1
|
Hammel A, Neupert J, Bock R. Optimized transgene expression in the red alga Porphyridium purpureum and efficient recombinant protein secretion into the culture medium. PLANT MOLECULAR BIOLOGY 2024; 114:18. [PMID: 38353826 PMCID: PMC10866757 DOI: 10.1007/s11103-024-01415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024]
Abstract
Microalgae represent a promising but yet underexplored production platform for biotechnology. The vast majority of studies on recombinant protein expression in algae have been conducted in a single species, the green alga Chlamydomonas reinhardtii. However, due to epigenetic silencing, transgene expression in Chlamydomonas is often inefficient. Here we have investigated parameters that govern efficient transgene expression in the red microalga Porphyridium purpureum. Porphyridium is unique in that the introduced transformation vectors are episomally maintained as autonomously replicating plasmids in the nucleus. We show that full codon optimization to the preferred codon usage in the Porphyridium genome confers superior transgene expression, not only at the level of protein accumulation, but also at the level of mRNA accumulation, indicating that high translation rates increase mRNA stability. Our optimized expression constructs resulted in YFP accumulation to unprecedented levels of up to 5% of the total soluble protein. We also designed expression cassettes that target foreign proteins to the secretory pathway and lead to efficient protein secretion into the culture medium, thus simplifying recombinant protein harvest and purification. Our study paves the way to the exploration of red microalgae as expression hosts in molecular farming for recombinant proteins and metabolites.
Collapse
Affiliation(s)
- Alexander Hammel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Juliane Neupert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
2
|
Iha C, Grassa CJ, Lyra GDM, Davis CC, Verbruggen H, Oliveira MC. Organellar genomics: a useful tool to study evolutionary relationships and molecular evolution in Gracilariaceae (Rhodophyta). JOURNAL OF PHYCOLOGY 2018; 54:775-787. [PMID: 29989670 DOI: 10.1111/jpy.12765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Gracilariaceae has a worldwide distribution including numerous economically important species. We applied high-throughput sequencing to obtain organellar genomes (mitochondria and chloroplast) from 10 species of Gracilariaceae and, combined with published genomes, to infer phylogenies and compare genome architecture among species representing main lineages. We obtained similar topologies between chloroplast and mitochondrial genomes phylogenies. However, the chloroplast phylogeny was better resolved with full support. In this phylogeny, Melanthalia intermedia is sister to a monophyletic clade including Gracilaria and Gracilariopsis, which were both resolved as monophyletic genera. Mitochondrial and chloroplast genomes were highly conserved in gene synteny, and variation mainly occurred in regions where insertions of plasmid-derived sequences (PDS) were found. In mitochondrial genomes, PDS insertions were observed in two regions where the transcription direction changes: between the genes cob and trnL, and trnA and trnN. In chloroplast genomes, PDS insertions were in different positions, but generally found between psdD and rrs genes. Gracilariaceae is a good model system to study the impact of PDS in genome evolution due to the frequent presence of these insertions in organellar genomes. Furthermore, the bacterial leuC/leuD operon was found in chloroplast genomes of Gracilaria tenuistipitata, G. chilensis, and M. intermedia, and in extrachromosomal plasmid of G. vermiculophylla. Phylogenetic trees show two different origins of leuC/leuD: genes found in chloroplast and plasmid were placed with proteobacteria, and genes encoded in the nucleus were close to Viridiplantae and cyanobacteria.
Collapse
Affiliation(s)
- Cintia Iha
- Department of Botany, Institute of Biosciences, University of São Paulo, R Matão 277, São Paulo, SP, 05508-090, Brazil
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Christopher J Grassa
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts, 02138, USA
| | - Goia de M Lyra
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts, 02138, USA
- Laboratório de Algas Marinhas, Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Salvador, Bahia, 40170-115, Brazil
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts, 02138, USA
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Mariana C Oliveira
- Department of Botany, Institute of Biosciences, University of São Paulo, R Matão 277, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
3
|
Replication of bacterial plasmids in the nucleus of the red alga Porphyridium purpureum. Nat Commun 2018; 9:3451. [PMID: 30150628 PMCID: PMC6110788 DOI: 10.1038/s41467-018-05651-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/19/2018] [Indexed: 11/25/2022] Open
Abstract
Rhodophytes (red algae) are a diverse group of algae with great ecological and economic importance. However, tools for post-genomic research on red algae are still largely lacking. Here, we report the development of an efficient genetic transformation system for the model rhodophyte Porphyridium purpureum. We show that transgenes can be expressed to unprecedented levels of up to 5% of the total soluble protein. Surprisingly, the transgenic DNA is maintained episomally, as extrachromosomal high-copy number plasmid. The bacterial replication origin confers replication in the algal nucleus, thus providing an intriguing example of a prokaryotic replication origin functioning in a eukaryotic system. The extended presence of bacterial episomal elements may provide an evolutionary explanation for the frequent natural occurrence of extrachromosomal plasmids in red algae, and may also have contributed to the high rate of horizontal gene transfer from bacteria to the nuclear genome of Porphyridium purpureum and other rhodophytes. Genetic tools for research on red algae (rhodophytes) are lacking. Here, Li and Bock present an efficient genetic transformation system for a model rhodophyte, and show that the transgenic DNA can be maintained as an extrachromosomal multi-copy plasmid in the algal nucleus.
Collapse
|
4
|
Du Q, Bi G, Mao Y, Sui Z. The complete chloroplast genome of Gracilariopsis lemaneiformis (Rhodophyta) gives new insight into the evolution of family Gracilariaceae. JOURNAL OF PHYCOLOGY 2016; 52:441-50. [PMID: 27273536 DOI: 10.1111/jpy.12406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/19/2016] [Indexed: 05/27/2023]
Abstract
The complete chloroplast genome of Gracilariopsis lemaneiformis was recovered from a Next Generation Sequencing data set. Without quadripartite structure, this chloroplast genome (183,013 bp, 27.40% GC content) contains 202 protein-coding genes, 34 tRNA genes, 3 rRNA genes, and 1 tmRNA gene. Synteny analysis showed plasmid incorporation regions in chloroplast genomes of three species of family Gracilariaceae and in Grateloupia taiwanensis of family Halymeniaceae. Combined with reported red algal plasmid sequences in nuclear and mitochondrial genomes, we postulated that red algal plasmids may have played an important role in ancient horizontal gene transfer among nuclear, chloroplast, and mitochondrial genomes. Substitution rate analysis showed that purifying selective forces maintaining stability of protein-coding genes of nine red algal chloroplast genomes over long periods must be strong and that the forces acting on gene groups and single genes of nine red algal chloroplast genomes were similar and consistent. The divergence of Gp. lemaneiformis occurred ~447.98 million years ago (Mya), close to the divergence time of genus Pyropia and Porphyra (443.62 Mya).
Collapse
Affiliation(s)
- Qingwei Du
- Key Laboratory of Marine Genetics and Breeding (MOE), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Guiqi Bi
- Key Laboratory of Marine Genetics and Breeding (MOE), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunxiang Mao
- Key Laboratory of Marine Genetics and Breeding (MOE), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding (MOE), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
5
|
Lee J, Kim KM, Yang EC, Miller KA, Boo SM, Bhattacharya D, Yoon HS. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes. Sci Rep 2016; 6:23744. [PMID: 27030297 PMCID: PMC4814812 DOI: 10.1038/srep23744] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/14/2016] [Indexed: 11/22/2022] Open
Abstract
The integration of foreign DNA into algal and plant plastid genomes is a rare event, with only a few known examples of horizontal gene transfer (HGT). Plasmids, which are well-studied drivers of HGT in prokaryotes, have been reported previously in red algae (Rhodophyta). However, the distribution of these mobile DNA elements and their sites of integration into the plastid (ptDNA), mitochondrial (mtDNA), and nuclear genomes of Rhodophyta remain unknown. Here we reconstructed the complex evolutionary history of plasmid-derived DNAs in red algae. Comparative analysis of 21 rhodophyte ptDNAs, including new genome data for 5 species, turned up 22 plasmid-derived open reading frames (ORFs) that showed syntenic and copy number variation among species, but were conserved within different individuals in three lineages. Several plasmid-derived homologs were found not only in ptDNA but also in mtDNA and in the nuclear genome of green plants, stramenopiles, and rhizarians. Phylogenetic and plasmid-derived ORF analyses showed that the majority of plasmid DNAs originated within red algae, whereas others were derived from cyanobacteria, other bacteria, and viruses. Our results elucidate the evolution of plasmid DNAs in red algae and suggest that they spread as parasitic genetic elements. This hypothesis is consistent with their sporadic distribution within Rhodophyta.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Kyeong Mi Kim
- Marine Biodiversity Institute of Korea, Seocheon, 325-902, Korea
| | - Eun Chan Yang
- Marine Ecosystem Research Division, Korea Institute of Ocean Science & Technology, Ansan, 15627, Korea
| | - Kathy Ann Miller
- Herbarium, University of California at Berkeley, 1001 Valley Life Sciences Building 2465, Berkeley, California, 94720-2465, USA
| | - Sung Min Boo
- Department of Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources and Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
6
|
Uji T, Hirata R, Fukuda S, Mizuta H, Saga N. A codon-optimized bacterial antibiotic gene used as selection marker for stable nuclear transformation in the marine red alga Pyropia yezoensis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:251-255. [PMID: 24149658 PMCID: PMC3996358 DOI: 10.1007/s10126-013-9549-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
Marine macroalgae play an important role in marine coastal ecosystems and are widely used as sea vegetation foodstuffs and for industrial purposes. Therefore, there have been increased demands for useful species and varieties of these macroalgae. However, genetic transformation in macroalgae has not yet been established. We have developed a dominant selection marker for stable nuclear transformation in the red macroalga Pyropia yezoensis. We engineered the coding region of the aminoglycoside phosphotransferase gene aph7″ from Streptomyces hygroscopicus to adapt codon usage of the nuclear genes of P. yezoensis. We designated this codon-optimized aph7″ gene as PyAph7. After bombarding P. yezoensis cells with plasmids containing PyAph7 under the control of their endogenous promoter, 1.9 thalli (or individuals) of hygromycin-resistant strains were isolated from a 10-mm square piece of the bombarded thallus. These transformants were stably maintained throughout the asexual life cycle. Stable expression of PyAph7was verified using Southern blot analysis and genomic PCR and RT-PCR analyses. PyAph7 proved to be a new versatile tool for stable nuclear transformation in P. yezoensis.
Collapse
Affiliation(s)
- Toshiki Uji
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611 Japan
| | - Ryo Hirata
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611 Japan
| | - Satoru Fukuda
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611 Japan
| | - Hiroyuki Mizuta
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611 Japan
| | - Naotsune Saga
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611 Japan
| |
Collapse
|
7
|
Renn D. Biotechnology and the red seaweed polysaccharide industry: status, needs and prospects. Trends Biotechnol 1997. [DOI: 10.1016/s0167-7799(96)10069-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Abstract
We have discovered plasmids in 5 of 18 diatom species surveyed. In several species, more than one type of plasmid is present. Several of the plasmids show similarity by hybridization previously characterized plasmids in Cylindrotheca fusiformis (J. D. Jacobs et al., unpublished data). Additionally, there is similarity between the plasmids found in C. fusiformis and chloroplast DNA in three diatom species. These results add to the evidence that the plasmids have features of mobile genetic elements.
Collapse
Affiliation(s)
- M Hildebrand
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla 92093-0202
| | | | | | | | | | | |
Collapse
|