H Sato
- Department of Chemistry, Faculty of Science, Kanazawa University, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Bosch R, García-Valdés E, Moore ER. Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene 1999; 236:149-57. [PMID: 10433976 DOI: 10.1016/s0378-1119(99)00241-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pseudomonas stutzeri strain AN10 is a naphthalene-degrading strain whose dissimilatory genes are chromosomally encoded. We sequenced a total of 11514bp including the entire naphthalene-degradation upper pathway (nah) of P. stutzeri AN10. Nine open reading frames, nahAaAbAcAdBFCED, encoding the enzymes for the degradation of naphthalene to salicylate, were identified. The nah genes of P. stutzeri AN10 have been compared with genes encoding isofunctional proteins from other Pseudomonas naphthalene-degradation upper pathways. The implications of the sequence homologies to the evolution of aromatic catabolic pathways are discussed. Our findings indicate that this entire catabolic module of P. stutzeri AN10 was recruited from other microorganisms and a short period of time has elapsed after its incorporation within the P. stutzeri AN10 genome. Comparisons also suggest the coexistence of two entire nah upper pathways in a host strain, and further recombination between them. These events could accelerate the evolution of modern catabolic pathways.
Collapse
Affiliation(s)
- R Bosch
- Departament de Biologia, Microbiologia, Universitat de les Illes Balears, and Institut Mediterrani d'Estudis Avançats (CSIC-UIB), E-07071, Palma de Mallorca, Spain.
| | | | | |
Collapse
|
27
|
Takizawa N, Iida T, Sawada T, Yamauchi K, Wang YW, Fukuda M, Kiyohara H. Nucleotide sequences and characterization of genes encoding naphthalene upper pathway of pseudomonas aeruginosa PaK1 and Pseudomonas putida OUS82. J Biosci Bioeng 1999; 87:721-31. [PMID: 16232545 DOI: 10.1016/s1389-1723(99)80144-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/1998] [Accepted: 03/19/1999] [Indexed: 11/26/2022]
Abstract
A 12,808-nucleotide containing DNA fragment cloned from naphthalene-utilizing (Nah+) Pseudomonas aeruginosa PaK1 was analyzed and compared with the genes (pah(OUS)) of a 14,462-nucleotide DNA fragment from Pseudomonas putida OUS82. The DNA sequence analyses demonstrated that the naphthalene upper-pathway genes and their deduced enzymes were very similar between the two bacteria: nucleotide similarities, 83-93%; amino acid similarities, 79-95%. These genes were also similar to those of the nah operon of plasmid NAH7; in particular, the OUS82 genes were similar to the nah genes, whereas the PaK1 genes were almost identical to the dox genes of Pseudomonas sp. C18. A region homologous with the 84-bp repeated sequence that Eaton (J. Bacteriol., 176, 7757-7762, 1994) has found at a site upstream of he nah operon was found only in a region downstream of the pah(PaK) gene cluster in PaK1 and on both sides of the pah(OUS) gene cluster in OUS82. A PaK1 gene, corresponding to an unknown gene (nahQ) in the nah operon, is located between the 1,2-dihydroxynaphthalene dioxygenase gene and the trans-o-hydroxybenzylindenepyruvate (tHBP A) hydratase-aldolase gene (nahE), and was suggested to be involved in the conversion of naphthalene to salicylate. Just downstream of the pah(PaK) gene cluster, a portion of a region was identical to one-third of the transposase gene (tnpA) in a phenol-catabolic plasmid pEST1226.
Collapse
Affiliation(s)
- N Takizawa
- Biotechnology Laboratory, Department of Applied Chemistry, Faculty of Engineering, Okayama University of Science, 1-1 Ridai, Okayama 700-0005 Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Bosch R, Moore ER, García-Valdés E, Pieper DH. NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10. J Bacteriol 1999; 181:2315-22. [PMID: 10197990 PMCID: PMC93652 DOI: 10.1128/jb.181.8.2315-2322.1999] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two genes, nahG and nahW, encoding two independent salicylate 1-hydroxylases have been identified in the naphthalene-degrading strain Pseudomonas stutzeri AN10. While nahG resides in the same transcriptional unit as the meta-cleavage pathway genes, forming the naphthalene degradation lower pathway, nahW is situated outside but in close proximity to this transcriptional unit. The nahG and nahW genes of P. stutzeri AN10 are induced and expressed upon incubation with salicylate, and the enzymes that are encoded, NahG and NahW, are involved in naphthalene and salicylate metabolism. Both genes, nahG and nahW, have been cloned in Escherichia coli JM109. The overexpression of these genes yields peptides with apparent molecular masses of 46 kDa (NahG) and 43 kDa (NahW), respectively. Both enzymes exhibit broad substrate specificities and metabolize salicylate, methylsalicylates, and chlorosalicylates. However, the relative rates by which the substituted analogs are transformed differ considerably.
Collapse
Affiliation(s)
- R Bosch
- Departament de Biologia, Microbiologia, Universitat de les Illes Balears, and Institut Mediterrani d'Estudis Avançats, 07071, Palma de Mallorca, Spain
| | | | | | | |
Collapse
|
29
|
Hwang S, Kim SJ, Kim CK, Kim Y, Kim SJ, Kim YC. The phnIJ genes encoding acetaldehyde dehydrogenase (acylating) and 4-hydroxy-2-oxovalerate aldolase in Pseudomonas sp. DJ77 and their evolutionary implications. Biochem Biophys Res Commun 1999; 256:469-73. [PMID: 10080921 DOI: 10.1006/bbrc.1999.0355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The two final steps of meta-cleavage pathway for catechol degradation involve conversion of 4-hydroxy-2-oxovalerate, via acetaldehyde, to acetyl coenzyme A. We report here the complete nucleotide sequences and overexpression of the phnIJ genes for an acetaldehyde dehydrogenase (acylating) (ADA) and a 4-hydroxy-2-oxovalerate aldolase (HOA) from the meta-pathway operon of the phenanthrene-degrading bacterium, Pseudomonas sp. strain DJ77. Additional partial sequence analysis of adjacent DNA shows the gene order within the operon to be phnHIJ, identical to the order found for the isofunctional genes in the other meta-pathway operons. The deduced amino acid sequences of the PhnI (312 amino acids) and PhnJ (343 amino acids) have identities of 51-71% with the corresponding genes of dmp, xyl, nah, bph_LB400, bph_KKS102, tod, cum, cmt, and MTCY03C7 operons. The phylogenetic analyses reveal the evolutionary relationships of HOA and ADA.
Collapse
Affiliation(s)
- S Hwang
- School of Life Sciences, Chungbuk National University, Cheongju, 361-763, Korea
| | | | | | | | | | | |
Collapse
|
30
|
Haigler BE, Johnson GR, Suen WC, Spain JC. Biochemical and genetic evidence for meta-ring cleavage of 2,4, 5-trihydroxytoluene in Burkholderia sp. strain DNT. J Bacteriol 1999; 181:965-72. [PMID: 9922262 PMCID: PMC93465 DOI: 10.1128/jb.181.3.965-972.1999] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/1998] [Accepted: 11/09/1998] [Indexed: 11/20/2022] Open
Abstract
2,4,5-Trihydroxytoluene (THT) oxygenase from Burkholderia sp. strain DNT catalyzes the conversion of THT to an unstable ring fission product. Biochemical and genetic studies of THT oxygenase were undertaken to elucidate the mechanism of the ring fission reaction. The THT oxygenase gene (dntD) was previously localized to the 1.2-kb DNA insert subcloned in the recombinant plasmid designated pJS76 (W. C. Suen and J. C. Spain, J. Bacteriol. 175:1831-1837, 1993). Analysis of the deduced amino acid sequence of DntD revealed the presence of the highly conserved residues characteristic of the catechol 2,3-dioxygenase gene family I. The deduced amino acid sequence of DntD corresponded to a molecular mass of 35 kDa. The native molecular masses for the THT oxygenase estimated by using gel filtration chromatography and nondenaturing gel electrophoresis were 67.4 and 77.8 kDa, respectively. The results suggested that the native protein consists of two identical subunits. The colorless protein contained 2 mol of iron per mol of protein. Stimulation of activity in the presence of ferrous iron and ascorbate suggested a requirement for ferrous iron in the active site. The properties of the enzyme are similar to those of the catechol 2,3-dioxygenases (meta-cleavage dioxygenases). In addition to THT, the enzyme exhibited activity towards 1,2,4-benzenetriol, catechol, 3- and 4-methylcatechol, and 3- and 4-chlorocatechol. The chemical analysis of the THT ring cleavage product showed that the product was 2, 4-dihydroxy-5-methyl-6-oxo-2,4-hexadienoic acid, consistent with extradiol ring fission of THT.
Collapse
Affiliation(s)
- B E Haigler
- Air Force Research Laboratory, Tyndall Air Force Base, Florida 32403-5323, USA
| | | | | | | |
Collapse
|
31
|
Okuta A, Ohnishi K, Harayama S. PCR isolation of catechol 2,3-dioxygenase gene fragments from environmental samples and their assembly into functional genes. Gene 1998; 212:221-8. [PMID: 9611265 DOI: 10.1016/s0378-1119(98)00153-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A method was developed to isolate central segments of catechol 2, 3-dioxygenase (C23O) genes from environmental samples and to insert these C23O gene segments into nahH (the structural gene for C23O encoded by catabolic plasmid NAH7) by replacing the corresponding nahH sequence with the isolated segments. To PCR-amplify the central C23O gene segments, a pair of degenerate primers was designed from amino acid sequences conserved among C23Os. Using these primers, central regions of the C23O genes were amplified from DNA isolated from a mixed culture of phenol-degrading or crude oil-degrading bacteria. Both the 5' and 3' regions of nahH were also PCR-amplified by using appropriate primers. These three PCR products, the 5'-nahH and 3'-nahH segments and the central C23O gene segments, were mixed and PCR-amplified again. Since the primers for the amplification of the central C23O gene segments were designed so that the 20 nucleotides at both ends of the segments are identical to the 3' end of the 5'-nahH segment and the 5' end of the 3'-nahH segment, respectively, the central C23O gene segments could anneal to both the 5'- and 3'-nahH segments. After the second PCR, hybrid C23O genes in the form of (5'-nahH segment-central C23O gene segment-3'-nahH segment) were amplified to full length. The resulting products were cloned into a vector and used to transform Escherichia coli. This method enabled divergent C23O sequences to be readily isolated, and more than 90% of the hybrid plasmids expressed C23O activity. Thus, the present method is useful to create, without isolating bacteria, a library of functional hybrid genes.
Collapse
Affiliation(s)
- A Okuta
- Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate 026, Japan
| | | | | |
Collapse
|
32
|
Aemprapa S, Williams PA. Implications of the xylQ gene of TOL plasmid pWW102 for the evolution of aromatic catabolic pathways. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 5):1387-1396. [PMID: 9611813 DOI: 10.1099/00221287-144-5-1387] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas putida strain O2C2 is able to grow on toluene, m-xylene and p-xylene through benzoate and the corresponding methylbenzoates (toluates). The catabolic genes are encoded on a large TOL plasmid, pWW102, of > 220 kb. The complete catabolic genes were cloned on four large overlapping restriction fragments covering a total of 28 kb of the plasmid, which was carefully mapped by restriction enzyme analysis. The presence of the xyl genes on the cloned DNA was confirmed by assay of representative enzymes of both operons. Virtually all the genes were located on the cloned DNA by hybridization of Southern blots with gene-specific probes from related pathways of other catabolic plasmids. Within the limitations of available restriction sites, the analysis showed that the genes are in two blocks. The major block carries the meta pathway operon xylXYZLTEGFJQKIH with the two regulatory genes xylSR immediately downstream. The upper pathway operon xylUWCMAB(N) is about 2-3 kb downstream of the regulatory genes and transcribed in the same direction as the meta pathway operon. Within each operon the gene order appears to be identical to that found in other TOL plasmids, but the relative location of the operons most closely resembles that found on plasmid pWW53, although there is no evidence of any xyl duplications on pWW102. The nucleotide sequence of the xylQ gene for the acetaldehyde dehydrogenase (acylating; ADA), together with the 3'-end of the upstream xylJ (for 2-oxopent-4-enoate hydratase) and the 5'-end of the downstream xylK (for 4-hydroxy-2-oxovalerate aldolase), was determined. The xylQ gene was ligated into expression vector pTrc99a and high levels of XylQ protein were detected by enzyme assay and by SDS-PAGE. All three genes xylJQK showed a high degree of homology with genes encoding isofunctional proteins from other Pseudomonas meta pathways, the highest being with the naphthalene catabolic genes nahLOM from the plasmid of Pseudomonas sp. NCIB 9816. The implications of the sequence homologies to the evolution of these pathways are discussed.
Collapse
Affiliation(s)
- Sirinun Aemprapa
- School of Biological Sciences, University of Wales, Bangor, Gwynedd LL57 2UW, UK
| | - Peter A Williams
- School of Biological Sciences, University of Wales, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
33
|
Kulakov LA, Delcroix VA, Larkin MJ, Ksenzenko VN, Kulakova AN. Cloning of new Rhodococcus extradiol dioxygenase genes and study of their distribution in different Rhodococcus strains. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 4):955-963. [PMID: 9579069 DOI: 10.1099/00221287-144-4-955] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Four extradiol dioxygenase genes which encode enzymes active against catechol and substituted catechols were cloned from two different Rhodococcus strains, and their nucleotide sequences were determined. A catechol 2,3-dioxygenase gene (edoC) was shown to be identical to the previously described ipbC gene from the isopropylbenzene operon of Rhodococcus erythropolis. Amino acid sequences deduced from the three other genes (edoA, edoB and edoD) were shown to have various degrees of homology to different extradiol dioxygenases. The EdoA and EdoB dioxygenases were classified as belonging to the third family of type I oxygenases and represented two new subfamilies, whereas the EdoD dioxygenase was a type II enzyme. Analysis of six Rhodococcus strains revealed a wide distribution of the above dioxygenase genes. Rhodococcus sp. 11 was shown to harbour all four of the analysed dioxygenase genes. Nucleotide sequences homologous to the edoB gene were present in all of the strains, including R. erythropolis NCIMB 13065, which did not utilize any of the aromatic compounds analysed. The latter finding points to the existence of a silent pathway(s) for degradation of aromatic compounds in this Rhodococcus strain.
Collapse
Affiliation(s)
- Leonid A Kulakov
- 1 The Questor Centre, David Keir Building, The Queen's University of Belfast, Belfast BT9 5AG, UK and School of Biology and Biochemistry, Medical Biology Centre, The Queen's University of Belfast, Belfast BT9 7BL, UK
| | - Valerie A Delcroix
- 1 The Questor Centre, David Keir Building, The Queen's University of Belfast, Belfast BT9 5AG, UK and School of Biology and Biochemistry, Medical Biology Centre, The Queen's University of Belfast, Belfast BT9 7BL, UK
| | - Michael J Larkin
- 1 The Questor Centre, David Keir Building, The Queen's University of Belfast, Belfast BT9 5AG, UK and School of Biology and Biochemistry, Medical Biology Centre, The Queen's University of Belfast, Belfast BT9 7BL, UK
| | - Vladimir N Ksenzenko
- 2 Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Science, Pushchino, Moscow region, Russia
| | - Anna N Kulakova
- 1 The Questor Centre, David Keir Building, The Queen's University of Belfast, Belfast BT9 5AG, UK and School of Biology and Biochemistry, Medical Biology Centre, The Queen's University of Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
34
|
Kim S, Shin HJ, Kim Y, Kim SJ, Kim YC. Nucleotide sequence of the Pseudomonas sp. DJ77 phnG gene encoding 2-hydroxymuconic semialdehyde dehydrogenase. Biochem Biophys Res Commun 1997; 240:41-5. [PMID: 9367878 DOI: 10.1006/bbrc.1997.7595] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nucleotide sequence of a 1520 bp region, spanning the coding region for the meta-cleavage pathway enzyme, 2-hydroxymuconic semialdehyde dehydrogenase, was determined. This enzyme, encoded by the phnG, is the first of three sequential enzymes required for conversion of 2-hydroxymuconic semialdehyde, which is produced from catechol by the PhnE catechol 2,3-dioxygenase, to 2-hydroxypent-2,4-dienoate in the dehydrogenative branch of the pathway. The deduced protein sequence is 484 amino acid residues long with a M(r) of 51504. The phnG has a high degree of homology with genes encoding isofunctional proteins from other Pseudomonas strains. We now show that the relative position of the phnG dehydrogenase gene in the phn operon is unique compared to the other meta-cleavage operons which have a dehydrogenative branch of the pathway.
Collapse
Affiliation(s)
- S Kim
- School of Life Sciences, Chungbuk National University, Cheongju, Korea
| | | | | | | | | |
Collapse
|
35
|
Heiss G, Muller C, Altenbuchner J, Stolz A. Analysis of a new dimeric extradiol dioxygenase from a naphthalenesulfonate-degrading sphingomonad. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 5):1691-1699. [PMID: 9168618 DOI: 10.1099/00221287-143-5-1691] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A new extradiol dioxygenase was cloned by screening a gene bank from the naphthalenesulfonate-degrading bacterial strain BN6 for colonies with 2,3-dihydroxybiphenyl dioxygenase (DHBPDO) activity. A 1.6 kb DNA fragment was sequenced and an ORF of 954 bp identified. Comparison of the deduced amino acid sequence of DHBPDO II from strain BN6 with previously published sequences showed the closest relationship to a metapyrocatechase (MpcII) from Alcaligenes eutrophus JMP 222. Thus, the enzyme was only distantly related to the main groups of catechol 2,3-dioxygenases or DHBPDOs. The dioxygenase was expressed using a T7 expression vector and the enzymic characteristics of the protein were examined. The enzyme oxidized 2,3-dihydroxybiphenyl, 3-isopropylcatechol, 3-methylcatechol, 4-fluorocatechol and 1,2-dihydroxynaphthalene. Comparison of the UV/visible spectrum of the product formed from 3,5-dichlorocatechol with previous reports suggested that this substrate is oxidized by different extradiol dioxygenases either by proximal or distal ring cleavage. The enzyme required Fe2+ for maximal activity. In contrast to most other extradiol dioxygenases, the enzyme consisted of only two identical subunits.
Collapse
Affiliation(s)
- Gesche Heiss
- Institut für Mikrobiologie Universität Stuttgart, 70569 Stuttgart, Germany
| | - Claudia Muller
- Institut für Mikrobiologie Universität Stuttgart, 70569 Stuttgart, Germany
| | - Josef Altenbuchner
- Institut für industrielle Genetik Universität Stuttgart, 70569 Stuttgart, Germany
| | - Andreas Stolz
- Institut für Mikrobiologie Universität Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
36
|
Johri AK, Dua M, Tuteja D, Saxena R, Saxena DM, Lal R. Genetic manipulations of microorganisms for the degradation of hexachlorocyclohexane. FEMS Microbiol Rev 1996; 19:69-84. [PMID: 8988565 DOI: 10.1111/j.1574-6976.1996.tb00254.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hexachlorocyclohexane (HCH) is an organochlorine insecticide which has been banned in technologically advanced countries. However, it is still in use in tropical countries for mosquito control and thus new areas continue to be contaminated. Anaerobic degradation of HCH isomers have been well documented but until recently there have been only a few reports on aerobic microbial degradation of HCH isomers. The isolation of these microbes made it possible to design experiments for the cloning of the catabolic genes responsible for degradation. We review the microbial degradation of HCH isomers coupled with the genetic manipulations of the catabolic genes. The first part discusses the persistence of residues in the environment and microbial degradation while the second part gives an account of the genetic manipulations of catabolic genes involved in the degradation.
Collapse
Affiliation(s)
- A K Johri
- Department of Zoology, University of Delhi, India
| | | | | | | | | | | |
Collapse
|
37
|
Fong KP, Goh CB, Tan HM. Characterization and expression of the plasmid-borne bedD gene from Pseudomonas putida ML2, which codes for a NAD+-dependent cis-benzene dihydrodiol dehydrogenase. J Bacteriol 1996; 178:5592-601. [PMID: 8824602 PMCID: PMC178396 DOI: 10.1128/jb.178.19.5592-5601.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The catabolic plasmid pHMT112 in Pseudomonas putida ML2 contains the bed gene cluster encoding benzene dioxygenase (bedC1C2BA) and a NAD+-dependent dehydrogenase (bedD) required to convert benzene into catechol. Analysis of the nucleotide sequence upstream of the benzene dioxygenase gene cluster (bedC1C2BA) revealed a 1,098-bp open reading frame (bedD) flanked by two 42-bp direct repeats, each containing a 14-bp sequence identical to the inverted repeat of IS26. In vitro translation analysis showed bedD to code for a polypeptide of ca. 39 kDa. Both the nucleotide and the deduced amino acid sequences show significant identity to sequences of glycerol dehydrogenases from Escherichia coli, Citrobacter freundii, and Bacillus stearothermophilus. A bedD mutant of P. putida ML2 in which the gene was disrupted by a kanamycin resistance cassette was unable to utilize benzene for growth. The bedD gene product was found to complement the todD mutation in P. putida 39/D, the latter defective in the analogous cis-toluene dihydrodiol dehydrogenase. The dehydrogenase encoded by bedD) was overexpressed in Escherichia coli and purified. It was found to utilize NAD+ as an electron acceptor and exhibited higher substrate specificity for cis-benzene dihydrodiol and 1,2-propanediol compared with glycerol. Such a medium-chain dehydrogenase is the first to be reported for a Pseudomonas species, and its association with an aromatic ring-hydroxylating dioxygenase is unique among bacterial species capable of metabolizing aromatic hydrocarbons.
Collapse
Affiliation(s)
- K P Fong
- Department of Microbiology, National University of Singapore
| | | | | |
Collapse
|
38
|
Kukor JJ, Olsen RH. Catechol 2,3-dioxygenases functional in oxygen-limited (hypoxic) environments. Appl Environ Microbiol 1996; 62:1728-40. [PMID: 8633871 PMCID: PMC167947 DOI: 10.1128/aem.62.5.1728-1740.1996] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We studied the degradation of toluene for bacteria isolated from hypoxic (i.e., oxygen-limited) petroleum-contaminated aquifers and compared such strains with other toluene degraders. Three Pseudomonas isolates, P. pickettii PKO1, Pseudomonas sp. strain W31, and P. fluorescens CFS215, grew on toluene when nitrate was present as an alternate electron acceptor in hypoxic environments. We examined kinetic parameters (K(m) and Vmax) for catechol 2,3-dioxygenase (C230), a key shared enzyme of the toluene-degradative pathway for these strains, and compared these parameters with those for the analogous enzymes from archetypal toluene-degrading pseudomonads which did not show enhanced, nitrate-dependent toluene degradation. C230 purified from strains W31, PKO1, and CFS215 had a significantly greater affinity for oxygen as well as a significantly greater rate of substrate turnover than found for the analogous enzymes from the TOL plasmid (pWW0) of Pseudomonas putida PaW1, from Pseudomonas cepacia G4, or from P. putida F1. Analysis of the nucleotide and deduced amino acid sequences of C23O from strain PKO1 suggests that this extradiol dioxygenase belongs to a new cluster within the subfamily of C23Os that preferentially cleave monocyclic substrates. Moreover, deletion analysis of the nucleotide sequence upstream of the translational start of the meta-pathway operon that contains tbuE, the gene that encodes the C230 of strain PKO1, allowed identification of sequences critical for regulated expression of tbuE, including a sequence homologous to the ANR-binding site of Pseudomonas aeruginosa PAO. When present in cis, this site enhanced expression of tbuE under oxygen-limited conditions. Taken together, these results suggest the occurrence of a novel group of microorganisms capable of oxygen-requiring but nitrate-enhanced degradation of benzene, toluene, ethylbenzene, and xylenes in hypoxic environments. Strain PKO1, which exemplifies this novel group of microorganisms, compensates for a low-oxygen environment by the development of an oxygen-requiring enzyme with kinetic parameters favorable to function in hypoxic environments, as well as by elevating synthesis of such an enzyme in response to oxygen limitation.
Collapse
Affiliation(s)
- J J Kukor
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | |
Collapse
|
39
|
Cloning and nucleotide sequences of the genes involved in the meta-cleavage pathway of cumene degradation in Pseudomonas fluorescens IP01. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0922-338x(96)82216-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Joshi B, Walia S. PCR amplification of catechol 2,3-dioxygenase gene sequences from naturally occurring hydrocarbon degrading bacteria isolated from petroleum hydrocarbon contaminated groundwater. FEMS Microbiol Ecol 1996. [DOI: 10.1111/j.1574-6941.1996.tb00193.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
41
|
Phenanthrene mineralization by Pseudomonas sp. UG14. World J Microbiol Biotechnol 1995; 11:271-9. [DOI: 10.1007/bf00367097] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/17/1994] [Accepted: 11/21/1994] [Indexed: 10/26/2022]
|
42
|
Top EM, Holben WE, Forney LJ. Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation. Appl Environ Microbiol 1995; 61:1691-8. [PMID: 7646006 PMCID: PMC167431 DOI: 10.1128/aem.61.5.1691-1698.1995] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degradative plasmids in the microbial community of an agricultural soil was examined by complementation. This technique involved mixing a suitable Alcaligenes eutrophus (Rifr) recipient strain with the indigenous microbial populations extracted from soil. After incubation of this mixture, Rifr recipient strains which grow with 2,4-D as the only C source were selected. Two A. eutrophus strains were used as recipients: JMP228 (2,4-D-), which was previously derived from A. eutrophus JMP134 by curing of the 2,4-D-degradative plasmid pJP4, and JMP228 carrying pBH501aE (a plasmid derived from pJP4 by deletion of a large part of the tfdA gene which encodes the first step in the mineralization of 2,4-D). By using agricultural soil that had been treated with 2,4-D for several years, transconjugants were obtained with both recipients. However, when untreated control soil was used, no transconjugants were isolated. The various transconjugants had plasmids with seven different EcoRI restriction patterns. The corresponding plasmids are designated pEMT1 to pEMT7. Unlike pJP4, pEMT1 appeared not to be an IncP1 plasmid, but all the others (pEMT2 to pEMT7) belong to the IncP1 group. Hybridization with individual probes for the tfdA to tfdF genes of pJP4 demonstrated that all plasmids showed high degrees of homology to the tfdA gene. Only pEMT1 showed a high degree of homology to tfdB, tfdC, tfdD, tfdE, and tfdF, while the others showed only moderate degrees of homology to tfdB and low degrees of homology to tfdC.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E M Top
- National Science Foundation Center for Microbial Ecology, Michigan State University, East Lansing 48824, USA
| | | | | |
Collapse
|
43
|
Herrmann H, Müller C, Schmidt I, Mahnke J, Petruschka L, Hahnke K. Localization and organization of phenol degradation genes of Pseudomonas putida strain H. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:240-6. [PMID: 7753034 DOI: 10.1007/bf00705655] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The genetic organization of the DNA region encoding the phenol degradation pathway of Pseudomonas putida H has been investigated. This strain can utilize phenol or some of its methylated derivatives as its sole source of carbon and energy. The first step in this process is the conversion of phenol into catechol. Catechol is then further metabolized via the meta-cleavage pathway into TCA cycle intermediates. Genes encoding these enzymes are clustered on the plasmid pPGH1. A region of contiguous DNA spanning about 16 kb contains all of the genetic information necessary for inducible phenol degradation. The analysis of mutants generated by insertion of transposons and cassettes indicates that all of the catabolic genes are contained in a single operon. This codes for a multicomponent phenol hydroxylase and meta-cleavage pathway enzymes. Catabolic genes are subject to positive control by the gene product(s) of a second locus.
Collapse
Affiliation(s)
- H Herrmann
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Genetik und Biochemie der Fachrichtung Biologie, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Cerdan P, Rekik M, Harayama S. Substrate specificity differences between two catechol 2,3-dioxygenases encoded by the TOL and NAH plasmids from Pseudomonas putida. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 229:113-8. [PMID: 7744021 DOI: 10.1111/j.1432-1033.1995.tb20445.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The substrate specificities of two catechol 2,3-dioxygenases, one encoded by xylE on the TOL plasmid pWW0 and the other encoded by nahH on the NAH7 plasmid, were investigated. The XylE catechol 2,3-dioxygenase catalyzes the ring-cleavage of catechol, 3-methylcatechol and 4-methylcatechol. The NahH catechol 2,3-dioxygenase was partially deficient in oxidizing 3-methylcatechol due to defects in two catalytic properties. First, NahH has a lower kcat value for 3-methylcatechol compared to XylE, and secondly, NahH is more susceptible than XylE to suicide inhibition by 3-methylcatechol. To identify the amino acid residues of XylE and NahH responsible for the differences in the efficacy of the 3-methylcatechol oxidation, kcat and kinact (the rate constant for suicide inhibition) for 3-methylcatechol were determined for several NahH-XylE hybrid proteins, each of which consisted of the NahH sequence in the N-terminal region and the XylE sequence in the C-terminal region. It is shown that a single amino acid substitution present in the NahH sequence, His250-->Gln, was responsible for the reduced kcat and increased kinact values for 3-methylcatechol. In addition to the substitution at residue 250, some substitution(s) at residues 77-102 were responsible for the twofold difference in the kinact values for NahH and XylE with 3-methylcatechol. We also show that the binding site of 3-methylcatechol for suicide inhibition is different from the catalytic site.
Collapse
Affiliation(s)
- P Cerdan
- Department of Medical Biochemistry, University Medical Center, Geneva, Switzerland
| | | | | |
Collapse
|
45
|
Maeda M, Chung SY, Song E, Kudo T. Multiple genes encoding 2,3-dihydroxybiphenyl 1,2-dioxygenase in the gram-positive polychlorinated biphenyl-degrading bacterium Rhodococcus erythropolis TA421, isolated from a termite ecosystem. Appl Environ Microbiol 1995; 61:549-55. [PMID: 7574595 PMCID: PMC167317 DOI: 10.1128/aem.61.2.549-555.1995] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Rhodococcus erythropolis TA421 was isolated from a termite ecosystem and is able to degrade a wide range of polychlorinated biphenyl (PCB) congeners. Genetic and biochemical analyses of the PCB catabolic pathway of this organism revealed that there are four different bphC genes (bphC1, bphC2, bphC3, and bphC4) which encode 2,3-dihydroxybiphenyl dioxygenases. As determined by Southern hybridization, none of the bphC genes exhibits homology to any other bphC gene. bphC1, bphC2, and bphC4 encode enzymes that have narrow substrate specificities and cleave the first aromatic ring in the meta position. In contrast, bphC3 encodes a meta cleavage dioxygenase with broad substrate specificity. Asturias et al. have shown that the closely related organism Rhodococcus globerulus P6 contains three different bphC genes (bphC1, bphC2, and bpHC3) which encode meta cleavage dioxygenases. The data suggest that there is a diverse family of bphC genes which encode PCB meta cleavage dioxygenases in members of the genus Rhodococcus.
Collapse
Affiliation(s)
- M Maeda
- Institute of Physical and Chemical Research (RIKEN), Research Development Corporation of Japan, Saitama
| | | | | | | |
Collapse
|
46
|
Abstract
The structure and function of transposable elements that code for catabolic pathways involved in the biodegradation of organic compounds are reviewed. Seven of these catabolic transposons have structural features that place them in the Class I (composite) or Class II (Tn3-family) bacterial elements. One is a conjugative transposon. Another three have been found to have properties of transposable elements but have not been characterized sufficiently to assign to a known class. Structural features of the toluene (Tn4651/Tn4653) and naphthalene (Tn4655) elements that illustrate the enormous potential for acquisition, deletion and rearrangement of DNA within catabolic transposons are discussed. The recently characterized chlorobenzoate (Tn5271) and chlorobenzene (Tn5280) catabolic transposons encode different aromatic ring dioxygenases, however they both illustrate the constraints that must be overcome when recipients of catabolic transposons assemble and regulate complete metabolic pathways for environmental pollutants. The structures of the chlorobenzoate catabolic transposon Tn5271 and the related haloacetate dehalogenase catabolic element of plasmid pUO1 are compared and a hypothesis for their formation is discussed. The structures and activities of catabolic transposons of unknown class coding for the catabolism of halogenated alkanoic acids (DEH) and chlorobiphenyl (Tn4371) are also reviewed.
Collapse
Affiliation(s)
- R C Wyndham
- Ottawa-Carleton Institute of Biology, Carleton University, ON Canada
| | | | | | | |
Collapse
|
47
|
Williams PA, Sayers JR. The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas. Biodegradation 1994; 5:195-217. [PMID: 7765833 DOI: 10.1007/bf00696460] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The organisation and nucleotide sequences coding for the catabolism of benzene, toluene (and xylenes), naphthalene and biphenyl via catechol and the extradiol (meta) cleavage pathway in Pseudomonas are reviewed and the various factors which may have played a part in their evolution are considered. The data suggests that the complete pathways have evolved in a modular way probably from at least three elements. The common meta pathway operons, downstream from the ferredoxin-like protein adjacent to the gene for catechol 2,3-dioxygenase, are highly homologous and clearly share a common ancestry. This common module may have become fused to a gene or genes the product(s) of which could convert a stable chemical (benzoate, salicylate, toluene, benzene, phenol) to catechol, thus forming the lower pathway operons found in modern strains. The upper pathway operons might then have been acquired as a third module at a later stage thus increasing the catabolic versatility of the host strains.
Collapse
Affiliation(s)
- P A Williams
- School of Biological Sciences, University of Wales, Bangor, Gwynedd, UK
| | | |
Collapse
|
48
|
Schlömann M. Evolution of chlorocatechol catabolic pathways. Conclusions to be drawn from comparisons of lactone hydrolases. Biodegradation 1994; 5:301-21. [PMID: 7765840 DOI: 10.1007/bf00696467] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The aerobic bacterial degradation of chloroaromatic compounds often involves chlorosubstituted catechols as central intermediates. They are converted to 3-oxoadipate in a series of reactions similar to that for catechol catabolism and therefore designated as modified ortho-cleavage pathway. Among the enzymes of this catabolic route, the chlorocatechol 1,2-dioxygenases are known to have a relaxed substrate specificity. In contrast, several chloromuconate cycloisomerases are more specific, and the dienelactone hydrolases of chlorocatechol catabolic pathways do not even convert the corresponding intermediate of catechol degradation, 3-oxoadipate enol-lactone. While the sequences of chlorocatechol 1,2-dioxygenases and chloromuconate cycloisomerases are very similar to those of catechol 1,2-dioxygenases and muconate cycloisomerases, respectively, the relationship between dienelactone hydrolases and 3-oxoadipate enol-lactone hydrolases is more distant. They seem to share an alpha/beta hydrolase fold, but the sequences comprising the fold are quite dissimilar. Therefore, for chlorocatechol catabolism, dienelactone hydrolases might have been recruited from some other, preexisting pathway. Their relationship to dienelactone (hydrolases identified in 4-fluorobenzoate utilizing strains of Alcaligenes and Burkholderia (Pseudomonas) cepacia is investigated). Sequence evidence suggests that the chlorocatechol catabolic operons of the plasmids pJP4, pAC27, and pP51 have been derived from a common precursor. The latter seems to have evolved for the purpose of halocatechol catabolism, and may be considerably older than the chemical industry.
Collapse
Affiliation(s)
- M Schlömann
- Institut für Mikrobiologie, Universität Stuttgart, Germany
| |
Collapse
|
49
|
Kikuchi Y, Yasukochi Y, Nagata Y, Fukuda M, Takagi M. Nucleotide sequence and functional analysis of the meta-cleavage pathway involved in biphenyl and polychlorinated biphenyl degradation in Pseudomonas sp. strain KKS102. J Bacteriol 1994; 176:4269-76. [PMID: 8021212 PMCID: PMC205638 DOI: 10.1128/jb.176.14.4269-4276.1994] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pseudomonas sp. strain KKS102 is able to degrade biphenyl and polychlorinated biphenyls via the meta-cleavage pathway. We sequenced the upstream region of the bphA1A2A3BCD (open reading frame 1 [ORF1]) A4 and found four ORFs in this region. As the deduced amino acid sequences of the first, second, and third ORFs are homologous to the meta-cleavage enzymes from Pseudomonas sp. strain CF600 (V. Shingler, J. Powlowski, and U. Marklund, J. Bacteriol. 174:711-724, 1992), these ORFs have been named bphE, bphG, and bphF, respectively. The fourth ORF (ORF4) showed homology with ORF3 from Pseudomonas pseudoalcaligenes KF707 (K. Taira, J. Hirose, S. Hayashida, and K. Furukawa, J. Biol. Chem. 267:4844-4853, 1992), whose function is unknown. The functions of meta-cleavage enzymes (BphE, BphG, and BphF) were analyzed by using crude extracts of Escherichia coli which expressed the encoding genes. The results showed that bphE, bphG, and bphF encode 2-hydroxypenta-2,4-dienoate hydratase, acetaldehyde dehydrogenase (acylating), and 4-hydroxy-2-oxovalerate aldolase, respectively. The biphenyl and polychlorinated biphenyl degradation pathway of KKS102 is encoded by 12 genes in the order bphEGF (ORF4)A1A2A3BCD (ORF1)A4. The functions of ORF1 and ORF4 are unknown. The features of this bph gene cluster are discussed.
Collapse
Affiliation(s)
- Y Kikuchi
- Department of Agricultural Chemistry, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
50
|
Harayama S. Codon usage patterns suggest independent evolution of two catabolic operons on toluene-degradative plasmid TOL pWW0 of Pseudomonas putida. J Mol Evol 1994; 38:328-35. [PMID: 8007001 DOI: 10.1007/bf00163150] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
TOL plasmid pWW0 of Pseudomonas putida encodes a set of enzymes responsible for the degradation of toluene. The structural genes for these catobolic enzymes are clustered into two operons--namely, the xy/CMAB and xy/XYZLTEGFJQKIH operons. We examined the codon usage patterns of these catabolic genes by measuring the codon-usage distances between pairs of these catabolic genes. The codon-usage distance, d, between gene 1 and gene 2 was defined as d = [sigma(pj-qj)2]1/2, are the frequencies of the j-th codon in gene 1 and 2, respectively, j being any one of the 64 possible codons. We found that the genes in the same operon exhibit similar codon-usage patterns while genes in the different operons exhibit different codon bias. This observation suggests that genes in the same operon have coevolved, and that the ancestors of the xy/CMAB and xy/XYZLTEGFJQKIH operons evolved in different organisms.
Collapse
Affiliation(s)
- S Harayama
- Department of Medical Biochemistry, University of Geneva 1, Switzerland
| |
Collapse
|